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For abstract linear systems in Hilbert spaces we revisit the problems of exact controllability and complete stabilizability
(stabilizability with an arbitrary decay rate), the latter property being related to exact null controllability. We also consider
the case when the feedback is not bounded. We obtain a characterization of complete stabilizability for neutral type sys-
tems. Conditions for exact null controllability of neutral type systems are discussed. By duality, we obtain a result about
continuous final observability. Illustrative examples are given.
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1. Introduction

Consider the controlled neutral type system

ż(t) = A−1ż(t− 1) + Lzt(·) +Bu(t), (1)

where

Lzt(·) =
∫ 0

−1

[A2(θ)ż(t+ θ) +A3(θ)z(t+ θ)] dθ,

with z(t) ∈ R
n, u(t) ∈ R

m, and the matrices A−1, A2,
A3 and B are of appropriate dimensions. The elements of
A2 and A3 take values in L2(−1, 0).

The system (1) may be represented in a Hilbert space
by the equation

ẋ(t) = Ax(t) + Bu(t),
where Bu = (Bu, 0) and A is the infinitesimal generator
of a C0-semigroup eAt given in the product space

M2(−1, 0;Rn)
def
= R

n × L2(−1, 0;Rn),

∗Corresponding author

briefly denoted by M2 and defined by

Ax(t) =
(
Lzt(·)
dzt(θ)

dθ

)
, x(t) =

(
v(t)
zt(·)

)
,

with the domain D(A) given by

D(A) =
{
(v, ϕ) : ϕ(·) ∈ H1,

v = ϕ(0)−A−1ϕ(−1)
}
.

Our purpose is to analyze exact null controllability
of delay systems of neutral type (1), to show the relation
with complete stabilizability (exponential stabilizability
with an arbitrary decay rate) of the system and, by duality,
to give conditions for exact final observability of such a
system with an output y(t) = Cz(t) or y(t) = Cz(t− 1),
where y(t) takes values in R

p.
The problem of exact controllability for systems of

neutral type has been widely investigated. References
and important results for the system (1) can be found in
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the work of Rabah and Sklyar (2007). A simplification
and improvement of some details of the proofs are
given by Rabah et al. (2016). Duality with exact
(continuous) observability is analyzed by Rabah and
Sklyar (2016). For the stabilizability problem, after
the first important works (Pandolfi, 1976; O’Connor
and Tarn, 1983), there have been many results on the
stabilizability of delay systems (see, for example, the
works of Richard (2003) or Michiels and Niculescu
(2007) and the references therein), but neutral type
systems have been less frequently investigated (Pritchard
and Salamon, 1987; Salamon, 1984). In the work of Hale
and Verduyn Lunel (2002) the main scheme of stabilizing
neutral type systems and the robustness (with respect to
the delays) of the stabilizing feedback were analyzed.
The problem of asymptotic nonexponential stabilizability,
which appears only for neutral type systems, was treated
by Rabah et al. (2008; 2012); this problem occurs for
some systems governed by partial differential equations
(see, e.g., Sklyar and Szkibiel, 2013).

This paper is organized as follows. In Section 2 we
give results on the relation between exact null control-
lability and complete stabilizability for abstract systems in
Hilbert spaces. In Section 3, we give necessary conditions
of exact null controllability and we characterize complete
stabilizability for neutral type systems. Then we form-
ulate a conjecture on the equivalence between exact null
controllability and complete stabilizability for neutral type
systems. Section 4 is concerned with the dual notion of
observability: final continuous observability.

2. Preliminary results

In this section we consider the abstract system

ẋ = Ax + Bu, (2)

where the linear operator A, with domain D(A), is the
infinitesimal generator of a C0-semigroup eAt in the
Hilbert space X and B is a linear operator, which may
be unbounded but admissible (see, e.g., Tucsnak and
Weiss, 2009), from the Hilbert space U to X .

2.1. Bounded input and feedback. Let us first sup-
pose that the operator B is bounded. The solution of the
system (2) with the initial condition x0 and the control
u(t) ∈ Lloc

2 (R+;U) is given by

x(t) = eAtx0 +
∫ t

0

eA(t−τ)Bu(τ) dτ.

The following notions are well known (see, e.g., Curtain
and Zwart, 1995)

Definition 1. The system (2) is said to be exactly control-
lable at time T if for all x0, x1 ∈ X there is a control

u(t) ∈ L2(0, T ;U) such that the corresponding solution
of the system satisfies x(T ) = x1. The system is said to
be exactly null controllable if in the preceding definition
x1 = 0.

There are several results on exact (null)
controllability. For example, it is well known that if
B is compact, particularly if U is finite dimensional, then
there is no exact controllability (first proved by Kuperman
and Repin (1971); see also the work of Curtain and Zwart
(1995) and the references therein). Another condition of
exact controllability, in the case of the bounded operator
B, is that for all t ≥ 0 the operator eAt is onto (surjective)
(Louis and Wexler, 1983).

In what follows, we need the following criteria of
exact (null) controllability (Curtain and Zwart, 1995).

Theorem 1. The system (2) is exactly null controllable at
time T if and only if

∃δ > 0 : ∀x ∈ X,

∫ T

0

‖B∗eA
∗tx‖2dt ≥ δ2‖eA∗Tx‖2.

For the condition of exact controllability, the operator
eA

∗T must be replaced by the identity I on the right-hand
side of the inequality.

The characterization of exact null controllability is
due to a result on range inclusion in Hilbert spaces
(Douglas, 1966).

We also need some notions of stabilizability.

Definition 2. The system (2) is said to be exponentially
stabilizable if there is a linear bounded feedback operator
F such that the semigroup e(A+BF)t is exponentially
stable: there is a ω > 0 such that

‖e(A+BF)t‖ ≤Mωe
−ωt, Mω ≥ 1. (3)

The system is said to be completely stabilizable (or
stabilizable with an arbitrary decay rate) if for all ω > 0
there is a linear bounded feedback Fω such that (3) holds.

The relation between exact controllability and stab-
ilizability is as follows: exact null controllability implies
exponential stabilizability. If eAt is a group, complete
stabilizability implies exact controllability as shown by
Zabczyk (1992, Thm. 3.4, p. 229). Note that the original
proof was obtained by Zabczyk (1976), who extended the
result of Megan (1975). The same result was proved by
Rabah and Karrakchou (1997) or Zeng et al. (2013) for
the case of a semigroup eAt provided that the operators
eAt are surjective for all t ≥ 0.

We have been tempted to extend this latter result to
exact null controllability, possibly under some additional
conditions. However, the situation is not that simple. We
have the following implication, but its converse is not true.
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Theorem 2. If the system (2) is exactly null control-
lable, then it is completely stabilizable by a bounded feed-
back F .

Proof. Suppose that the system is exactly null control-
lable at time T . Then

∀x0 ∈ X, ∃u(·) ∈ L2(0, T ;U) : x(T, x0, u(·)) = 0,

where x(t) = x(t, x0, u(·)) is the solution with the initial
condition x0 and the control u(t):

x(t, x0, u(·)) = eAtx0 +
∫ t

0

eA(t−τ)Bu(τ)dτ.

Then for every x0 ∈ X, there exists u(·) ∈ L2(0,∞;U)
such that

∫ +∞

0

(‖x(t)‖2 + ‖u(t)‖2) dt <∞.

This means that the system is exponentially stabilizable
(Zabczyk, 1992, Thm. 3.3, p. 227):

∃Fω0 ∈ L(U,X) : ‖e(A+BFω0)t‖ ≤Mω0e
−ω0t,

ω0 > 0.

On the other hand, the exact null controllability of
the system (2) is equivalent to that of the system

ẋ = (A+ ωI)x+ Bu, ω > 0.

This means that for all ω > 0, for some μω > 0, there is
Fω ∈ L(U,X) such that

‖e(A+BFω)t‖ ≤Mμωe
−(μω+ω)t ≤Mωe

−ωt.

�

In order to explain the fact that the converse is
not true and that the situation is more complicated, we
give examples of two systems without control, where
the semigroups are exponentially stable with an arbitrary
decay rate, but where the states may or may not reach the
null state in finite time. These examples can be found in
the work of Rhandi (2002) in the spaces of continuous
functions.

Example 1. In the space L2(0,+∞), consider the semi-
group

S(t)f(x) = e−
t2

2 −xtf(x+ t), t ≥ 0, x ≥ 0.

It is easy to see that for this semigroup, for all ω > 0,
there is a constant Mω ≥ 1 such that ‖S(t)‖ ≤ Mωe

−ωt.
We have also σ(S(t)) = {0}, and then the spectrum of the
infinitesimal generator is empty. On the other hand, there
are initial conditions f such that S(t)f 	= 0 for any t ≥ 0.

�

Example 2. In the space L2(0, 1), consider the semi-
group

S(t)f(x) =

{
f(x+ t), 0 ≤ t+ x ≤ 1,

0, t+ x > 1.

It is not difficult to see that for this semigroup, for all
ω > 0, there is a constant Mω ≥ 1 such that ‖S(t)‖ ≤
Mωe

−ωt. We also have σ(S(t)) = {0}, and then the
spectrum of the infinitesimal generator is empty. But, for
any initial function f ∈ L2(0, 1), we have S(t)f(x) = 0
for t > 2. This means that S(t) = 0 for all t > 2. Then,
for any control operator B, the corresponding system is
exactly null controllable at time T > 2 with the trivial
control u = 0. �

2.2. Unbounded input and feedback operators. For
some control systems, the input operator B may not be
bounded and it is very restrictive to assume that the
feedback operator F is bounded. For a general theory
on systems with unbounded control and observation, we
refer to the paper by Salamon (1987). For the subclass
of interest, which includes linear neutral type systems,
we refer to Pritchard and Salamon (1987), Curtain et al.
(1997) and Guo et al. (2003)).

As our final goal is to analyze exact null control-
lability and complete stabilizability for neutral type sys-
tems, we will now consider a wider context of systems
with unbounded input and output operators. However,
the situation is much more complicated, even if some
extension may be considered.

Let X1 be D(A) endowed with the graph norm
denoted by ‖x‖1 and X−1 be the completion of the space
X with respect to the resolvent norm

‖x‖−1 =
∥∥(λI −A)−1x

∥∥
X
, λ ∈ ρ(A).

We have the following relation:

X1 ⊂ X ⊂ X−1,

with continuous dense injections.

Definition 3. Let B be a linear operator, bounded from the
Hilbert spaceU toX . We say that B is an admissible input
operator for the semigroup eAt if there exists t1 such that

∫ t1

0

eA(t1−τ)Bu(τ) dτ ∈ X1,

and for some β > 0

‖
∫ t1

0

eA(t1−τ)Bu(τ) dτ‖X1 ≤ β‖u‖L2(0,t1).
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Definition 4. Assume that operatorF is a linear operator,
bounded from X1 to the Hilbert space Y . We say that it
is an admissible output operator for the semigroup eAt if
there exists t1 > 0 such that for some α > 0

‖FeA(t1−τ)x‖L2(0,t1) ≤ α‖x‖X , x ∈ X1.

Admissibility for some t1 implies admissibility for
all t > 0 (see, e.g., Curtain et al., 1997). From the
general result on the perturbation of semigroup from the
Pritchard–Salamon class, we can deduce the following
Cauchy formula for the perturbed semigroup e(A+BF)t,
for admissible input and output operators B and F :

e(A+BF)tx = eAtx+
∫ t

0

eA(t−τ)BFe(A+BF)τxdτ, (4)

for all x ∈ X1. Moreover, e(A+BF)t extends to a
C0-semigroup on X .

This means that Definition 2 may be reformulated
for an admissible input operator and an admissible output
feedback.

Theorem 3. If the system (2) with an admissible operator
B is completely stabilizable by an admissible A-bounded
feedback, then it is completely stabilizable by a bounded
linear feedback F .

Proof. In the work of Curtain et al. (1997, Thm. 5.5)
(see also Guo et al., 2003), in a more general situation, it
is shown that the system (2) with an admissible operator
B is exponentially stabilizable by an admissible feedback
(inX1 andX) if and only if it is exponentially stabilizable
by a bounded feedback. Thus, we can suppose, with no
loss of generality, that in (4) the operator F is bounded:
F ∈ L(X,U). This means that complete stabilizability
by admissible feedbacks holds if and only if there is a
complete stabilizability by bounded feedbacks. �

From this and Theorem 2, we can expect to extend
the result of Theorem 2 to the case of unbounded control
and feedback. But Theorem 2 is based on the result
of Zabczyk (1992, Thm. 3.3, p. 227), which needs
another (Zabczyk, 1992, Thm. 4.3, p. 240), based on
the assumption of the exact null controllability given by
Definition 1. For the case of unbounded control and
feedback, we refer to Pritchard and Salamon (1987, Thm.
3.3, p. 132). The condition H4 used in this theorem
is guaranteed by exact null controllability in X−1 (each
initial state from X−1 may be moved to zero by an L2

control).

Corollary 1. If the system (2) with an admissible opera-
tor B is exactly null controllable in X−1, then it is com-
pletely stabilizable by an admissible feedback and then by
a bounded feedback F .

2.3. Technical lemma. In the next section we need the
following lemma.

Lemma 1. LetA be an (n×n)-matrix andB an (n×m)-
matrix. The following statements are equivalent

(i) For all λ ∈ C, λ 	= 0, rank
(
λI −A B

)
= n.

(ii) The following equality holds:

rank
(
B AB · · · An−1B

)
= rank

(
B AB · · · An−1B An

)
,

and this is equivalent to the inclusion

ImAn ⊂ Im
(
B AB · · · An−1B

)
.

Proof. The conditions 1 and 2 may be formulated as
follows:

(i) If there is x 	= 0 such that A∗x = λx and B∗x = 0,
then λ = 0.

(ii) If x 	= 0 is such that B∗A∗ix = 0, i ∈ N, then
A∗nx = 0.

Suppose that (i) holds. Let N be the subspace

N = {x : B∗A∗ix = 0, i ∈ N}.

It is easy to see that N is A∗-invariant and contained in
KerB∗. The spectrum of the restriction ofA∗ to N is {0}
by the condition (i). This means thatA∗ is nilpotent in N .
As the dimension of N is k ≤ n, we obtain A∗nx = 0 for
all x ∈ N . This gives (ii).

Let us show the equivalence of these conditions.
Suppose now that (ii) holds. Let x 	= 0 be such that
A∗x = λx and B∗x = 0. This implies that B∗A∗ix =
λiB∗x = 0, for all i ∈ N. From (ii), we obtain that

0 = A∗nx = λnx.

As x 	= 0, this implies λ = 0 and yields (i). �

3. Neutral type system: Controllability and
stabilizability

In this section we analyze exact null controllability and
complete stabilizability (exponential stabilizability with
an arbitrary decay rate) of a delay system of neutral type
(1) and investigate the relation between the two notions.
By duality, we give conditions for exact final observability
of such system with outputs

y(t) = Cz(t) or y(t) = Cz(t− 1),

where y(t) takes values in R
p.

The relation between exact controllability and expo-
nential stabilizability for linear neutral type systems may
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be found in several papers (see, e.g., the works of Salamon
(1984), Ito and Tarn (1985), O’Connor and Tarn (1983) or
Dusser and Rabah (2001) and the references therein).

For the analysis of stabilizability, we need the struc-
ture of the spectrum of the state operator A of the system
(1) and the condition of the growth of semigroup eAt.

Theorem 4. (Rabah et al., 2005) Consider the matrix

ΔA(λ) = λI − λe−λA−1

−
∫ 0

−1

[
λeλsA2(s) + eλsA3(s)

]
ds.

The spectrum of A, denoted by σ(A), consists only
of the eigenvalues which are the roots of the equation
detΔA(λ) = 0. The corresponding eigenvectors of A
are of the form

(
v − e−λA−1v

eλθv

)
, v ∈ KerΔA(λ).

The spectrum of A contains a nonempty set of points of
the form

{ln |μ|+ i(argμ+ 2πk) +O(1/k), k ∈ Z},

where μ is a non-zero eigenvalue of the matrix A−1.

The spectrum is countable and the semigroup eAt

satisfies the spectrum growth assumption (see, e.g., Hale
and Verduyn Lunel, 1993)

forallω > ω0 = supReσ(A), ∃Mω : ‖eAt‖ ≤Mωe
ωt.

Definition 5. System (1) is exactly null controllable if
for some T > 0 and for all x0 ∈ M2 there is a control
u(·) ∈ L2(0, T ;R

m) such that

eAtx0 +
∫ T

0

eA(T−τ)Bu(τ) dτ = 0.

This notion corresponds to the concept of complete
controllability given first by N.N. Krasovskiı̌ for retarded
systems.

Let RT be the linear operator defined by

RTu(·) =
∫ T

0

eA(T−τ)Bu(τ)dτ,
u(·) ∈ L2(0, T ;R

m).

The operator RT is bounded from L2(0, T ;R
m) to X .

Moreover, it takes values in D(A) and is bounded from
L2(0, T ;R

m) to X1 (see the works of Ito and Tarn (1985,
Corollary 2.7) and Rabah and Sklyar (2007) for our
system).

The exact null controllability may be formulated by
the inclusion

Im eAT ⊂ ImRT ,

where Im eAT and ImRT are images of the operators
eAT and RT . From the well-known characterization of
range inclusion in Hilbert spaces (Douglas, 1966), we can
obtain the following proposition, which is an extension of
Theorem 1.

Proposition 1. The system (1) is exactly null controllable
for some T > 0 if and only if there is a constant δ > 0
such that

∫ T

0

‖B∗eA
∗(T−τ)x‖2

Rmdτ ≥ δ2‖eA∗Tx‖2M2
,

for all x ∈M2.

We can now give the main result of this section.

Theorem 5. If the system (1) is exactly null controllable,
then the following two conditions hold:

(i) rank
(
ΔA(λ) B

)
= n for all λ ∈ C,

(ii) rank
(
μI −A−1 B

)
= n for all μ ∈ C, μ 	= 0.

Proof. Suppose that the system (1) is exactly null control-
lable. The necessity of the condition (i) is trivial. Let
us show that the condition (ii) is satisfied. We follow a
method used by Metel′skiı̆ and Minyuk (2006) (see also
Khartovskiı̆ and Pavlovskaya, 2013). Then, for some
T , for all initial conditions, in particular for all ϕ ∈
H1(−1, 0;Rn), there is a control u(·) ∈ L2(0, T ;R),
u(t) = 0 for t > T , such that z(t) = 0, t > T . We
may suppose that T > n.

The function z(t) is absolutely continuous and hence
almost everywhere differentiable. Then we have

ż(t) = A−1ż(t− 1) + Lzt +Bu(t).

Replacing ż(t− 1) in this equation, we obtain

ż(t) = A−1(A−1ż(t−2)+Lzt−1+Bu(t−1))+Bu(t).

With no loss of generality, one can suppose that the time t
is such that the function u is well defined at these points.
Repeating this procedure, we obtain

ż(t) = AN−1ż(t−N)

+
N−1∑
k=0

Ak−1 (Lzt−k +Bu(t− k)) .

Setting t = N ≥ T and using the continuity of z(t), we
obtain

0 = AN−1 (ż(+0)− ż(−0))

+

N−1∑
k=0

Ak−1 (Bu(N − k + 0)−Bu(N − k − 0)) . (5)
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As z(t) for t > 0 is the solution of Eqn. (1), we have

ż(+0) = A−1ż(−1) + Lz+0(·) +Bu(+0).

Then, replacing this expression in (5) and setting the
initial condition z0(θ) = ϕ(θ), we obtain

AN−1 (A−1ϕ̇(−1) + Lϕ(θ)− ϕ̇(−0)) +AN−1Bu(+0)

+

N−1∑
k=0

Ak−1 (Bu(N − k + 0)−Bu(N − k − 0)) = 0.

As ϕ̇(−0) ∈ R
n may be chosen arbitrarily, we obtain

ImAN−1 ⊂ Im
(
B A−1B · · · AN−1

−1 B
)
.

This may be written as

rank
(
B A−1B · · · AN−1

−1 B
)

= rank
(
B A−1B · · · AN−1

−1 B AN−1

)
.

By the Cayley–Hamilton theorem, this gives

rank
(
B A−1B · · · An−1

−1 B
)

= rank
(
B A−1B · · · An−1

−1 B An−1

)
.

Now, using Lemma 1, we obtain the condition (ii). �

The necessary conditions of exact null controllability
characterize in fact the property of complete
stabilizability.

Theorem 6. The system (1) is completely stabilizable by
a feedback law of the form

u(t) = F−1ż(t− 1) + Fzt(·), (6)

where

Fzt(·) =
∫ 0

−1

[F2(θ)ż(t+ θ) + F3(θ)z(t+ θ)] dθ

if and only if

(i) rank
(
ΔA(λ) B

)
= n for all λ ∈ C,

(ii) rank
(
μI −A−1 B

)
= n for all μ ∈ C, μ 	= 0.

Proof. We give a short and direct proof of the neces-
sity even though it can be obtained from Corollary 5.1.3
of Salamon (1984).

If the condition (i) is not satisfied then there is an
eigenvalue λ0 of the operator A which cannot be modified
by the control operator B. This implies the lack of
complete stabilizability.

If the condition (ii) is not satisfied, then there is a
nonzero eigenvalue μ0 of the matrix A−1 which cannot
be modified. Then the spectral set

{ln |μ0|+ i(argμ0 + 2πk) +O(1/k), k ∈ Z} ⊂ σ(A),

which belongs to a vertical strip, cannot be modified
either. This means that complete stabilizability is not
possible.

Let us show now that the two conditions are sufficient
for complete stabilizability feedback laws of the form (6).

Suppose that the condition (ii) is satisfied. Let us
fix an arbitrary ω > 0. As all the non-zero poles of the
matrixA−1 are controllable by the condition (ii), a matrix
F−1 can be found such that the spectrum σ(A−1+BF−1)
satisfies

∀μ ∈ σ(A−1 +BF−1), μ 	= 0, ln |μ| < −ω.

Consider now the neutral type system

ż(t) = (A−1 +BF−1)ż(t− 1) + Lzt +Bu. (7)

Let A1 be the generator of the system (7). From the
structure of the spectrum of neutral type systems like (1),
we have only a finite number of eigenvalues λ ∈ σ(A1)
such that Reλ ≥ −ω. Now, using the condition (i), a
feedback u(t) = F1zt(·), where

F1zt(·) =
∫ 0

−1

[F2(θ)ż(t+ θ) + F3(θ)z(t+ θ)] dθ,

can be found (see, e.g., Pandolfi, 1976; Pritchard and
Salamon, 1987; Rabah et al., 2008; 2012) such that all
the eigenvalues λ of the system

ż(t) = (A−1 +BF−1)ż(t− 1) + (L+BF1)zt

satisfy Reλ < −ω. If we denote byF the global feedback

u(t) = F−1ż(t− 1) + F1zt(·)),

then we obtain

‖e(A+BF)t‖ ≤Me−ωt, M ≥ 1.

Since ω has been arbitrarily taken, this means that the
system is completely stabilizable by a feedback of the
form (6). �

A similar result was obtained for modal
controllability (the assignment of a characteristic
quasi-polynomial) for a neutral system with multiple
discrete delays by Metel′skiı̆ and Khartovskii (2016).

In view of Corollary 1 as well as Theorems 5 and 6,
one can formulate the following natural conjecture.

Conjecture 1. The system (1) is exactly null controllable
if the following two conditions hold:

(i) rank
(
ΔA(λ) B

)
= n for all λ ∈ C,

(ii) rank
(
μI −A−1 B

)
= n for all μ ∈ C, μ 	= 0.
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This means that exact null controllability is equivalent to
complete stabilizability for neutral type systems.

It is well known that Conjecture 1 is satisfied
for some class of neutral type systems with discrete
delays (Metel′skiı̆ and Minyuk, 2006; Khartovskiı̆ and
Pavlovskaya, 2013) and in the case of retarded systems
(Olbrot and Pandolfi, 1988). It seems that one can use the
conditions of complete stabilizability to show the result
of Conjecture 1. But at this moment, we not have a
satisfactory formal proof.

4. Final exact observability

The dual notion of exact null controllability in a Hilbert
space is the notion of final continuous observability.
Sometimes the term continuous is replaced (by analogy)
by the term exact. In the work of Rabah and Sklyar
(2016), the duality between exact controllability and
exact observability was analyzed. In the present section
we give the result for null exact controllability and the
corresponding notion of observability.

We consider the finite dimensional observation

y(t) = Cx(t), (8)

where C is a linear operator and y(t) ∈ R
p is a finite

dimensional output. There are several ways to design
the output operator C (Salamon, 1983; 1984; Metel’skiǐ
and Minyuk, 2006). One of our goals in this paper is to
investigate how to design a minimal output operator like

Cx(t) = Cz(t) or Cx(t) = Cz(t− 1), (9)

where C is a p × n matrix. More general outputs, for
example, with several and/or distributed delays, are not
considered here. We want to use some results on exact
controllability in order to analyze, by duality, the exact
observability property in the infinite dimensional setting
like, for example, in the work of Tucsnak and Weiss
(2009).

The operator C defined in (9) is linear but not boun-
ded in M2. However, in both the cases it is admissible in
the following sense:

∫ T

0

∥∥CeAtx0∥∥2
Rp dt ≤ κ2‖x0‖2M2

, ∀x0 ∈ D(A),

because eAtx0 ∈ D(A), t ≥ 0 (see, e.g., Pazy, 1983).

Definition 6. Let K be the output operator

K :M2 −→ L2(0, T ;R
p), x0 �−→ Kx0 = CeAtx0.

The system (1) is said to be exactly finally observable or
continuously finally observable (Salamon, 1984) if

‖Kx0‖2L2
=

∫ T

0

∥∥CeAtx0∥∥2
Rp dt ≥ γ2

∥∥eATx0∥∥2M2
(10)

for some constant γ > 0 and for all x0 ∈ D(A). We
say that the system is exactly (or continuously) observable
if in (6) in the second term of the inequality, eATx0, is
replaced by x0.

Exact observability means that we can continuously
determine the initial state z0(·) from the observation on
[0, T ]. Final exact observability signifies that we can
continuously determine the final state zT (·).

Exact (final) observability depends essentially on the
space topology. We can expect that a given neutral type
system is not exactly observable if we consider x0 ∈
D(A) with the graph norm and no longer in the topology
of M2. In fact, we obtain the final observability in the
initial norm, but we need some delay in the observation in
the general case.

In order to use the duality between observability
and controllability, we need the expression of the adjoint
operator K∗ in the duality with respect to the pivot space
M2 in the embedding

X1 ⊂ X =M2 ⊂ X−1,

where X1 = D(A) with the graph norm denoted
by ‖x‖1 and X−1 being the completion of the space
M2 with respect to the resolvent norm ‖x‖−1 =∥∥(λI −A)−1x

∥∥
M2

. The duality relation is

〈Kx0, u(·)〉L2(0,T ;Rp) = 〈x0,K∗u(·)〉X1,Xd
−1
,

where Xd
−1 is constructed as X−1 with A∗ instead of A

(see Tucsnak and Weiss, 2009) : Xd
−1 is the completion

of the space M2 with the resolvent norm corresponding to
the operator A∗.

Exact null controllability is dual with exact final
observability in the corresponding spaces and with the
corresponding topologies. It is expected that the operator
K∗ corresponds to a control operator for some adjoint
system. However, the situation is not so simple, as was
pointed out in the paper by Rabah and Sklyar (2016), from
which we take our main considerations on duality.

Proposition 2. (Rabah et al., 2008; Rabah and Sklyar,
2016) The adjoint operator A∗ is given by

A∗
(
w
ψ(·)

)
=

(
(A∗

2(0)w + ψ(0)

−d[ψ(θ)+A∗
2(θ)w]

dθ +A∗
3(θ)w

)
,

with the domain D(A∗) consisting of (w,ψ(·)) ∈ M2

such that{
ψ(θ) +A∗

2(θ)w ∈ H1,
A∗

−1 (A
∗
2(0)w + ψ(0)) = ψ(−1) +A∗

2(−1)w.

Let x be a solution of the abstract equation

ẋ = A∗x, x(t) =

(
w(t)
ψt(θ)

)
. (11)



496 R. Rabah et al.

Then the function w(t) is the solution of the neutral type
equation

ẇ(t+ 1) = A∗
−1ẇ(t) +

∫ 0

−1

[
A∗

2(τ)ẇ(t+ 1 + τ)

+A∗
3(τ)w(t + 1 + τ)

]
dτ.

(12)

This means that the form of the adjoint system is not
a simple transposition of the initial one (1). Let us now
specify the relation between the solutions of the neutral
type equation (12) related to the adjoint system (11) and
the transposed neutral type equation

ż(t) = A∗
−1ż(t− 1)

+

∫ 0

−1

[A∗
2(τ)ż(t+ τ), A∗

3(τ)z(t+ τ)] dτ,
(13)

with initial z0(θ). Let A† be the infinitesimal generator of
the semigroup corresponding to Eqn. (13).

Set
(
w(t)
ψt(θ)

)
= eA

∗tξ0 = eA
∗t
(
w(0)
ψ0(θ)

)
,

and the conditions
(
v(t)
zt(θ)

)
=

(
w(t+ 1)−A∗−1w(t)

w(t+ 1 + θ)

)
= eA

†t
(
v(0)
z0(θ)

)
,

where z0(θ) = w(θ+1) and v(0) = z0(0)−A−1z0(−1).
We can give the explicit relation between the initial
conditions ξ0 and x0:

ξ0 =

(
w(0)
ψ0(θ)

)
, x0 =

(
v(0)
z0(θ)

)
.

The formal relation between these vectors is

ξ0 =

(
w(0)
ψ0(θ)

)
= Φx0 = Φ

(
w(1)−A−1w(0)

w(θ + 1)

)
,

and we have the following result.

Theorem 7. (Rabah and Sklyar, 2016) The operator Φ
representing the relation between the initial conditions x0
and ξ0 corresponding to the neutral type systems (11)–
(12) and (13) is linear bounded and bounded invertible
fromXd

1 toM2, whereXd
1 isD(A∗) with the graph norm.

Let us now consider the reachability operator of the
transposed controlled system:

ẋ(t) = A†x(t) + C†u(t),

where

C† =
(
C∗

0

)
.

This operator is given by

R†
Tu(·) =

∫ T

0

eA
†(T−τ)C†u(τ) dτ.

The operator K may be written using R†
T and the semi-

group eA
†

of the system (13) as follows (see Rabah and
Sklyar, 2016):

Kx0 =

{ R†∗
T Φx0 if Cx(t) = Cz(t− 1),

R†∗
T eA

†∗
Φx0 if Cx(t) = Cz(t).

(14)

We can now formulate the main result of this section.

Theorem 8. The system (1) with the output y = Cz(t−1)
is exactly (continuously) finally observable if and only if
the system (13) is exactly null controllable. A necessary
condition of exact final observability is given by two con-
ditions:

(i) Ker

(
ΔA(λ)
C

)
= {0} for all λ ∈ C,

(ii) Ker

(
λI −A−1

C

)
= {0} for all λ ∈ C, λ 	= 0.

Proof. According to the relation (14), we have

‖Kx0‖L2 =

(∫ T

0

‖C∗eA
†∗(T−τ)Φx0‖2dτ

) 1
2

.

As the system (13) is exactly null controllable, we obtain

‖Kx0‖L2 ≥ δ‖eA†∗TΦx0‖,

for all x0 ∈ D(A). It is easy to see from the work of
Rabah and Sklyar (2016) that

eA
†∗TΦx0 = ΦeA

†∗(T−τ)x0 = eATx0.

This gives
‖Kx0‖L2 ≥ δ‖eATx0‖,

which means that exact final observability holds. �

For the case of the output y = Cz(t), we cannot say
anything if det(A−1) = 0. If A−1 is not singular, then
eAt is a group and exact final observability coincides with
exact observability (Rabah and Sklyar, 2016).

5. Examples

To illustrate our results and hypothesis, we give here three
examples. The first one shows that for continuous obser-
vability a delay in the output is needed if the semigroup
is not a group. The second one is taken from the
work of Metel′skiı̆ and Minyuk (2006), and it is shown
that in fact we have exact controllability (not only exact
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null controllability). The last example illustrates our
Conjecture 1 on equivalence between exact controllability
and complete stabilizability.

All examples are given in the form of a system with
one discrete delay:

ż(t) = A−1z(t−1)+A0z(t)+A1z(t−1)+Bu(t). (15)

Example 3. We have the system (15) with

A0 =

(
0 1
0 0

)
, A1 = 0,

A−1 =

(
0 1
0 0

)
, B =

(
0
1

)
.

It is easy to see that, for all λ ∈ C,

rank
(
ΔA(λ) B

)
=

(
λ −λe−λ − 1 0
0 λ 1

)
= 2.

Moreover, for all λ ∈ C, rank
(
λI −A−1 B

)
= n; then

the system is exactly controllable (not only to zero). The
transposed system

{
ż1(t) = 0

ż2(t) = ż1(t− 1) + z1(t)

is continuously observable with the output y = z2(t − 1)
but not with y(t) = z2(t). �

Example 4. The following system was given for exact
null controllability and continuous final observability by
Metel′skiı̆ and Minyuk (2006):

A0 = 0, A1 =

(
0 1
0 0

)
, A−1 =

(
0 −1
0 1

)
.

In fact, for this system, the initial condition is exactly
observable by the output

y = Cz(t− 1), C =
(
1 0

)
,

and the transposed system is exactly controllable because,
for all λ ∈ C,

rank
(
λI −A∗

−1 C∗) = rank

(
λ 0 1
1 λ− 1 0

)
= 2.

However, the initial system is not exactly observable by
the output y = Cz(t) = z1(t), because the initial function
z0(θ), θ ∈ [0, 1[ cannot be determined. �

Example 5. We have the system (15) with

A0 =

(
0 0
1 0

)
, A1 = 0,

A−1 =

(
1 0
0 0

)
, B =

(
1
0

)
.

For all λ ∈ C, we get

rank
(
ΔA(λ) B

)
=

(
λ− λe−λ 0 1

−1 λ 0

)
= 2,

and, for all complex λ 	= 0,

rank
(
λI −A−1 B

)
=

(
λ− 1 0 1
0 λ 0

)
= 2.

The system is exactly null controllable by Lemma 1
and the result of Metel′skiı̆ and Minyuk (2006). It is
completely stabilizable by Theorem 6. Consider now the
transposed system

{
ż1(t) = z2(t),

ż2(t) = ż2(t− 1).

This system is continuously finally observable by the
feedback y = z1(t− 1) by Theorem 8. �

6. Conclusion

We gave some relations between exact null controllability
and complete stabilizability of abstract systems in Hilbert
spaces. A characterization of complete stabilizability was
given for a large class of linear neutral type systems.
Necessary conditions of exact null controllability were
presented, which conjectured to be also sufficient for
neutral type systems, even if they are not in the general
case. This also allows the final continuous observability
of such systems to be characterized. The following step
is to prove the conjecture and to extend such results to the
problem of detectability, which is dual to stabilizability.
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