
Int. J. Appl. Math. Comput. Sci., 2017, Vol. 27, No. 2, 351–365
DOI: 10.1515/amcs-2017-0025

ELEMENT PARTITION TREES FOR H-REFINED MESHES TO OPTIMIZE
DIRECT SOLVER PERFORMANCE. PART I: DYNAMIC PROGRAMMING

HASSAN ABOUEISHAa , VICTOR MANUEL CALOb , KONRAD JOPEKc , MIKHAIL MOSHKOVa,
ANNA PASZYŃSKAd , MACIEJ PASZYŃSKIc,∗, MARCIN SKOTNICZNYc

aComputer, Electrical and Mathematical Sciences and Engineering (CEMSE)
King Abdullah University of Science and Technology, Bld. 1 (Al-khawarizmi)

4128-WS03, Thuwal, 23955-6900, Kingdom of Saudi Arabia
e-mail: {hassan.aboueisha,mikhail.moshkov}@kaust.edu.sa

bFaculty of Science and Engineering, Western Australian School of Mines
Curtin University, Kent Street, Perth, WA 6102, Australia

e-mail: vmcalo@gmail.com

cFaculty of Computer Science, Electronics and Telecommunications
AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: macwozni@agh.edu.pl

dFaculty of Physics, Astronomy and Applied Computer Science
Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland

e-mail: anna.paszynska@uj.edu.pl

We consider a class of two- and three-dimensional h-refined meshes generated by an adaptive finite element method. We
introduce an element partition tree, which controls the execution of the multi-frontal solver algorithm over these refined
grids. We propose and study algorithms with polynomial computational cost for the optimization of these element partition
trees. The trees provide an ordering for the elimination of unknowns. The algorithms automatically optimize the element
partition trees using extensions of dynamic programming. The construction of the trees by the dynamic programming
approach is expensive. These generated trees cannot be used in practice, but rather utilized as a learning tool to propose
fast heuristic algorithms. In this first part of our paper we focus on the dynamic programming approach, and draw a sketch
of the heuristic algorithm. The second part will be devoted to a more detailed analysis of the heuristic algorithm extended
for the case of hp-adaptive grids.

Keywords: h-adaptive finite element method, ordering, element partition tree, extensions of dynamic programming, multi-
frontal direct solvers.

1. Introduction

The finite element method (FEM) is a popular approach
(Hughues, 2000; Zienkiewicz et al., 2013; Demkowicz,
2006) to approximate solutions of partial differential
equations (PDEs). It has multiple applications in
two and three-dimensions (Barboteu et al., 2013; Strug
et al., 2013; Karczewska et al., 2016). The discrete
approximation of the solution of a PDE using FEM uses
a computational mesh to describe the geometry of the
domain and approximating functions to the solution. This

∗Corresponding author

discrete approximation results in a global system of linear
equations. Using the particular weak form resulting from
the integration by parts of the weighted residual, each
finite element generates a frontal matrix. The algebraic
system is spread over these frontal matrices. The entries in
these matrices correspond to the action of the weak form
on the basis functions associated with element vertices,
edges, and interiors. The global matrix is obtained by
merging these frontal matrices according to the mesh
topology.

The multi-frontal solver is a state-of-the-art
algorithm for solving sparse linear systems resulting

© 2017 H. AbouEisha et al.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

{hassan.aboueisha,mikhail.moshkov}@kaust.edu.sa
vmcalo@gmail.com
macwozni@agh.edu.pl
anna.paszynska@uj.edu.pl

352 H. AbouEisha et al.

from finite element discretizations (Duff et al., 1986;
Duff and Reid, 1983; 1984). This algorithm works in
both single- and multi-processor environments, either
in the shared-memory (Fiałko, 2009a; 2009b; 2010) or
distributed-memory (Amestoy et al., 2000; 2001; 2006),
parallel machines.

Classical multi-frontal solvers, such as MUMPS
(Amestoy et al., 2000; 2001; 2006) use an ordering
constructed based on the analysis of the sparsity of the
global matrix (Liu, 1990). We build an element partition
tree based on the computational mesh, and construct our
ordering based on this element partition tree.

We focus on classes of two-dimensional h-refined
meshes, obtained through an iterative adaptive process,
where some finite elements are selected for h refinement,
and thus broken into smaller finite elements. Algorithms
performing h refinements in the areas of local point
or edge singularities are essential to solving a variety
of engineering problems (Bao et al., 2012; Kardani
et al., 2012; Niemi et al., 2012; Patro et al., 2013).
The refinement process is controlled by one of many
available adaptive algorithms (Babuška and Rheinboldt,
1978; Becker et al., 2000; Belytschko and Tabbar, 1993;
Errikson and Johnson, 1991), and the goal of the process
is to increase the accuracy of the numerical solution by
adding a limited number of new basis functions associated
with new elements generated in the areas of a large
numerical error.

A refined 2D mesh with rectangular elements can
be considered a finite set of vertical and horizontal line
segments, vertices (intersections of line segments) and
rectangles bounded by these line segments. An element
partition tree is a binary rooted tree that describes the
partition of the mesh by these line segments.

We present a dynamic programming algorithm for
the optimization of element partition trees for a class
of 2D meshes. The goal of the optimization is to
find element partition trees that results in an ordering
providing a minimal number of floating point operations
of the multi-frontal solver algorithm. Cost functions for
the element partition trees are defined based on the mesh
topological information. The optimization problem we
consider lies at the intersection of discrete geometry and
combinatorial optimization.

The construction of the element partition trees by
the dynamic programming approach is expensive. These
generated optimal trees cannot be used in practice,
but rather guide our heuristic methods. In this paper
we describe our optimization procedure and present
a class of element partition trees obtained from our
optimization procedure. From the analysis of the
automatic optimization results, we outline a heuristic
algorithm to construct element partition trees, which is
based on multilevel recursive bisections. The second part
of our paper (AbouEisha et al., 2016) will be devoted to a

A

B C

D

E

F H

G

K L M

Fig. 1. Example mesh.

more detailed analysis of the heuristic algorithm extended
for the case of hp-adaptive grids.

The plan of the paper is the following. First, we
define the class of meshes suitable for optimization.
Second, we define partitions of the mesh. Third, we define
our notion of an element partition tree. Next, we define
our cost function related to the optimization of floating
point operations. Later, we describe our optimization
algorithms and present their computational cost. Finally,
we discuss the results of our dynamic programming
procedure for optimization of element partition trees.

2. Dynamic programming algorithm for
optimization of element partition trees

2.1. Class of meshes. The class of meshes investigated
is constructed as follows. We start with a rectangle.
We call the sides of this initial rectangle boundary sides
and its vertices are called corners. Further vertical
and horizontal straight line segments (we refer to these
segments including sides of the initial rectangle as lines)
may be added as follows. We select two points that
lie on different existing parallel lines and which can be
connected by a vertical or horizontal line and connect
them by adding a line. The process may be repeated
until the desired mesh structure is obtained. Once the
construction process is finished, we have a mesh that is
mainly a rectangle with a set of vertical and horizontal
lines that lies inside it.

The following example illustrates the description of
an instance of this class of meshes presented in Fig. 1.
Initially, the rectangle boundaryABGH is specified. The
order of points is assumed to follow a counter-clockwise
order, and the selection of the starting point is arbitrary.
Then, lines CD and EF are added where their end points
belong to the horizontal sides of the mesh boundary (AH
and BG). Finally, line LK is drawn between lines CD
and EF and KM are drawn to connect pointsK and M .

As a result of this construction process, we obtain a
set of points that are either vertices of the initial rectangle,
endpoints of the lines added or points that result from the
intersection of the lines added. We call this set of points
mesh points. Any segment of a straight horizontal or

Element partition trees for h-refined meshes to optimize direct solver performance. Part I. . . 353

vertical line in the mesh that connects two different mesh
points is called a mesh line. A boundary line is a mesh
line which belongs to a boundary side. For example,EK ,
KF , and LM are mesh lines, and CE is a boundary line
(see Fig. 1).

We define dividing lines that are used to partition a
given mesh. We denote the set of vertical lines that extend
from the borders of a mesh M by DLV (M), horizontal
lines that extend between the borders of M by DLH(M)
and the union of both sets byDL(M). We do not consider
vertical border sides of the meshM amongDLV (M) and
similarly for its horizontal border sides. The mesh M can
be partitioned using a dividing line l that belongs to the set
DL(M). This partitioning step results in two sub meshes:
M(l, 0) that represents the submesh which lies below the
horizontal (left of the vertical) line l and M(l, 1) denotes
the submesh which is above the horizontal (right of the
vertical) line l. In Fig. 1, DLV (ABGH) = {CD,EF},
DLH(ABGH) = ∅ and DL(ABGH) = {CD,EF}.
The mesh ABGH can be partitioned using the dividing
line EF resulting in the two submeshes: ABEF =
ABGH(EF, 0) and EGHF = ABGH(EF, 1).

We describe an arbitrary submesh N of M by
a sequence of binary partitioning steps. Formally, a
submesh N of a mesh M is an expression of the kind

N =M(l1, δ1) . . . (ln, δn),

where δ1, . . . , δn ∈ {0, 1}, l1 ∈ DL(M) and li ∈
DL(M(l1, δ1) . . . (li−1, δi−1)) for i = 2, . . . , n.

The resulting submesh is described as follows. First,
a dividing line l1 is used to partition the mesh M and
then the submesh M(l1, δ1) is acquired. The line l2 is
a dividing line of this submeshh (l2 ∈ DL(M(l1, δ1)))
which is used to partitionM(l1, δ1) again until the desired
submesh is obtained, etc. For example, KMHF =
ABGH(EF, 1)(KM, 1). We denote by SUB(M) the
set of submeshes of the mesh M including the mesh M .
In our example, SUB(ABGH) = {ABGH, ABCD,
ABEF, DCGH, DCEF, FEGH, DLKF, LCEK,
KEGM, FKMH, DLMH, LCGM}.

The submesh N can be considered a mesh that is
represented as a rectangle, whose sides are called border
sides, that may contain a set of vertical and horizontal
lines inside it. For the submesh N , we can define the
notion of dividing lines in a similar way as for M , so we
can use the notationDLV (N),DLH(N) andDL(N). As
for the initial mesh M , it is possible that a dividing line is
constructed indirectly in a series of steps. For example,
DLV (DLMH) = {KF} and DLH(DCGH) = {LM}
(see Fig. 1).

A submesh N of the mesh M is a unitary submesh
if and only if it does not have any dividing lines, i.e.,
DL(N) = ∅. We assume that each unitary submesh N
of M has a unique identifier ϕ(N). Unitary submeshes
correspond to single finite elements.

2.2. Mesh and line partitions. Let M be a mesh.
For each mesh line l of M , we describe a set P (M, l)
of distinct points of the line l. If l is a boundary line,
then the set of points includes the endpoints of l and any
point of l that results from any other mesh line touching
l. If l is not a boundary line, then the set of points
includes all the points of l that result from another mesh
line cutting l in addition to the endpoints of l. End
points of other lines that start or finish on l are not
included. That is, a touching line does not generate a point
for l. For example, P (ABGH,AH) = {A,D, F,H},
P (ABGH,CD) = {C,D}, and P (ABGH,LM) =
{L,K,M}. Each pair of consecutive points in P (M, l)
forms an edge. The number of edges on a line l is denoted
by E(M, l) and E(M, l) = |P (M, l)| − 1. For example,
E(ABGH,CD) = 1 for the mesh in Fig. 1.

Let N be a submesh of M and l ∈ DL(N).
The line l represents a common border side of two
submeshes: N(l, 0) andN(l, 1). We define now a number
of parameters of the submesh N and the dividing line l
for N :

• EP (M,N, l) represents the number of endpoints of
l that lie on a boundary side.

• B(M,N) is the number of edges on the border sides
of N . These edges result from the mesh lines that
cut the border sides ofN or touch them if they are on
boundary sides, i.e., border sides of the initial mesh
M , as described in the previous paragraph.

• BE(M,N) is the number of edges that lie in the
border sides of N which are on the boundary sides,
where 0 ≤ BE(M,N) ≤ B(M,N).

• BV (M,N) represents the number of vertices of N
that are endpoints of boundary sides, i.e., corners,
where 0 ≤ BV (M,N) ≤ 4.

In Fig. 1, the corresponding values are

EP (ABGH,DCEF,LK) = 0,

EP (ABGH,ABEF,CD) = 2,

B(ABGH,CEFD) = 5,

BE(ABGH,ABCD) = 3,

BV (ABGH,ABCD) = 2.

We denote by s(M) the number of vertical and
horizontal straight lines for each of which there exists a
mesh line of M which is a segment of the straight line
considered. The number s(M) is the size of the mesh M .

Lemma 1. For any mesh M , |SUB(M)| ≤ s(M)4.

Proof. Each submesh of M is defined by its four border
sides, i.e., by four straight lines. The number of possible
straight lines is equal to the size s(M) of the mesh M .
Therefore |SUB(M)| ≤ s(M)4. �

354 H. AbouEisha et al.

2.3. Element partition trees. An element partition
tree is a labeled finite directed tree with a root. We define
the notion of an element partition tree for a submeshN of
the mesh M by induction. Let N be a unitary mesh. Then
there exists only one element partition tree for N that
contains exactly one node which is labeled with ϕ(N).
We denote this element partition tree by etree(ϕ(N)).
Let N be a non-unitary mesh. Then any element partition
tree for N can be represented in the form etree(l,Γ0,Γ1)
where l ∈ DL(N), Γδ is an element partition tree for
the submesh N(l, δ), δ ∈ {0, 1}, and etree(l,Γ0,Γ1) is a
tree in which the root is labeled with l, and two edges start
from the root which are labeled with 0 and 1 and enter the
roots of element partition trees Γ0 or Γ1, respectively. We
denote by ET (M,N) the set of all element partition trees
for the submesh N of the mesh M .

Let Γ be an element partition tree for the submesh
N of the mesh M . Any terminal node (leaf) of this
tree is labeled as a unitary submesh of N . Any
internal node is labeled with a line. Each internal
node has exactly two edges that start from it and are
labeled with 0 and 1, respectively. Figure 2 shows an
element partition tree for the mesh presented in Fig.
1. The corresponding recursive notation for the tree
is etree(EF, etree(CD, etree(ϕ(ABCD)), etree(LK,
etree(ϕ(CEKL)), etree(ϕ(LKFD)))), etree(KM,
etree(ϕ(KEGM)), etree(ϕ(FKMH)))).

We associate to each node v of the element partition
tree Γ a submesh NΓ(v) of the submesh N . If v is the
root of Γ then NΓ(v) = N . If v is not the root and the
path from the root to v consists of nodes labeled with lines
l1, . . . , lm and edges labeled with the numbers δ1, . . . , δm,
respectively, then NΓ(v) = N(l1, δ1) . . . (lm, δm).

For each internal node v of Γ, this node is labeled
with a line from DL(NΓ(v)). For each terminal node v,
the submeshNΓ(v) is a unitary mesh and v is labeled with
the identifier ϕ(NΓ(v)) of NΓ(v).

For a node v of Γ, we denote by Γ(v) the subtree of
Γ with the root in v. Thus, Γ(v) is an element partition
tree for the submesh NΓ(v).

Let M be a mesh and N be a non-unitary submesh
of M . For each l ∈ DL(N), let ET (M,N, l) =
{etree(l,Γ0,Γ1) : Γδ ∈ ET (M,N(l, δ)), δ = 0, 1}. The
next statement follows immediately from the definition of
element partition tree.

Proposition 1. LetM be a mesh andN be a submeshh of
M . Then ET (M,N) = {etree(ϕ(N))} if N is unitary,
and ET (M,N) =

⋃
l∈DL(N)ET (M,N, l) if N is non-

unitary.

2.4. Cost function for element partition trees. In this
section, we define the notion of a cost function for element
partition trees.

Cost function ψ has values from the set R of real
numbers and is defined on triples (M,N,Γ) whereM is a
mesh, N is a submesh ofM , and Γ is an element partition
tree for N . The function ψ is given by two operators
ψ0 and F . The value of ψ is defined by induction.
The operator ψ0 represents the cost of processing a
unitary submesh, and the operator F represents the cost
of recursive merging of the submeshes.

If N is a unitary submesh of M and Γ =
etree(ϕ(N)), then ψ(M,N,Γ) = ψ0(M,N), where ψ0

is a real-valued function which is defined on pairs (M,N),
M is a mesh and N is a unitary submesh of M .

Let N be a non-unitary mesh and Γ =
etree(l,Γ0,Γ1), where we have l ∈ DL(N), Γδ ∈
ET (M,N(l, δ)), δ ∈ {0, 1}. Then

ψ(M,N,Γ) = F (M,N, l, ψ(M,N(l, 0),Γ0),

ψ(M,N(l, 1),Γ1)),

where F is a real-valued function which is defined on
quintuples (M,N, l, x1, x2) such that M is a mesh, N is
a non-unitary submesh of M , l ∈ DL(N), x1, x2 ∈ R.

Using this inductive definition, we can compute
the cost of given element partition tree beginning from
terminal nodes and terminating in the root.

The cost function ψ is called increasing if, for any
mesh M , its non-unitary submesh N , line l ∈ DL(N),
and x1, x 2, y1, y2 ∈ R, if x1 ≤ y1 and x2 ≤ y2
then F (M,N, l, x1, x2) ≤ F (M,N, l, y1, y2). The cost
function ψ is called strictly increasing if, for any mesh
M , its non-unitary submesh N , line l ∈ DL(N), and
x1, x 2, y1, y2 ∈ R, if x1 ≤ y1, x2 ≤ y2, and (x1, x 2) �=
(y1, y2) then F (M,N, l, x1, x2) < F (M,N, l, y1, y2).
Each strictly increasing cost function is an increasing cost
function.

Our cost function depends on a parameter p (the
polynomial order), defined as a natural number which
identifies the number of basis functions spread over
vertices, edges, and interiors of unitary submeshes (finite
elements): one per vertex, p per edge, and p2 per interior.
Another parameter considered is q that indicates how
expensive a data transfer operation is with respect to an
arithmetic operation. We assume that one data transfer
operation is 107 times more expensive than an arithmetic
operation with respect to time. This parameter can be set
to adjust the cost of data transfer operations according
to the architecture considered. Note that setting the
parameter q to zero neglect the cost of data transfer
operations.

In our optimization procedure we assume that we
have dense frontal matrices within the element partition
tree. For leaf nodes this is true, since element frontal
matrices form dense blocks. For higher level nodes,
when we merge two frontal matrices, the fully assembled
nodes to be subtracted from other nodes have non-zeros

Element partition trees for h-refined meshes to optimize direct solver performance. Part I. . . 355

EF

CD KM

LK�(ABCD)

�(CEKL) �(LKFD)

�(KEGM) �(FKMH)

0 1

0 1 10

0 1

Fig. 2. Element partition tree for the mesh in Fig. 1.

in the entire row and the column, so the subtractions
may make the entire matrix full. We are not able to
track zeros obtained by some subtractions, or resulting
from orthogonality of the basis functions, and we treat
all the entries as non-zero entries. We use W (μ, ρ) =∑ρ
i=1(2μ − 2i + 1)(μ − i) = 2μ2ρ − 2μρ2 − μρ +

2
3ρ

3+ 1
2ρ

2− 1
6ρ as the number of arithmetic floating point

operations for partial factorization of a μ×μ dense matrix
with ρ fully assembled rows.

Let N be a unitary submesh of M , Γ =
etree(ϕ(N)), and A′ be an n × n matrix with r fully
assembled rows corresponding to N . Then, during
the processing of the submesh N , the algorithm makes
W (n, r) arithmetic floating point operations for partial
factorization of A′. We send (n − r)2 numbers
corresponding to the Schur complement to the parent node
if N �= M and keep the n2 numbers which result from
factorization. Therefore ψ(M,N,Γ) = σq(n − r)2 +
W (n, r) Here σ = 1 if N �= M and σ = 0 otherwise
since all the nodes of the element partition tree except the
root node must communicate Schur complement data to
the parent node. In summary, ψ0(M,N) = σq(n− r)2 +
W (n, r).

For a unitary submeshN , the matrixA′ contains n =
p2 + 4p+ 4 rows corresponding to base functions spread
over four vertices, four edges, and the interior of N .

Let N be a non-unitary submesh, Γ =
etree(l,Γ0,Γ1), where l ∈ DL(N) and Γδ ∈
ET (M,N(l, δ)), δ ∈ {0, 1}, and A′′ be an m × m
matrix with t fully assembled rows corresponding to
N . Then, during the processing of the submesh N ,
the algorithm makes W (m, t) arithmetic floating point
operations during partial factorization of A′′, it should
send (m − t)2 numbers corresponding to the Schur
complement to the parent node if N �= M and store m2

numbers to keep the factorization.

Therefore

ψ(M,N,Γ)

= ψ(M,N(l, 0),Γ0) + ψ(M,N(l, 1),Γ1)

+ σq(m− t)2 +W (m, t).

Here σ = 1 if N �=M and σ = 0 otherwise.

The matrix A′′ contains only rows corresponding to
basis functions spread over edges and vertices that belong
to the border of N or to the line l. The fully assembled
rows of A′′ correspond to basis functions spread over
edges and some vertices that belong to the line l.

2.5. Single-processor time cost function. We
characterize the time complexity of element partition trees
in the case when we perform computations on a single
processor. First, we present common formulas with
parameters for operators ψ0 and F . Then we specify the
differentiating parameters.

Let M be a mesh and N be a submesh of this mesh.
If N is a unitary mesh then

ψ0(M,N) = σq(n− r)2 +W (n, r). (1)

Let N be a non-unitary submesh, l ∈ DL(N), and
x1, x2 ∈ R. Then

F (M,N, l, x1, x2) = x1 + x2 + σq(m− t)2

+W (m, t).
(2)

As above, σ = 1 if N �=M and σ = 0 if N =M .

The operator ψ0 is given by formula (1) with r =
p2 + BE(M,N)p + BV (M,N) and n = p2 + 4p +
4, and the operator F is given by formula (2) with t =

356 H. AbouEisha et al.

E(M, l)(p+ 1) + EP (M,N, l)− 1 and

m =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(B(M,N)−BE(M,N)

+E(M, l))(p+ 1) + EP (M,N, l) + γ

if 1 ≤ BE(M,N) < B(M,N),

(B(M,N)−BE(M,N)

+E(M, l))(p+ 1) + EP (M,N, l)− 1

otherwise,
(3)

where γ ∈ {0, 1} and γ = 1 if and only if N has exactly
two boundary sides which are parallel, e.g., submesh
CEFD in Fig. 1.

From (2) it follows that the cost function considered
is strictly increasing.

2.6. Optimization of element partition trees. In this
section, we consider three algorithms: (i) to construct
a directed acyclic graph used for the description and
optimization of element partition trees, (ii) to count the
number of all or only optimal element partition trees, and
(iii) to optimize the element partition trees.

2.6.1. Directed acyclic graph Δ(M). Let M be a
mesh. We now describe Algorithm 1 for the construction
of a directed acyclic graph Δ(M) which is used to
describe and optimize the element partition trees. The set
of nodes of this graph coincides with the set SUB(M) of
submeshes of the mesh M . During each iteration (with
the exception of the last one) the algorithm processes one
node. It starts with the graph that consists of one node M
which is not processed and finishes when all nodes of the
constructed graph are processed.

Proposition 2. Algorithm 1 has polynomial time com-
plexity with respect to the size of the input mesh.

Proof. The number of iterations of Algorithm 1 (each
iteration includes Step 2 and Step 3 or 4) is at most
|SUB(M)| + 1. By Lemma 1, |SUB(M)| ≤ s(M)4.
One can show that the time complexity of each iteration
is polynomial with respect to the size of M . Therefore,
Algorithm 1 has polynomial time complexity with respect
to the size of the input mesh. �

A node of a directed graph is called terminal if there
are no edges starting in this node, and internal otherwise.
A node N of the graph Δ(M) is terminal if and only if
N is a unitary mesh. A proper subgraph of the graph
Δ(M) is a graph G obtained from Δ(M) by removal
of some l-pairs of edges such that each internal node of
Δ(M) keeps at least one l-pair of edges starting from
this node. By definition, Δ(M) is a proper subgraph
of Δ(M). Proper subgraphs of the graph Δ(M) arise
as results of the tree optimization procedure applied to
Δ(M) or to its proper subgraphs.

Algorithm 1. Construction of a directed acyclic graph
Δ(M).
Require: Mesh M .

1: Construct the graph that consists of one node M
which is not marked as processed.

2: if All nodes of the graph are processed then
3: return the resulting graph as Δ(M)
4: end if
5: Choose a node (submesh) N that has not been

processed yet
6: if N is a unitary mesh then
7: Mark N as processed
8: Go to Step 2.
9: end if

10: if N is non-unitary then
11: for all l ∈ DL(N) do
12: Draw two edges from the node N (this pair of

edges is called l-pair)
13: Label these edges with pairs (l, 0) and (l, 1)
14: These edges enter nodes N(l, 0) and N(l, 1),

respectively.
15: end for
16: if Some of the nodes N(l, 0), N(l, 1) are not

present in the graph then
17: Add these nodes to the graph.
18: end if
19: Mark the node N as processed
20: Go to Step 2.
21: end if

Let G be a proper subgraph of the graph Δ(M).
For each internal node N of the graph G, we denote by
DLG(N) the set of lines l from DL(N) such that an
l-pair of edges starts from N in G. For each node N of
the graph G, we define the set Etree(G,N) of element
partition trees in the following way. If N is a terminal
node ofG (in this caseN is unitary), thenEtree(G,N) =
{etree(ϕ(N))}. Let N be a internal node of G (in
this case N is non-unitary) and l ∈ DLG(N). We
write Etree(G,N, l) = {etree(l,Γ0,Γ1) : Γδ ∈
Etree(G,N(l, δ)), δ = 0, 1}. Then Etree(G,N) =⋃
l∈DLG(N)Etree(G,N, l).

Proposition 3. Let M be a mesh. Then

Etree(Δ(M), N) = ET (M,N)

for any node N of the graph Δ(M).

Proof. We prove this statement by induction on nodes
of Δ(M). Let N be a terminal node of Δ(M). Then
Etree(Δ(M), N) = {etree(ϕ(N))} = ET (M,N). Let
now N be an internal node of Δ(M), and let us assume
that Etree(Δ(M), N(l, δ)) = ET (M,N(l, δ)) for any
l ∈ DL(N) and δ ∈ {0, 1}. Then, for any l ∈ DL(N),

Element partition trees for h-refined meshes to optimize direct solver performance. Part I. . . 357

we have Etree(Δ(M), N, l) = ET (M,N, l), where
DLΔ(M)(N) = DL(N). Using Proposition 1, we obtain
Etree(Δ(M), N) = ET (M,N). �

In consequence, the set of element partition trees for
a meshM is equal to the setEtree(Δ(M),M). We show
below that the set of strictly optimal element partition
trees for a mesh M relative to an increasing cost function
ψ can be represented in the form Etree(G,M), where
G is a proper subgraph of the graph Δ(M). In the
next section, we describe an algorithm which counts the
cardinality of the set Etree(G,M) for a proper subgraph
G of the graph Δ(M).

2.6.2. Cardinality of the set Etree(G,M). Let M
be a mesh, and G be a proper subgraph of the graph
Δ(M). We describe an algorithm which counts, for
each node N of the graph G, the cardinality C(N) of
the set Etree(G,N), and returns the number C(M) =
|Etree(G,M)|.

Algorithm 2. Count the cardinality C(N).

Require: A proper subgraph G of the graph Δ(M) for
some mesh M .

1: if All nodes of the graph G are processed then
2: return C(M)
3: end if
4: Choose a node N which is not processed yet and

which is either a terminal node of G or an internal
node of G such that all nodes N(l, δ) are processed
for each l ∈ DLG(N) and δ ∈ {0, 1}.

5: if N is a unitary mesh then
6: Set C(N) = 1
7: Mark N as processed
8: Go to Step 1.
9: end if

10: if N is non-unitary then
11: SetC(N) =

∑
l∈DLG(N) C(N(l, 0))×C(N(l, 1))

12: Mark the node N as processed
13: Go to Step 1.
14: end if

Proposition 4. Let M be a mesh, and G be a proper
subgraph of the graph Δ(M). Then Algorithm 2 returns
the cardinality of the set Etree(G,M) and makes at most
2s(M)5 operations of multiplication and addition.

Proof. We prove by induction on the nodes of the graph
G that C(N) = |Etree(G,N)| for each node N of G.
Let N be a terminal node of G. Then Etree(G,N) =
{etree(ϕ(N))} and |Etree(G,N)| = 1. Therefore the
statement considered holds for N . Let now N be an
internal node of G such that the statement considered

holds for its children. We know that Etree(G,N) =⋃
l∈DLG(N)Etree(G,N, l), where, for l ∈ DLG(N),

Etree(G,N, l) = {etree(l,Γ0,Γ1) :

Γδ ∈ Etree(G,N(l, δ)), δ = 0, 1}.
Then, for any l ∈ DLG(N),

|Etree(G,N, l)|
= |Etree(G,N(l, 0))| × |Etree(G,N(l, 1))| ,

and |Etree(G,N)| = ∑
l∈DLG(N) |Etree(G,N, l)|. By

the inductive hypothesis,

|Etree(G,N(l, δ))| = C(N(l, δ))

for each l ∈ DLG(N) and δ ∈ {0, 1}. Therefore
C(N) = |Etree(G,N)|. Hence the statement considered
holds. Thus

C(M) = |Etree(G,M)| ,
i.e., Algorithm 2 returns the cardinality of the set
Etree(G,M).

We now evaluate the number of arithmetic operations
made by Algorithm 2. By Lemma 1, |SUB(M)| ≤
s(M)4. Therefore the number of internal nodes in G
is at most s(M)4. In each internal node N of G,
Algorithm 2 performs |DLG(N)| multiplications and
|DLG(N)|−1 additions. One can show that |DLG(N)| ≤
s(M). Therefore, Algorithm 2 performs at most 2s(M)5

arithmetic operations. �

2.7. Optimization procedure. Let M be a mesh, G
be a proper subgraph of the graph Δ(M), and ψ be an
increasing cost function for element partition trees defined
by operators ψ0 and F .

Let N be a node of G and Γ ∈ Etree(G,N). One
can show that, for any node v of Γ, the element partition
tree Γ(v) belongs to the set Etree(G,NΓ(v)).

An element partition tree Γ from Etree(G,N) is
called an optimal element partition tree for N relative
to ψ and G if ψ(M,N,Γ) = min{ψ(M,N,Γ′) : Γ′ ∈
Etree(G,N)}.

An element partition tree Γ from Etree(G,N) is
called a strictly optimal element partition tree for N rel-
ative to ψ and G if, for any node v of Γ, the element
partition tree Γ(v) is an optimal element partition tree for
NΓ(v) relative to ψ and G.

We denote by Etreeoptψ (G,N) the set of optimal
element partition trees for N relative to ψ and G. We
denote by Etrees−optψ (G,N) the set of strictly optimal
element partition trees for N relative to ψ and G.

Let Γ ∈ Etreeoptψ (G,N) and Γ = etree(l,Γ0,Γ1).

Then Γ ∈ Etrees−optψ (G,N) if, and only if, Γδ ∈
Etrees−optψ (G,N(l, δ)) for δ = 0, 1.

358 H. AbouEisha et al.

Proposition 5. Let ψ be a strictly increasing cost
function for element partition trees, M be a mesh, and
G be a proper subgraph of the graph Δ(M). Then,
for any node N of the graph G, Etreeoptψ (G,N) =

Etrees−optψ (G,N).

Proof. It is clear that

Etrees−optψ (G,N) ⊆ Etreeoptψ (G,N).

Let Γ belong to Etreeoptψ (G,N) and let us assume

that Γ /∈ Etrees−optψ (G,N). Then there is a node

v of Γ such that Γ(v) /∈ Etreeoptψ (G,NΓ(v)). Let

Γ0 ∈ Etreeoptψ (G,NΓ(v)) and Γ′ be the element
partition tree obtained from Γ by the replacement of
Γ(v) with Γ0. One can show that Γ′ ∈ Etree(G,N).
Since ψ is strictly increasing and ψ(M,NΓ(v),Γ0) <
ψ(M,NΓ(v),Γ(v)), we have ψ(N,Γ′) < ψ(N,Γ).
Therefore Γ /∈ Etreeoptψ (G,N), but this is impossible.

Thus Etreeoptψ (G,N) ⊆ Etrees−optψ (G,N). �

We now describe Algorithm 3 which is an opti-
mization procedure relative to the cost function ψ. This
algorithm attaches to each node N of G the number
c(N) = min{ψ(M,N,Γ) : Γ ∈ Etree(G,N)} and,
probably, removes some l-pairs of edges starting from
internal nodes of G. As a result, we obtain a proper
subgraphGψ of the graph G. By construction,Gψ is also
a proper subgraph of the graph Δ(M).

Proposition 6. Let Algorithm 3 use a cost function ψ
given by operators ψ0 and F which have polynomial time
complexity with respect to the size of the input mesh. Then
Algorithm 3 has polynomial time complexity with respect
to the size of the input mesh.

Proof. By Lemma 1, |SUB(M)| ≤ s(M)4. Therefore
the number of nodes in G is at most s(M)4. In each
terminal node of the graph G, Algorithm 3 computes
the value of ψ0. In each internal node N of G
Algorithm 3 computes |DLG(N)| times the value of
F and makes |DLG(N)| − 1 comparisons. One can
show that |DLG(N)| ≤ s(M). Therefore, Algorithm 3
makes at most s(M)5 comparisons and at most s(M)5

computations of operators ψ0 and F . If ψ0 and F have
polynomial time complexity with respect to s(M) then
Algorithm 3 has polynomial time complexity with respect
to s(M). �

For any node N of the graph G and for any l ∈
DLG(N) we write ψG(N) = min{ψ(M,N,Γ) : Γ ∈
Etree(G,N)} and ψG(N, l) = min{ψ(M,N,Γ) :
Gamma ∈ Etree(G,N, l)}.

Lemma 2. Let ψ be an increasing cost function for el-
ement partition trees, M be a mesh, and G be a proper
subgraph of the graph Δ(M). Then, for any node N of

Algorithm 3. Optimization procedure relative to the cost
function ψ.
Require: A proper subgraph G of the graph Δ(M) for

some mesh M , and an increasing cost function ψ for
element partition trees given by operators ψ0 and F .

1: if all nodes of the graph G are processed then
2: return the obtained graph as Gψ

3: end if
4: Choose a node N which is not processed yet and

which is either a terminal node of G or an internal
node of G for which all its children have been
processed.

5: if N is a unitary mesh then
6: set c(N) = ψ0(M,N)
7: Mark N as processed
8: Go to Step 1.
9: end if

10: if N is non-unitary then
11: for all l ∈ DLG(N) do
12: Compute the value

c(N, l) = F (M,N, l, c(N(l, 0)), c(N(l, 1)))

13: Set c(N) = min{c(N, l) : l ∈ DLG(N)}.
14: Remove all l-pairs of edges starting from N for

which c(N) < c(N, l).
15: Mark the node N as processed
16: end for
17: Proceed to Step 1.
18: end if

the graph G and for any l ∈ DLG(N), Algorithm 3 com-
putes values c(N) = ψG(N) and c(N, l) = ψG(N, l).

Proof. We proceed by induction on the nodes of the graph
G. Let N be a terminal node of G. Then Etree(G,N) =
{etree(ϕ(N))} and ψG(N) = ψ0(M,N). Therefore
c(N) = ψG(N). Let nowN be an internal node ofG such
that the statement considered holds for each node N(l, δ)
such that l ∈ DLG(N) and δ ∈ {0, 1}. We know that

Etree(G,N) =
⋃

l∈DLG(N)

Etree(G,N, l)

and, for each l ∈ DLG(N),

Etree(G,N, l)

= {etree(l,Γ0,Γ1) :

Γδ ∈ Etree(G,N(l, δ)), δ = 0, 1}.
Since ψ is an increasing cost function,

ψG(N, l) = F (M,N, l, ψG(N(l, 0)), ψG(N(l, 1))),

where ψG(N) = min{ψG(N, l) : l ∈ DLG(N)}. By
the inductive hypothesis, ψG(N(l, δ)) = c(N(l, δ)) for

Element partition trees for h-refined meshes to optimize direct solver performance. Part I. . . 359

each l ∈ DLG(N) and δ ∈ {0, 1}. Therefore c(N, l) =
ψG(N, l) for each l ∈ DLG(N), and c(N) = ψG(N).

�

Theorem 1. Let ψ be an increasing cost function
for element partition trees, M be a mesh, and G be a
proper subgraph of the graph Δ(M). Then, for any
node N of the graph Gψ, the following equality holds:
Etree(Gψ , N) = Etrees−optψ (G,N).

Proof. We proceed by induction on nodes of Gψ. We
use Lemma 2 which shows that, for each node N of the
graph G and for each l ∈ DLG(N), c(N) = ψG(N)
and c(N, l) = ψG(N, l). Let N be a terminal node
of Gψ . Then Etree(Gψ, N) = {etree(ϕ(N))} with
Etree(Gψ , N) = Etrees−optψ (G,N). Let N be an

internal node of Gψ . Then

Etree(Gψ, N) =
⋃

l∈DL
Gψ

(N)

Etree(Gψ , N, l)

and, for each l ∈ DLGψ(N),

Etree(Gψ, N, l)

= {etree(l,Γ0,Γ1) :

Γδ ∈ Etree(Gψ , N(l, δ)), δ = 0, 1}.
Assume that, for any l ∈ DLGψ(N) and δ ∈ {0, 1},

Etree(Gψ , N(l, δ)) = Etrees−optψ (G,N(l, δ)).

We know that

DLGψ(N) = {l : l ∈ DLG(N), ψG(N, l) = ψG(N)}.
Let l ∈ DLGψ(N), and Γ ∈ Etree(Gψ , N, l). Then
Γ = etree(l,Γ0,Γ1), where Γδ ∈ Etree (Gψ, N(l, δ))
for δ = 0, 1. According to the induction hypothesis,
Etree(Gψ , N(l, δ)) = Etrees−optψ (G,N(l, δ)) and Γδ ∈
Etrees−optψ (G,N(l, δ)) for δ = 0, 1. In particular,
ψ(M,N(l, δ),Γδ) = ψG(N(l, δ)) for δ = 0, 1. Since
ψG(N, l) = ψG(N), we have

F (M,N, l, ψG(N(l, 0)), ψG(N(l, 1))) = ψG(N).

Therefore Γ ∈ Etreeoptψ (G,N), Γ ∈ Etrees−optψ (G,N),
and

Etree(Gψ , N) ⊆ Etrees−optψ (G,N).

Let Γ ∈ Etrees−optψ (G,N). Since N is an
internal node then Γ can be represented in the
form etree(l,Γ0,Γ1), where l ∈ DLG(N), and
Γδ ∈ Etrees−optψ (G,N(l, δ)) for δ = 0, 1. Since

Γ ∈ Etrees−optψ (G,N), ψG(N, l) = ψG(N) and
l ∈ DLGψ(N). According to the induction hypothesis,
Etree(Gψ , N(l, δ)) = Etrees−optψ (G,N(l, δ)) for δ =

0, 1. Therefore Γ ∈ Etree(Gψ , N, l) ⊆ Etree(Gψ, N).
As a result, we have Etrees−optψ (G,N) ⊆
Etree(Gψ , N). �

1 2

3 4 5 6

7 8 9 10

1

3 4

7 8

2

5 6

9 10

1 2

3 4 5 6

7 8 9 10

1 2

3 4 5 6

7 8 9 10

1

3 4

7 8

1

3 4

7 8

3 4

7 8

3 4

7 8

...

...

3 4

7 8

3 4

7 8

3 4

7 8

5 6

9 10

...

...

3 4 5 6

7 8 9 10

...

... ...

Fig. 3. Tree of partitions created by the optimization algorithm.

Corollary 1. Let ψ be a strictly increasing cost func-
tion for element partition trees, M be a mesh, and G be a
proper subgraph of the graph Δ(M). Then, for any node
N of Gψ, Etree(Gψ , N) = Etreeoptψ (G,N).

This corollary follows immediately from
Proposition 5 and Theorem 1.

3. Numerical results

We use a dynamic programming algorithm to find optimal
element partition trees for a simple class of meshes. We
assume that each division of a mesh follows a straight
horizontal or vertical line that cuts the entire sub-domain.
The element partition trees use these horizontal or vertical
divisions of the whole mesh or mesh parts and the
optimal ones are found using dynamic programming. The
dynamic programming algorithm seeks to find all optimal
element partition trees. The found trees are optimal
among the studied class of element partition trees. The
algorithm starts with the whole mesh and lists all possible
divisions (by horizontal or vertical line) of the mesh. Then
at every step, the algorithm finds all possible divisions
(by a horizontal or a vertical line) of each previously
found part of a mesh. If a logically identical partition
of the mesh has been found before, further divisions of
this part are omitted in following steps. In this way, the
tree of partitions of the whole mesh can be constructed.
Figure 3 shows the tree of partitions of an example mesh.
Based on the obtained tree of partitions, the best partition
(according to the defined cost function) is found. The best
partition of each level is used to determine the class of
optimal element partition trees for a given mesh.

360 H. AbouEisha et al.

Fig. 4. Point singularity.

Fig. 5. Two edge singularities.

3.1. Quasi-optimal element partition trees. This
section describes the results of the optimization of the
element partition trees for meshes with a point singularity
and two edge singularities, shown in Figs. 4 and 5.

These results are an extension of the conference
presentations (AbouEisha et al., 2015; AbouEisha et al.,
2014), where we focused on one representative tree, while
in this paper we look at the whole class of trees.

We optimize with respect to the cost function defined
in Section 2. The column “# all trees” in Tables 1
and 2 contains the number of all element partition trees
for the meshes with point and two-edge singularities,
respectively. For the point singularity, we optimize over
one-quarter of the mesh. We call the point singularity and
the two-edge singularity meshes Pk and Ak, respectively,
where k denotes the number of refinement levels. The
number of trees increases fast with the number of
refinement steps. This prevents a naive search algorithm
from solving the problem.

Table 1 summarizes the number of optimal element
partition trees for Pk meshes with different polynomial
orders p. All optimal trees for a given mesh have the
same value of the studied cost function. The Pk meshes
are simpler than the other investigated classes, so we are
able to understand the behavior of any such optimal tree.
For Ak meshes, the situation is more complex. Table 2
presents the number of optimal trees for Ak meshes.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0

2.5

3.0

3.5

4.0

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.0 2.5 3.0 3.5 4.0

Fig. 6. Quasi-optimal element partition tree for the mesh with a
point singularity.

Table 1. Number of optimal element partition trees for mesh Pk

for different p and k.
p

k # all trees 1 2 3 4 5

1 2 2 2 2 2 2
2 6 4 4 4 4 4
3 18 8 8 8 8 8
4 54 16 16 16 16 16
5 162 32 32 32 32 32
6 486 64 64 64 64 64
7 1458 128 128 128 128 128
8 4374 256 256 256 256 256
9 13122 512 512 512 512 512

10 39366 1024 1024 1024 1024 1024

We summarize this section with some example optimal
element partition trees in Figs. 7 and 8.

4. Sample heuristic algorithm and 3D
examples

We present a sketch of a simple heuristic algorithm that
can be drawn from the presented dynamic programming
results. By looking at the sample optimal element
partition trees, generated for the refined grids, we can
observe the following property. The levels of the
trees contain elements with different sizes, namely the
element obtained at various stages of the refinement
process. Based on this observation, we can propose the
following simple algorithm. We call the algorithm bi-
section weighted by element size. The algorithm creates
an initial undirected graph G for a finite element mesh.
Each node of the graph G corresponds to one of finite

Element partition trees for h-refined meshes to optimize direct solver performance. Part I. . . 361

Table 2. Number of optimal element partition trees for mesh Ak

for different p and k.
p

k # all trees 1 2 3 4 5

1 2 2 2 2 2 2
2 580 6 6 6 6 6
3 2.6× 108 8 8 8 8 8
4 2.9 × 1020 8 8 8 8 8
5 1× 1045 48 48 48 48 48
6 6.6 × 1094 32 32 32 32 32
7 9.2× 10194 64 64 64 64 64
8 6.5× 10395 128 128 128 128 128
9 1.2× 10798 256 256 256 256 256
10 1.7× 101603 512 512 2048 2048 2048

elements from the mesh. There is an edge in the graph
G connecting two nodes when the corresponding finite
elements are neighbors in the mesh. Additionally, each
node of graph G has an attribute weight with the value
defined in the following way. The weight attribute is
defined as the following function of the refinement level
of an element:

weight = 2(3×refinement level). (4)

The intuition behind the weight is that the smallest
weight is associated with the “smallest” elements from
the deepest refinement level, while the highest weight
is associated to the “largest” elements from the top
refinement level. After forming the initial graph G, the
function named BisectionWeightedByElementSize()
is called with the parameter G. The function
BisectionWeightedByElementSize returns the
element partition tree, and it is defined as follows: The

Algorithm 4. Bisection weighted by element size.
Require: G

1: if number of nodes in G equals 1 then
2: create one element tree t with the node v ∈ G;
3: return t;
4: end if
5: Calculate a balanced weighted partition of graph G

into G1 and G2;
6: t1 = BisectionWeightedByElementSize(G1)
7: t2 = BisectionWeightedByElementSize(G2)
8: create new root node t with left child t1, right child t2

9: return t

function calls the METIS routine WPartGraphRecursive()
to get the partition of the graph with nodes weighted
by (4). Having the element partition tree generated by
the algorithm, we can extract the ordering and call the
sequential solver. For a detailed description on how to

1 2 3 4 5 6 7 800

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 800

1

2

3

4

5

6

7

8

4

4 5 6 7 81 2 3 400

1

2

3

4

1 2 3 400

1

2

2

3

4

1 200

1

2

2 3 4

4 5 6 7 8

6 7 84 5 6

Fig. 7. Quasi-optimal element partition tree for mesh with an
edge singularity.

construct ordering based on the element partition tree, we
refer the reader to Chapter 9 of the book by Paszyński
(2016).

We have executed the algorithm on sample
three-dimensional grids with point, edge and face
singularities. The resulting partitions of the mesh are
denoted with different colors in Figs. 9–11.

We generated the orderings using our element
partition trees and counted the resulting number of
floating-point operations (multiplications, subtraction,
and additions). We compared the number of floating-point
operations with alternating state-of-the-art orderings,
namely, the nested-dissections (Karypis and Kumar,
1999), approximate minimum degree AMD (Amestoy
et al., 1996), and PORD available through MUMPS
interface. The comparison is presented in Tables 3-5.

Table 3. Number of floating-point operations resulting from bi-
sections weighted by element size, METIS, PORD and
AMD, for the three-dimensional grid with a point sin-
gularity.

k N bisections METIS PORD, AMD

1 125 72095 84900 81030
2 181 122275 159000 153300
3 237 172455 232400 217600
4 293 222635 300600 289900
5 349 272815 379300 362100
6 405 322995 491200 434400
7 461 373175 566100 506700

362 H. AbouEisha et al.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.02.0

2.5

3.0

3.5

4.0

2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.02.0

2.5

3.0

3.5

4.0

Fig. 8. Quasi-optimal element partition tree for the uniform
mesh.

Table 4. Number of floating-point operations resulting from bi-
sections weighted by element size, METIS, PORD and
AMD, for the three-dimensional grid with an edge sin-
gularity.

k N bisections METIS PORD, AMD

1 125 72095 84900 81030
2 249 244785 296700 281900
3 485 805867 1070000 894600
4 945 2474501 3358000 2662000
5 1853 6952239 9020000 7949000
6 3657 17988361 24040000 21760000
7 7253 43510547 66380000 55070000

To compare the execution time, we consider a
three-dimensional problem of projection of MRI scan
data, described in detail by Schaefer et al. (2015). The
sequence of three-dimensional h-adaptive grids used for
the computations of the projection of the MRI scan data
in presented in Fig. 12. The corresponding execution
times of the MUMPS solver using the ordering resulting
from either our bisections weighted by the element size
algorithm or the automatic ordering provided by the
MUMPS solver are summarized in Table 6.

5. Conclusion

We have described a dynamic programming algorithm
with the polynomial time complexity that optimizes
element partition trees for multi-frontal solvers for
h-adaptive two-dimensional grids. We compare the
number of total element partition trees and the number of

Fig. 9. Three-dimensional mesh with a point singularity parti-
tioned by our algorithm.

Table 5. Number of floating-point operations resulting from bi-
sections weighted by element size, METIS, PORD and
AMD, for the three-dimensional grid with a face sin-
gularity.

k N bisections METIS PORD, AMD

1 125 72095 84900 81030
2 399 687516 860800 799400
3 1393 7590013 10990000 13320000
4 5171 79621866 113600000 240300000
5 19893 774584899 1081000000 3105000000

optimal trees, for different numbers of refinement levels
and different polynomial orders of approximation.

An intuitive description on how to construct of the
element partition trees based on selected optimal element
partition trees obtained from the optimization procedure is
the following. We can see that the optimal tree processes
the mesh level by level, by slices defined by the particular
refinements. The partitions of the mesh usually generates
two well-balanced parts, with an identical “volume” of
elements. The optimal trees differ mainly by the order of
selection of horizontal or vertical partitions on particular
levels of the tree. We have used this insight to produce
an outline of the heuristic algorithm that constructs the
element partition tree by weighted recursive partitions
of the mesh, using the refinement level as the element
weights. We show that this algorithm allows us to reduce
the number of floating-point operations or the execution
time up to the factor of two. We are going to use
this insight in the second part of the paper (AbouEisha
et al., 2016) to propose a more general heuristic algorithm,

Element partition trees for h-refined meshes to optimize direct solver performance. Part I. . . 363

Fig. 10. Three-dimensional mesh with an edge singularity par-
titioned by our algorithm.

Table 6. Execution times [s] of the factorization of the MUMPS
solver with the ordering resulting from the bisection
weighted by the size of the elements and with default
MUMPS ordering.
N bisections ordering MUMPS ordering

60025 5,70 5,67
94221 14,49 28,29
139425 33,06 67,94
197173 71,59 142,64

targeting the hp-adaptive computations.

Acknowledgment

The work was partially supported by the Center for
Numerical Porous Media, King Abdullah University
of Science and Technology (KAUST), and by
the National Science Centre, Poland, grant no.
DEC-2012/06/M/ST1/00363. This publication also
was made possible by a National Priorities Research
Program grant 7-1482-1-278 from the Qatar National
Research Fund (a member of The Qatar Foundation). This
work was partially supported by the European Union’s
Horizon 2020 research and an innovation program
under the Marie Skłodowska-Curie grant agreement
no. 644602. The J. Tinsley Oden Faculty Fellowship
Research Program at the Institute for Computational
Engineering and Sciences (ICES) of the University of
Texas at Austin partially supported the visits of Victor
Manuel Calo to the ICES.

Fig. 11. Three-dimensional mesh with a face singularity parti-
tioned by our algorithm.

References

AbouEisha, H., Calo, V.M., Jopek, K., Moshkov, M., Paszyńska,
A., Paszyński, M. and Skotniczny, M. (2016). Element
partition trees for two- and three-dimensional h-refined
meshes and their use to optimize direct solver performance.
Part II: Heuristic algorithms, Journal of Computational
and Applied Mathematics, (submitted).

AbouEisha, H., Gurgul, P., Paszyńska, A., Paszyński, M.,
Kuźnik, K. and Moshkov, M. (2015). An automatic
way of finding robust elimination trees for a multi-frontal
sparse solver for radical 2D hierarchical meshes, in R.
Wyrzykowski et al. (Eds.), Parallel Processing and Ap-
plied Mathematics, Lecture Notes in Computer Science,
Vol. 8385, Springer, Berlin/Heidelberg, pp. 531–540.

AbouEisha, H., Moshkov, M. Calo, V.M., Paszyński, M., Goik,
D. and Jopek, K. (2014). Dynamic programming algorithm
for generation of optimal elimination trees for multi-frontal
direct solver over h-refined grids, Procedia Computer Sci-
ence 29: 947–959.

Amestoy, P.R., Davis, T.A. and Du, I.S. (1996). An approximate
minimum degree ordering algorithm, SIAM Journal of Ma-
trix Analysis & Application 17(4): 886–905.

Amestoy, P.R., Duff, I.S. and L’Excellent, J.-Y. (2000).
Multifrontal parallel distributed symmetric and
unsymmetric solvers, Computer Methods in Applied
Mechanics and Engineering 184(2): 501–520.

Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y. and Koster, J.
(2001). A fully asynchronous multifrontal solver using
distributed dynamic scheduling, SIAM Journal on Matrix
Analysis and Applications 23(1): 15–41.

364 H. AbouEisha et al.

Fig. 12. Cross-sections of a sequence of adaptive three-
dimensional grids.

Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y. and Pralet,
S. (2006). Hybrid scheduling for the parallel solution of
linear systems, Parallel Computing 32(2): 136–156.

Babuška, I. and Rheinboldt, W.C. (1978). Error estimates for
adaptive finite element computations, SIAM Journal of Nu-
merical Analysis 15(4): 736–754.

Bao, G., Hu, G. and Liu, D. (2012). An h-adaptive finite element
solver for the calculations of the electronic structures, Jour-
nal of Computational Physics 231(14): 4967–4979.

Barboteu, M., Bartosz, B. and Kalita, P. (2013). An analytical
and numerical approach to a bilateral contact problem with
nonmonotone friction, International Journal of Applied
Mathematics and Computer Science 23(2): 263–276, DOI:
10.2478/amcs-2013-0020.

Becker, R., Kapp, H. and Rannacher, R. (2000). Adaptive finite
element methods for optimal control of partial differential
equations: Basic concept, SIAM Journal on Control and
Optimisation 39(1): 113–132.

Belytschko, T. and Tabbar, M. (1993). H-adaptive finite
element methods for dynamic problems, with emphasis on
localization, International Journal for Numerical Methods
in Engineering 36(24): 4245–4265.

Demkowicz, L. (2006). Computing with hp-Adaptive Finite
Elements, Vol. I: One and Two Dimensional Elliptic and
Maxwell Problems, Chapman and Hall/CRC, Boca Raton,
FL .

Duff, I.S., Erisman, A.M. and Reid, J.K. (1986). Direct Methods
for Sparse Matrices, Oxford University Press, Oxford.

Duff, I.S. and Reid, J.K. (1983). The multifrontal solution of
indefinite sparse symmetric linear, ACM Transactions on
Mathematical Software 9(3): 302–325.

Duff, I.S. and Reid, J.K. (1984). The multifrontal solution of
unsymmetric sets of linear equations, SIAM Journal on Sci-
entific and Statistical Computing 5(3): 633–641.

Errikson, K. and Johnson, C. (1991). Adaptive finite
element methods for parabolic problems. I: A linear
model problem, SIAM Journal on Numerical Analysis
28(1): 43–77.

Fiałko, S. (2009a). A block sparse shared-memory multifrontal
finite element solver for problems of structural mechanics,
Computer Assisted Mechanics and Engineering Science
16: 117–131.

Fiałko, S. (2009b). The block subtracture multifrontal method
for solution of large finite element equation sets, Technical
Transactions 8: 175–188.

Fiałko, S. (2010). PARFES: A method for solving finite element
linear equations on multi-core computers, Advanced Engi-
neering Software 40(12): 1256–1265.

Hughues, T. (2000). The Finite Element Method: Linear Static
and Dynamic Finite Element Analysis, Dover, New York,
NY.

Karczewska, A., Rozmej, P., Szczeciński, M. and Boguniewicz,
B. (2016). A finite element method for extended
KdV equations, International Journal of Applied Math-
ematics and Computer Science 26(3): 555–567, DOI:
10.1515/amcs-2016-0039.

Kardani, M., Nazem, M., Abbo, A.J., Sheng, D. and Sloan, S.W.
(2012). Refined h-adaptive finite element procedure for
large deformation geotechnical problems, Computational
Mechanics 49(1): 21–33.

Karypis, G. and Kumar, V. (1999). A fast and high quality
multilevel scheme for partitioning irregular graphs, SIAM
Journal on Scientific Computing 20(1): 359–392.

Liu, J. (1990). The role of elimination trees in sparse
factorization, SIAM Journal of Matrix Analysis Applica-
tions 11(1): 134–172.

Niemi, A., Babuška, I., Pitkaranta, J. and Demkowicz, L. (2012).
Finite element analysis of the Girkmann problem using the
modern hp-version and the classical h-version, Procedia
Computer Science 28: 123–134.

Paszyński, M. (2016). Fast Solvers for Mesh Based Computa-
tions, Taylor & Francis/CRC Press, Boca Raton, FL.

Patro, S.K., Selvam, P.R. and Bosch, H. (2013). Adaptive
h-finite element modeling of wind flow around bridges,
Engineering Structures 48: 569–577.

Schaefer, R., Łoś, M., Sieniek, M., Demkowicz, L. and
Paszyński, M. (2015). Quasi-linear computational cost
adaptive solvers for three dimensional modeling of heating
of a human head induced by cell phone, Journal of Com-
putational Science 11: 163–174.

Element partition trees for h-refined meshes to optimize direct solver performance. Part I. . . 365

Strug, B., Paszyńska, A., Paszyński, M. and Grabska, E.
(2013). Using a graph grammar system in the finite
element method, International Journal of Applied Math-
ematics and Computer Science 23(4): 839–853, DOI:
10.2478/amcs-2013-0063.

Zienkiewicz, O.C., Taylor, R. and Z., Z.J. (2013). The Finite
Element Method: Its Basis and Fundamentals, Elsevier,
Amsterdam.

Hassan AbouEisha is a PhD student with the
CEMSE Division at the King Abdullah Univer-
sity of Science Technology. He graduated from
German University in Cairo in the field of com-
puter science and engineering in 2010. He re-
ceived his MSc in computer science from the
KAUST in 2011. His main research interests are
multi-frontal solvers, discrete optimization and
computational complexity.

Victor Calo is a professor in the Department
of Applied Geology of the Western Australian
School of Mines in the Faculty of Science and
Engineering at Curtin University. He is a highly
cited researcher who is actively involved in dis-
seminating knowledge: Dr. Calo has authored
over 150 peer-reviewed publications. Also, in
the last two years, he has given more than 25 in-
vited presentations and keynotes at conferences
and seminars, and organized 15 mini-symposia

at international conferences. Dr. Calo holds a professional engineering
degree in civil engineering from the University of Buenos Aires. He
received his MSc in geomechanics and a doctorate in civil and environ-
mental engineering from Stanford University. Dr. Calo’s research inter-
ests include modeling and simulation of geomechanics, fluid dynamics,
flow in porous media, phase separation, fluid-structure interaction, solid
mechanics, and high-performance computing.

Konrad Jopek is a PhD student in the Depart-
ment of Computer Science of the AGH Univer-
sity of Science and Technology. He is a co-author
of several publications about fast solvers for the
finite element method. His research interests fo-
cus on numerical methods, parallel algorithms,
highly scalable software and low-level program-
ming.

Mikhail Moshkov has been a professor in the
Computer, Electrical and Mathematical Sciences
and Engineering Division at the King Abdul-
lah University of Sience Technology since 2008.
He holds an MSc degree from Nizhni Novgorod
State University, a doctorate from Saratov State
University, and habilitation from Moscow State
University. From 1977 to 2004, Dr. Moshkov
was with Nizhni Novgorod State University.
Since 2003 he has worked in Poland in the In-

stitute of Computer Science, University of Silesia, and since 2006 also
in the Katowice Institute of Information Technologies. His main areas
of research are the complexity of algorithms, combinatorial optimiza-
tion, and machine learning. Dr. Moshkov is the author or a coauthor of
five research monographs published by Springer.

Anna Paszyńska received her PhD (2007) in
computer science from the Institute of Funda-
mental Technological Research of the Polish
Academy of the Sciences in Warsaw, Poland.
She currently works as an assistant professor
at the Faculty of Physics, Astronomy and Ap-
plied Computer Science, Jagiellonian University
in Kraków, Poland. Her research interests in-
clude evolutionary algorithms, graph grammars,
computer aided design and engineering.

Maciej Paszyński is an associate professor in the
Department of Computer Science, AGH Univer-
sity of Science and Technology, Kraków, Poland.
He obtained his PhD in mathematics with ap-
plications to computer science from Jagiellonian
University in 2003, and habilitation in computer
science in 2010 from the AGH University of
Science and Technology. His research interests
include fast solvers for adaptive finite element
method simulations. He has co-authored 40 pa-

pers in impact factor journals. He has also given over 100 presentation
at conferences and workshops.

Marcin Skotniczny is a second year PhD stu-
dent of computer science at the Faculty of Com-
puter Science, Electronics and Telecommunica-
tion of the AGH University of Science and Tech-
nology. He is also a chief executive of the
software company Software Mansion in Kraków,
Poland. His research interests include computa-
tional complexities and advanced algorithms.

Received: 11 September 2016
Revised: 30 December 2016
Accepted: 5 February 2017

