
Int. J. Appl. Math. Comput. Sci., 2017, Vol. 27, No. 1, 91–103
DOI: 10.1515/amcs-2017-0007

STABILITY ANALYSIS OF NONLINEAR TIME–DELAYED SYSTEMS WITH
APPLICATION TO BIOLOGICAL MODELS

H.A. KRUTHIKA a, ARUN D. MAHINDRAKAR a,∗, RAMKRISHNA PASUMARTHY a

aDepartment of Electrical Engineering
Indian Institute of Technology Madras, Chennai, India

e-mail: kruthika.ha@gmail.com,{arun_dm,ramkrishna}@iitm.ac.in

In this paper, we analyse the local stability of a gene-regulatory network and immunotherapy for cancer modelled as
nonlinear time-delay systems. A numerically generated kernel, using the sum-of-squares decomposition of multivariate
polynomials, is used in the construction of an appropriate Lyapunov–Krasovskii functional for stability analysis of the net-
works around an equilibrium point. This analysis translates to verifying equivalent LMI conditions. A delay-independent
asymptotic stability of a second-order model of a gene regulatory network, taking into consideration multiple commen-
surate delays, is established. In the case of cancer immunotherapy, a predator–prey type model is adopted to describe the
dynamics with cancer cells and immune cells contributing to the predator–prey population, respectively. A delay-dependent
asymptotic stability of the cancer-free equilibrium point is proved. Apart from the system and control point of view, in the
case of gene-regulatory networks such stability analysis of dynamics aids mimicking gene networks synthetically using
integrated circuits like neurochips learnt from biological neural networks, and in the case of cancer immunotherapy it helps
determine the long-term outcome of therapy and thus aids oncologists in deciding upon the right approach.
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1. Introduction

Applications of control in biology and biochemical
systems have a rich history. The emerging
interdisciplinary field of systems biology emphasizes
the role of control theory in understanding the complex
interactions within biological systems. This concept has
been used widely in biosciences in a variety of contexts.
In this paper, we focus on two such applications: (i)
gene regulatory networks, which are a set of genes, or
parts of genes, that interact with each other to control
a specific cell function (Bernot et al., 2013; Chen and
Aihara, 2002); (ii) the cancer immunotherapy model
(Andrew et al., 2007; Babbs, 2011; d’Onofrio, 2005),
where the human immune system is used to treat cancer by
provoking the immune system to attack tumor cells using
cancer antigens as targets. Towards better understanding
of the complex behaviour of such applications, we need
to develop mathematical models and, in many cases, help
predict the corresponding experimental observations.

One of the common modeling techniques is the use
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of ordinary differential equations (ODEs). However,
in cases involving gene transcription and the cancer
immunotherapy model, the processes involve several
reactions which may not be accurately modelled as
instantaneous reactions. To account for the delay in
time taken for the completion of an entire process, it
was proposed to model these reactions as single step
multiple-delayed reactions. Mathematically, this would
mean that the models would be ODEs associated with
time-delays, which is in the control parlance referred to as
time delay systems (Kolmanovskii and Myshkis, 1999; Gu
et al., 2003), or in maths—a delay differential equation.

A second-order predator–prey model that accounts
for the process time-delays in protein synthesis is
considered for nonlinear stability analysis, while
third-order dynamics with a single delay are used for
the immunotherapy model. Predator–prey models that
incorporate a much involved behaviour of the species
can be found in the work of She and Li (2013). From
the systems point of view, these systems can either
be linear or nonlinear in nature. Several results have
appeared in the literature with regard to studying stability
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of linear systems with time delays (Richard, 2003; Gu
et al., 2003; Kolmanovskii and Myshkis, 1999). The
Mikhailov criterion in the frequency domain uses
the principle of argument, while integral quadratic
constraints (IQCs) employ also a frequency domain
approach (Kao and Rantzer, 2007). For nonlinear
systems, there are only a handful of results, such as
the construction of a Lyapunov–Krasovskii (L–K)
functional (Papachristodoulou, 2004; Pasumarthy
and Kao, 2009; Kao and Pasumarthy, 2012; Mazenc
and Niculescu, 2001). Our approach here is the
sum-of-squares method (Papachristodoulou and
Prajna, 2005), which will be our basis for generating
results in this paper. Other approaches to stability analysis
exploit the system structure. Bodnar (2015) adopts the
method developed by Eduardo and Ruiz-Herrera (2013)
to determine the global stability of an equilibrium
solution of a cascade of chemical reactions with feedback
by investigating the asymptotic behaviour of some
corresponding discrete dynamical system. In the works
of Bo et al. (2012), Zhong et al. (2014), or Liu et
al. (2015; 2016a), Liu et al. (2016b), several results
pertaining to the global stability analysis of neural
networks with a time-delay can be found.

The main contributions of this paper are the
following. A numerically generated kernel is used
in the Lyapunov–Krasovskii functional to establish
delay-independent asymptotic stability of the equilibrium
of interest in the case of the gene-regulatory model. In
the case of the immunotherapy model, the equilibrium
point of interest is shown to be delay-dependent, and
the local uniformly asymptotic stability is established by
numerically generating a kernel for a Lyapunov functional
with a known structure. The process of constructing
kernels using the SOS process forms the main theoretical
tool; however, the method can be considered to be
numerical owing to the numerical solution to the LMI
conditions and SOS kernels, rather than an analytical
one. Nonetheless, in both the examples, the process
of constructing kernels using the SOS process is not
straightforward as several iterations are made in arriving
at the L–K and Lyapunov functionals.

Apart from the system and control point of view,
stability analysis of the dynamics of gene regulatory
networks aids mimicking gene networks synthetically
using integrated circuits like neurochips learnt from
biological neural networks, and in the case of cancer
immunotherapy it helps determine the long-term outcome
of therapy and thus helps oncologists to decide upon the
right approach.

The rest of the paper is organized as follows.
Section 2 describes the basic mechanism and model of
the gene regulatory network followed by the main results
concerning the nonlinear stability analysis and simulation
results. In Section 3, the mechanism involving the

triggering of immune cells and the eventual destruction of
cancer cells is discussed. Results pertaining to stability
form the core with simulations in the end. Biological
implications of stability results are discussed in Section 4,
with concluding remarks given in Section 5.

1.1. Mathematical preliminaries. Let Rn be the
n-dimensional real Euclidean space with the norm |x|
for x ∈ R

n. We denote by R+ and R++ the set
of nonnegative and positive real numbers, respectively.
C([a, b],Rn) denotes the Banach space of continuous
functions that map the interval [a, b], having b > a,
into R

n with the topology of uniform convergence. For
any φ ∈ C([a, b],Rn), the norm of φ is defined as
‖φ‖ = supa≤θ≤b |φ(θ)|. For τ > 0 and any b > 0,
we let ψ ∈ C([−τ, b],Rn) be any continuous function of
time. For any t ∈ [−τ, b] we denote by ψt the segment
of ψ(t) defined by ψt = ψ(t + θ), θ ∈ [−τ, 0]. A
multivariate polynomial p(x), x ∈ R

n, is an SOS if
there exist polynomials fi(x), i = 1, . . . ,M , such that
p(x) =

∑M
i=1 f

2
i (x). A polynomial p(x) of degree 2d is

an SOS if and only if there exist a positive semidefinite
matrixQ and a vector Z(x) containing monomials in x of
degree ≤ d so that p = Z(x)

�
QZ(x) (Parrilo, 2000).

2. Gene regulatory networks

The basic structural and functional unit of living
organisms is the cell. Cells by themselves are complex
entities, be it a prokaryotic cell, which does not contain
a nucleus, or a eukaryotic cell, which contains a nucleus.
Of the numerous activities that a cell performs, protein
synthesis is of prime importance. Proteins are required
for the modulation and maintenance of cellular activities.
Protein synthesis is a collection of various sequential
processes which ultimately result in the production of
the target protein in specific quantities. The ensemble
of such sequential processes is also called gene reg-
ulation. The concept of regulation comes up in
gene expression because genes are allowed to express
themselves, resulting in functional products such as
proteins only when needed. This is due to various
biological reasons. Thus a gene regulation system consists
of genes, cis-elements and regulators (Aluru, 2005).
Though there are a number of sequential processes which
ultimately result in the production of protein, transcription
and translation are the prominent ones, which are also
well understood. The sequence of events (see Fig. 1)
which leads to protein synthesis (Bernot et al., 2013) is
the following:

1. an external stimulus such as an environmental
condition, a developmental stage of the organism,
stress, diseases, etc.;

2. stimulation of a transcription factor;
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3. transcription of a particular gene;

4. production of mRNA (messenger-RNA);

5. translation of mRNA resulting in the production of
protein.

Regulators are nothing but transcription factors,
which are themselves proteins. These transcription
factors bind themselves to cis-elements, which form the
noncoding part of DNA. The cis-element is a short DNA
sequence that is specific to a particular transcription
factor and hence helps regulate the expression of a
particular gene. The genes, regulators and the regulatory
connections between them form gene regulatory networks
(Aluru, 2005).

translation
DNA mRNA Protein

transcription

Fig. 1. Protein synthesis.

Two examples which illustrate how environmental
conditions might trigger protein synthesis are those of
lac operon in bacteria and hypoxia inducible factor-1
(HIF-1) in mammalian cells. The former refers to a
bacterial genome and is composed of lacZ, lacY and lacA
genes. When there is a lack of glucose and absence of
lactose in the cell environment, catabolite activator protein
favours the transcription of lac operon genes, allowing
the consumption of lactose as a source of energy. In the
absence of lactose, a lactose repressor protein impairs the
transcription of lac operon genes.

The second example is the adaptation of mammalian
cells to decrease oxygen pressure by stimulating
the transcription factor HIF-1, which binds to the
cis-elements, i.e., hypoxia response elements, which are
DNA motifs associated with a series of genes involved in
adaptation to low oxygen concentration. The gene which
is well known for inducing red blood cells production
is erythropoietin, which secretes the EPO protein and
ultimately leads to an increase in erythropoiesis. Under
the normal oxygen level concentrations, the stimulation
of the epo gene is inhibited.

2.1. Mathematical modelling. Modelling approaches
to gene regulatory networks can be roughly divided
into continuous models and logical ones (Bernot et al.,
2013). The choice depends upon the kind of data
available and the objective. Different approaches followed
until now include Boolean (Kauffman, 1969), discrete
(Thomas, 1991), continuous differential (Goodwin, 1963)
and piecewise affine (De Jong, 2002) models. Continuous
models require quantitative biological data in order to fit
the parameters but give a better picture of the dynamics of
the system. Logical or Boolean models describe the state
of genes in on/off mode along with logical links between

them. Both the models can be used to study switching or
oscillatory behaviours of gene networks. In this paper, we
will be dealing only with the continuous model.

From a control point of view, a feedback exists in
gene regulatory networks where the proteins produced
due to a particular translation of mRNA may act as
transcription factors for some other gene. When two
proteins mutually repress or activate each other, this
is known as a positive feedback loop. If one of
them represses the other while the other activates it,
then this is a negative feedback loop. Sharma et al.
(2014) demonstrate the realization of fundamental logic
operations and memory elements on delayed synthetic
gene networks.

The process of protein synthesis is initiated with the
transcription factors binding to the cis-elements of the
genes, and then the transcription process starts. Other
proteins may also bind to specific sites of genes to enhance
or inhibit the transcription process. In the former case, the
transcription factor is known as an activator, and in the
latter as a repressor. The translation of mRNA produces
the target protein. The law of mass action is used to arrive
at the equation describing translation and transcription,
with mRNA and protein concentrations as the variables.
The generic equation which describes the rate of change
in concentrations of n molecular species (x1, x2, . . . , xn)
∈ R

n
+ is given by the difference between the production

or synthesis of i-th molecular species and the degradation
or transformation of the same into some other molecular
species,

ẋi = gi(x)− di(x),

where gi represents the i-th synthesis function and di
represents the i-th degradation function. A generic
network model representing the dynamics of transcription
and translation is given by (Chen and Aihara, 2002)

ṁ(t) = −Kmm(t) + c(p(t, τp)),

ṗ(t) = −Kpp(t) + d(m(t, τm)),
(1)

where

p = concentrations of proteins,

m = concentrations of mRNAs,

Kp = degradation rates of proteins,

Km = degradation rates of mRNAs,

c(p(t, τp)) = nonlinear function describing the

synthesis/inhibition rate of mRNAs,

d(m(t, τm)) = nonlinear function describing the

synthesis/inhibition rate of proteins,

τp = delay in the translation of proteins,

τm = delay in the transcription of mRNA,

m = (m1,m2, . . . ,mn) ∈ R
n
+,
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p = (p1, p2, . . . , pn) ∈ R
n
+,

Km = diag(km1, . . . , kmn) ∈ R
n×n
+ ,

Kp = diag(kp1, . . . , kpn) ∈ R
n×n
+ ,

τm = diag(τm1, . . . , τmn) ∈ R
n
+,

τp = diag(τp1, . . . , τpn) ∈ R
n
+,

m(t, τm) = (m1(t− τm1), . . . ,mn(t− τmn)),

p(t, τp) = (p1(t− τp1), . . . , pn(t− τpn)),

c(p) = (c1(p), . . . , cn(p)) ∈ R
n
+,

d(m) = (d1(m1), . . . , dn(mn)) ∈ R
n
+.

A schematic representation of a feedback regulatory
network (Chen and Aihara, 2002) is shown in Fig. 2.

mRNAs
mi(t)

kpikmi

pi(t− τpi)

p1(t− τp1) pn(t− τpn)

mi(t− τmi)

pi(t− τpi)

or

mRNAs

Degradation

Transcription and

splicing process

From other

Gene

genes

To other genes

Proteins

Fig. 2. Gene regulatory network with feedback.

Based on the same formalism, the model considered
for further analysis is that of a negative feedback gene
regulatory network, where the protein produced by the
gene acts as a transcription factor and inhibits its own
production. The dynamics (Loiseau et al., 2009, p. 137)
are given by

ẋ1 = −k1x1 + a1x2(t− τ1),

ẋ2 = −k2x2 + a2
1 + (x1(t− τ2))n

,
(2)

where

x1 = concentration of protein,

x2 = concentration of mRNA,

k1 = degradation rate of protein,

k2 = degradation rate of mRNA,

a1 = translation rate,

a2 = transcription rate,

τ1 = delay in translation,

τ2 = delay in transcription.

The synthesis function g(x) in the case of an
activator is given by xn

θn+xn . This is also known as the Hill
function, a monotonically increasing S-shaped function.
In the case of a repressor, it is 1 − xn

θn+xn , i.e., θn

θn+xn ,

a monotonically decreasing S-shaped function. Here θ
is the activation coefficient and n is the Hill coefficient.
The state variables xi ∈ R+, τi ∈ R+, i = 1, 2, and the
parameters k1, k2, a1, a2 ∈ R+. The starting point for
further analysis would be to find the equilibrium points
for the model described by (2). The case for which the
Hill coefficient n = 1 is considered.

With n = 1, the dynamics given by (2) can be
rewritten as

ẋ1(t) = −k1x1(t) + a1x2(t− τ1),

ẋ2(t) = −k2x2(t) + a2
1 + x1(t− τ2)

.
(3)

2.2. Stability of time-delay systems. The system of
equations (3) constitutes a delay differential equation,
more generally written as

ẋ(t) = f(xt), (4)

where f : C([−ξ, 0],Rn) → R
n and for t > 0 xt ∈

C([−ξ, 0],Rn) is defined as xt(θ) = x(t + θ) for θ ∈
[−ξ, 0]. The initial condition of (4) is denoted by xt0 ∈
C([−ξ, 0],Rn). Let Ω ⊂ C([−ξ, 0],Rn) be open. If
f(φ) is Lipschitz continuous in φ on every compact set
Ω0 ⊂ Ω, then (4) has a unique solution through xt0 ∈ Ω0.
We assume that (4) has a unique solution for any initial
condition xt0. With no loss of generality, we assume
the trivial solution of (4) to be the equilibrium point of
interest. The concept of the stability of the solution x(t) =
0 is given below.

Definition 1. The solution x(t) = 0 of (4) is called
stable if for any ε > 0 there exists a δ(ε) > 0 such that
for any initial condition xt0 which satisfies ‖xt0‖ < δ(ε)
the corresponding solution x(t) satisfies |x(t)| < ε for
all t ≥ 0. It is called asymptotically stable if it is stable
and δ(ε) can be chosen such that ‖xt0‖ < δ(ε) implies
that limt→∞ x(t) → 0. It is called globally asymptoti-
cally stable if it is asymptotically stable, and for any initial
condition xt0 the corresponding solution x(t) approaches
to 0 as t→ ∞ no matter how large ‖xt0‖ is.

A key tool for studying the stability property
of systems governed by such equations is the
Lyapunov–Krasovskii theorem, by which the stability
criteria presented in this paper will be derived. The
theorem is briefly summarized below.

Let V : C([−ξ, 0],Rn) → R. The derivative of V
with respect to time along the solution x of (4) is

V̇ (xt) = lim sup
Δt→0

1

Δt
(V (xt+Δt)− V (xt)).

The following theorem (Gu et al., 2003; Kolmanovskii
and Myshkis, 1999) provides sufficient conditions for the
stability of (4).
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Theorem 1. (Lyapunov–Krasovskii) Suppose that f :
C([−ξ, 0],Rn) −→ R

n in (4) maps bounded sets in
C([−ξ, 0],Rn) into bounded sets in R

n, and that u, v,
w are continuous nonnegative nondecreasing functions,
where u and v satisfy u(0) = v(0) = 0, and u(s) > 0
v(s) > 0 for s > 0. If there exists V : C([−ξ, 0],Rn) →
R

n such that V and the derivative of V along the solution
of (4) satisfy

u(‖φ(0)‖) ≤ V (φ) ≤ v(‖φ‖) (5)

and

V̇ (φ) ≤ −w(‖φ(0)‖) (6)

for all φ ∈ C([−ξ, 0],Rn), then the solution x(t) = 0 of
(4) is stable. If, in addition, w(s) > 0 for any s > 0,
then the solution x(t) = 0 of (4) is asymptotically stable.
Finally, if lims→∞ u(s) = ∞, then we have the global
asymptotic stability.

2.3. Local stability analysis. We analyze the stability
of the system around an equilibrium point x∗ = (x∗1, x∗2),
with f(x∗) = 0. By defining x̃ = x − x∗, linearizing the
system (3) yields

(
˙̃x1(t)
˙̃x2(t)

)

= A0

(
x̃1(t)
x̃2(t)

)

+A1

(
x̃1(t− τ1)
x̃2(t− τ1)

)

+A2

(
x̃1(t− τ2)
x̃2(t− τ2)

)

,

(7)

where

A0 =
∂f

∂x(t)

∣
∣
∣
∣
x∗

=

[ −k1 0
0 −k2

]

,

A1 =
∂f

∂x(t− τ1)

∣
∣
∣
∣
x∗

=

[
0 a1
0 0

]

,

A2 =
∂f

∂x(t− τ2)

∣
∣
∣
∣
x∗

=

[
0 0

−a2

(1+x1e)2
0

]

.

The system (7) is stable for τ1 = τ2 = ∞ since A0 is
Hurwitz for all k1, k2 > 0. The system is also stable
without a delay (τ1 = τ2 = 0) since (A0 + A1 + A2)
is Hurwitz for all k1, k2, a1, a2 > 0. We then have the
following result.

Proposition 1. If there exist symmetric matrices P >
0, S1 > 0, S2 > 0 such that the following LMI holds:

R =

⎡

⎣
PA0 +A�

0 P +
∑2

i=1 Si PA1 PA2

A�
1 P −S1 0

A�
2 P 0 −S2

⎤

⎦ < 0,

(8)
then the system (7) is asymptotically stable, independent
of the delay.

Proof. The proof here constitues a direct consequence
of Proposition 7.1 by Gu et al. (2003) and is obtained
by considering a Lyapunov–Krasovskii functional that
satisfies (5),

V (φ) = φ�(0)Pφ(0)

+

2∑

i=1

∫ 0

−τi

φ�(θ)Siφ(θ) dθ.
(9)

Differentiating (9) along the system trajectories (7), we
obtain (8). We use the system parameters (Loiseau
et al., 2009) k1 = 0.03, k2 = 0.03, a1 = 1, a2 = 1. Since
the system (3) evolves on R+×R+, the equilibrium point
of interest is (x∗1, x

∗
2) = (32.8371, 0.9851). Numerically

solving the LMI conditions (8) using the YALMIP
Toolbox in Matlab, the matrices P , S1 and S2 were found
to be

P =

[
0.0127 0

0 10.7791

]

,

S1 =

[
0.0002 1

0 0.5014

]

,

S2 =

[
0.0002 0

0 0.0589

]

.

The eigenvalues of R are (−0.0589,−0.0002,
−0.0001,−0.0001) and hence sufficient conditions
for positive definiteness of V and negative definiteness of
V̇ are satisfied. Thus, the linearised system (7) is locally
asymptotically stable. �

2.4. Nonlinear delay-independent stability analysis.
We first introduce a change of coordinates z1 = x1 −
x∗1, z2 = x2−x∗2; the origin (z1 = 0, z2 = 0) is the unique
equilibrium point of interest. z1 = x1−x∗1, z2 = x2−x∗2.
The system (3) in the new coordinates is

ż1(t) = −k1z1(t) + a1z2(t− τ1) + (a1x
∗
2 − k1x

∗
1),

ż2(t) = −k2z2(t) + a2
(1 + x∗1) + z1(t− τ2)

.

(10)

We next analyze the delay-independent stability of the
origin z = 0.

Proposition 2. The origin z = 0 of (10) is asymptotically
delay-independent stable.

Proof. The construction of an appropriate L–K functional
proves the stability of the equilibrium point, but the search
for such a functional form is involved. The technique of
the SOS simplifies the task by recasting the Lyapunov
conditions in the form of LMI conditions, thereafter the
SOS conditions can be verified in polynomial time by
solving an appropriate semi-definite program. We apply
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the delay-independent stability result for the SOS given
by Loiseau et al. (2009). The SOS technique is used to
construct a Lyapunov–Krasovskii functional of the form

V (φ) = v0(φ(0)) +

2∑

i=1

∫ 0

−τi

v1i(φ(θ)) dθ. (11)

The sufficient conditions in Proposition 1 of Loiseau et al.
(2009) are used to prove delay-independent asymptotic
stability. SOS polynomials are used to construct the
kernel in the Lyapunov–Krasovskii functional (11). The
following choice of SOS polynomials is given as inputs to
the SOSTOOLS Toolbox of Matlab,

φ(z) = z21 + z22 ,

ψ(z) = d1z
2
1 + d2z

2
2 ,

v11 = a1(z
2
1 + z22) + a2(z

2
3 + z24),

v12 = a3(z
4
1 + z22) + a4(z

4
5 + z26),

where z3 = x1(t− τ1), z4 = x2(t− τ1), z5 = x1(t− τ2),
z6 = x2(t− τ2). Solving it, we obtained the following:

(i) v0 has a Gram matrix decomposition v0 =
Y (z)�QY (z), where Y (z) is the vector of
monomials, Y (z) =

(
z2, z

2
2 , z1, z1z2, z

2
1

)
andQ > 0

is given by
⎡

⎢
⎢
⎢
⎢
⎣

49.5890 −0.0015 0.0116
−0.0015 0.0005 0
0.0116 0 2.0707

0 0 −0.0001
0.0001 −0.0001 0

0 0.0001
0 −0.0001

−0.0001 0
0.0002 0

0 0

⎤

⎥
⎥
⎥
⎥
⎦
.

(ii) v11 and v12 are given by

v11 = 437.84(z21 + z22) + 561.29(z23 + z24),

v12 = 627.88(z41 + z22) + 437.34(z45 + z26).

(iii) We next show that the derivative of V (zt) along
the trajectories of (10) is locally negative definite.
The Hessian of V̇ (zt), denoted by ∇2

zV̇ (zt), when
evaluated at the origin is

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−616.7679 −0.04721 0
−0.04722 −874.0937 0

0 0 −875.68
140.1329 0.7869 0
−0.00074 −2.931 0

0 0 0

140.1329 −0.00074 0
0.7869 −2.931 0

0 0 0
−1122.58 0 0

0 −1255.6 0
0 0 −874.68

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The coefficients d1 and d2 were found to be 1370 and
1335, respectively. The eigenvalues of ∇2

z V̇ (zt)|z=0 are
−1255.7825, −1158.81, −875.68, −874.68, −874.069
and −580.5395. Thus V̇ is locally negative definite in an
open set containing the origin and the result holds.

�

2.5. Simulations. In this section, we present plots
showing the evolution of system trajectories described
by (2) as the delays τ1, τ2 are varied. The parameters
are fixed (Loiseau et al., 2009) to be k1 = 0.03, k2 =
0.03, a1 = 1, a2 = 1 and the initial conditions are
(z1(0) = 1, z2(0) = 1). Figure 3 depicts the trajectories
approaching the equilibrium point when τ1 = 0.01, τ2 =
0.05, while Fig. 4 depicts the case when the delays are
large with τ1 = 10, τ2 = 5. On the microscopic
level, since delays cannot be in the order of seconds, the
simulations show that the system is stable irrespective of
the size of the delay.
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Fig. 3. Evolution of system trajectories with τ1 = 0.01, τ2 =
0.05.

3. Cancer immunotherapy model

Cancer was the leading cause of death that accounted for
around 8.2 million deaths worldwide in 2012 according
to the WHO (World Health Organization). This number
is expected to increase threefold by 2030. Traditional
treatment methodologies for all types of cancer have
been chemotherapy and radiation therapy, which are
found effective in most cases. But they have major
disadvantages, too. The prime one is that, even healthy
cells are killed along with cancerous ones, and this has
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Fig. 4. Evolution of system trajectories with τ1 = 10, τ2 = 5.

many side effects. Also the protection offered by the
treatment ends once it is stopped. New modalities of
cancer treatment are now being sought after, which target
cancerous cells specifically, overcoming the pitfalls of
chemotherapy and radiation therapy. Immunotherapy is
one such treatment method where the immune system
is strengthened to fight against cancer. A brief idea of
how the immune cells are triggered, finally leading to
destruction of cancerous cells, is depicted in Fig. 5.

activate

TUMOUR CELLS

DENDRITIC CELLS

HELPER

      T

CELLS

CYTOTOXIC

T 

CELLS

destroy

activateactivate

Fig. 5. Tumour destruction process.

The tumor–immune-cell interaction is an interesting
phenomenon which is nonlinear and time-varying by
nature. This nonlinearity makes the behaviour of
tumors unpredictable and also appears to be one of the
leading causes of death despite large measures being
taken for its prevention and cure (d’Onofrio, 2008). A
mathematical model of the Lotka–Volterra type (Melief,
2005; d’Onofrio, 2005) which captures the nonlinearity
of tumor–immune-cell interactions is adopted and further
studied in this paper. Predator–prey equations have
accommodated this problem well (Bell, 1973) and have

been a subject of active investigation (Andrew et al., 2007;
Zhivkov and Waniewski, 2003; Banerjee, 2008).

To elaborate on this, the tumour cells contribute
to prey population and helper T cells, cytotoxic T
cells become the predators. A third-order predator–prey
model with time-invariant parameters that portrays the
phenomenon fairly accurately is studied in this paper.
Higher-order differential equations can give better insight
into the working of the system; however, this would
require a large set of parameters and its estimation is
an onerous task (Babbs, 2011). Hence we restrict our
analysis to a third-order differential equation, which also
includes a delay. This delay is an inevitable part of
the process and physically implies the time taken for
the activation of cytotoxic T cells or killer T cells.
Incorporating it in the model helps study the dynamics in
detail. The utility of control-theoretic tools in analyzing
the models that capture tumor–immune-cell interactions
lies in gaining better insight into immunotherapy and
predicting the success or failure of treatment (Babbs,
2011). Stability analysis of the dynamics is critical
to know whether the system trajectories converge to an
equilibrium point or a limit cycle eventually, which gives
information regarding the long-term behaviour and thus
the outcome of therapy (Villasana and Radunskaya, 2003).
In the work of Wang et al. (2012), a delayed oncolytic
virus dynamics with continuous control is investigated
and shown to exhibit Hopf bifurcation when the delay is
increased beyond a certain limit.

3.1. Mathematical model. Consider the dynamics
of immunotherapy which can be represented by the
following predator–prey model (Saleem and Agrawal,
2012):

ẋ1(t) = 1 + a1x1(1− x1)− k1x1x2 − k2x1,

ẋ2(t) = a2x2(t− τ)x3(t− τ)− a3x2 − k3x1x2, (12)

ẋ3(t) = a4x3(1− x3)− a5x2x3 − a6x3 − k4x1x3,

where

x1 = density of tumour cells,

x2 = density of cytotoxic T cells,

x3 = density of T helper cells,

a1 = growth rate of tumour cells,

a2 = delayed conversion rate of T helper cells to

cytotoxic T cells,

a3 = loss rate of cytotoxic T cells,

a4 = growth rate of T helper cells,

a5 = rate of decrease in T helper cells due to conversion,
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a6 = loss rate of T helper cells,

k1 = rate of killing tumour cells by cytotoxic T cells,

k2 = loss rate of tumour cells,

k3 = rate of killing cytotoxic T cells by tumour cells,

k4 = rate of killing T helper cells by tumour cells,

τ = delay in the activation of cytotoxic T cells,

xi ∈ R+, i = 1, 2, 3, τ ∈ R++, and the normalized
parameters a1, a2, a3, a4, a5, a6, k1, k2, k3, k4 ∈ R++.

A starting point for the analysis would be to find
the equilibrium points for the system described by (12).
Physically, this implies an unstable steady state in which
the tumour neither grows nor shrinks in size, which marks
the initial point for theoretical explorations of strategies
and effects (Babbs, 2011). Three equilibrium points for
the dynamics described by (12) were obtained and are
enumerated as follows:

E1 = {x : x1 = s, x2 = x3 = 0} ,
E2 =

{
x : x1 = s, x2 = 0,

x3 = 1− a6
a4

− k4x1
a4

}
,

where

s =
1

2

⎛

⎝1− k2
a1

+

√(

1− k2
a1

)2

+
4

a1

⎞

⎠ .

The equilibrium point E2 exists if and only if a4 > a6 +
k4x1. Let the third equilibrium point be denoted as E3 =
(x∗1, x

∗
2, x

∗
3). From (12) we can obtain the relation

x∗3 =
a3 + k3x

∗
1

a2
,

x∗2 =
a4(1− x∗3)− a6 − k4x

∗
1

a5
,

1 + a1x
∗
1(1− x∗1)− k1x

∗
1x

∗
2 − k2x

∗
1 = 0.

Substituting for x∗2 and x∗3, we obtain a quadratic equation
in x∗1,

(x∗1)
2 +

a

b
x∗1 −

1

b
= 0,

where

a = k2 +
k1a4
a5

(

1− a3
a2

− a6
a4

)

− a1,

b = a1 − k1
a5

(

k4 +
k3a4
a2

)

.

A unique positive root for (13) exists provided

−a
b
+

√(a

b

)2

+
4

b
> 0.

3.2. Nature of equilibria. We analyze the nature
of each of the equilibria of the system E1, E2, E3

by linearizing around the respective equilibrium points.
Linearizing (12) about xe = (x1e, x2e, x3e) and with
x̃ = x− xe, we obtain the linearized system as

⎛

⎝

˙̃x1(t)
˙̃x2(t)
˙̃x3(t)

⎞

⎠ = A0

⎛

⎝
x̃1(t)
x̃2(t)
x̃3(t)

⎞

⎠+A1

⎛

⎝
x̃1(t− τ)
x̃2(t− τ)
x̃3(t− τ)

⎞

⎠ ,

where

A0 =

⎡

⎣
d1 −k1x1e 0

−k3x2e −a3 − k3x1e 0
−k4x3e −a5x3e d2

⎤

⎦ ,

A1 =

⎡

⎣
0 0 0
0 a2x3e a2x2e
0 0 0

⎤

⎦ .

with d1 = a1 − 2a1x1e − k1x2e − k2 and d2 =
a4 − 2a4x3e − a5x2e − a6k4x1e. We fix the normalized
parameters (Saleem and Agrawal, 2012) that satisfy
biologically feasible conditions as a1 = 2.5, a2 = 4.5,
a3 = 0.6, a4 = 3.5, a5 = 2, a6 = 0.1, k1 = 1,
k2 = 0.01, k3 = 0.05 and k4 = 0.001. The local stability
properties of the equilibrium points using linear models
are summarized as follows:

1. E1 = (1.303, 0, 0) and the eigenvalues of the matrix
A0 +A1 are

{−4.0249,−0.6651, 3.3987} .

Since one of the eigenvalues is positive, E1 is
unstable for a zero delay.

2. E2 = (1.3030, 0, 0.9706) and the eigenvalues of the
matrices A0 and A0 +A1 are

{−3.3952± i4.0249,−0.6651}

and
{−3.3952± i4.0249, 3.7023} ,

respectively. A0 + A1 has a positive eigenvalue and
hence E2 is unstable for zero delay.

3. E3 = (0.8740, 1.4492, 0.1430) and the eigenvalues
of the matrices A0 and A0 +A1 are

{−0.5007,−0.6203,−3.3525}

and
{−3.3449,−0.2424± i1.3373} ,
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respectively.

A necessary (but not sufficient) condition for a system to
be stable under the presence of a delay is that it is stable
for zero delays. Stability analysis via linearization shows
that the equilibrium points E1, E2 are unstable for zero
delays (τ = 0) and therefore it would be unstable for
nonzero delays. In the next section, we therefore analyze
the nonlinear stability of E3, which is the tumour-free
equilibrium point.

3.3. Nonlinear stability analysis. With the change of
coordinates defined by zi = xi−x∗i , i = 1, 2, 3, the origin
is the equilibrium point of interest in the transformed
system. The system (12) in the new coordinates is

ż1 =1− a1z1
2 + C1z1 − k1z1z2 − C2z2 − C3,

ż2 =C4z1 + C5z2 − k3z1z2 + C6z2(t− τ)

+ a2z2(t− τ)z3(t− τ) + C8

+ C7z3(t− τ), (13)

ż3 =C9z1 − k4z1z3 + C10z2 − a5z2z3

+ C11z3 + C12,

with the constants defined as

C1 = a1 − 2a1x
∗
1 − k1x

∗
2 − k2,

C2 = k1x
∗
1,

C3 = 1 + a1x
∗
1(1− x∗1)− k1x

∗
1x

∗
2 − k2x

∗
1,

C4 = −k3x∗2,
C5 = −a3 − k3x

∗
1,

C6 = a2x
∗
3,

C7 = a2x
∗
2,

C8 = a2x
∗
2x

∗
3 − a3x

∗
2 − k3x

∗
1x

∗
2,

C9 = −k4x∗3,
C10 = −a5x∗3,
C11 = a4 − 2a4x

∗
3 − a5x

∗
2 − a6 − k4x

∗
1,

C12 = a4x
∗
3 − a4x

∗
3
2 − a6x

∗
3 − a5x

∗
2x

∗
3 − k4x

∗
1x

∗
3.

We analyze the delay-dependent stability of the origin z =
0. Since the system has two more equilibrium points, we
restrict the stability region to the set

Ω = {zt ∈ C([−τ, 0],R3) : ||zt||2 ≤ γ}.

The value of γ is based on the location of the other two
equilibrium points. The state constraint |z(t+ θ)| ≤ γ for
all θ leads to the conditions

h1i = (zi(t)− γ)(zi(t) + γ)) ≤ 0,

i = 1, 2, 3 (14)

and

h2j = (zj(t− τ) − γ)(zj(t− τ) + γ)) ≤ 0,

j = 2, 3.

Proposition 3. The origin of the system (13) is locally
uniformly asymptotically stable for all delays in [0, τ ].

Proof. We shall apply here the delay-dependent
stability result proposed by Papachristodoulou (2004,
Proposition 9). The SOS technique is used to obtain a
Lyapunov functional having the structure

V (xt) = V0(x(t)) +

∫ 0

−τ

V1(θ, x(t), x(t + θ)) dθ

+

∫ 0

−τ

∫ t

t+θ

V2(x(ζ)) dζ dθ.

(15)

The conditions in Proposition 9 of Papachristodoulou
(2004) are rewritten by including the state constraints for
the system (13) as

1. V0(z(t))− φ(z(t)) ≥ 0,

2. V1(θ, z(t), z(t+ θ)) + p(z(t))h(θ) ≥ 0,

3. V2(z(ζ)) ≥ 0,

4. the requirement that

τ
∂V1
∂z(t)

f(z) +
∂V0
∂z(t)

f(z)− τ
∂V1
∂θ

+ τV2(z(t))

− τV2(z(t+ θ)) + V1(0, z(t), z(t))

− V1(−τ, z(t), z(t− τ)) − p(z(t))h(θ)

−
3∑

i=1

h1iq1i(z(t), z(t− τ))

−
3∑

j=2

h2jq2j(z(t), z(t− τ))

≤ 0, ∀ θ ∈ [−τ, 0].

We use SOS polynomials to construct the kernel in
the Lyapunov–Krasovskii functional (15). The state
constraints (14) are appended to the derivative of V
using SOS multipliers hij , i = 1, 2, 3, j = 2, 3, whose
coefficients are unknown. The condition θ ∈ [−τ, 0]
can be included by defining h(θ) = θ(θ + τ). Since
the polynomial V1(θ, z(t), z(t + θ)) is required to be
non-negative only when h(θ) = θ(θ+τ) is satisfied, using
the SOS multiplier p(z(t)) with known coefficients is used
to write the condition

V1(θ, z(t), z(t+ θ)) + p(z(t))h(θ) ≥ 0.
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Since the equilibrium points other than the origin are
located atE1 andE2, we fix γ = 0.14. With the following
choice of SOS polynomials as inputs to the SOSTOOLS
Toolbox of Matlab:

τ = 0.017,

V1 = z21 + z22 + z23 + z22(t− τ) + z23(t− τ),

V2 = 0,

φ(z) = z41 + z42 + z43 ,

h(θ) = θ(θ + τ),

p(z) = z41 + z42 + z43 ,

qij = b1z
4
1 + b2z

4
2 + b3z

4
3 + b4z

4
2(t− τ)

+ b5z
4
3(t− τ), i = 1, 2, 3, j = 2, 3,

we obtain V0 to be positive definite with a Gram matrix
decomposition V0 = Y (z)�QY (z), where Q ∈ R

9×9

satisfies Q = Q� > 0 and is given by Eqn. (16) while
Y (z) is the vector of monomials,

Y (z) =
(
z3, z

2
3 , z2, z2z3, z

2
2 , z1, z1z3, z1z2, z

2
1

)
.

Further, SOS multipliers associated with the state
constraints are obtained as

q11 = 35.0677z41 − 120.7356z42 + 28.6153z43

+ 13.4857z42(t− τ) − 5.2187z43(t− τ),

q12 = 60.676z41 + 201.2121z42 + 54.9288z43

+ 63.9426z42(t− τ) + 65.9958z43(t− τ),

q13 = 33.0355z41 − 117.8368z42

+ 23.2452z43 + 16.5974z42(t− τ)

− 2.2783z43(t− τ),

q22 = 30.6538z41 − 91.3417z42 + 27.5387z43

+ 39.0185z42(t− τ) + 10.7666z43(t− τ),

q23 = 29.1352z41 + 2.2585z42 + 26.9202z43

+ 41.4196z42(t− τ) + 45.2304z43(t− τ).

We next show that the derivative of V (zt) along
the trajectories of (13) is locally negative definite. The
Hessian of V̇ (zt), denoted by ∇2

zV̇ (zt), when evaluated
at the origin, is

−

⎡

⎢
⎢
⎢
⎢
⎣

12.163 2.471 −1.638 −0.163 −1.649
2.471 0.554 −0.269 −0.058 −0.586
−1.638 −0.269 0.330 0.003 0.035
−0.163 −0.058 0.003 2 0
−1.649 −0.586 0.035 0 2

⎤

⎥
⎥
⎥
⎥
⎦
.

The eigenvalues of ∇2
zV̇ (zt)|z=0 are −0.000379,

−0.103245, −1.789669, −2.000000 and −13.154485.

Thus V̇ is locally negative definite in an open set
containing the origin and the result holds. �

3.4. Simulations. In this section we present plots
showing the evolution of system trajectories described by
(13) with a zero delay and as the delay τ is varied. The
plots were obtained with parameters fixed as described in
Section 3 and initial conditions for (z1(0) = 0.1, z2(0) =
0.1, z3(0) = 0.1). Figure 6 shows the system without
a delay has the trajectories approaching the equilibrium
point of interest E3. Figure 7 depicts the trajectories
approaching the equilibrium point with τ = 0.30. It
was observed through simulations that for τ = 0.40 the
system exhibits a limit cycle (Saleem and Agrawal, 2012),
as depicted by Fig. 8. For larger delays the system tends
to behave chaotically.

4. Biological implications

The advancements in technology have resulted in large
amounts of data, mainly of qualitative nature. The
challenge now lies in making sense of these data and
developing methodologies to address important biological
questions. Genetic regulatory networks are highly
complex and hence it becomes necessary to design
models describing their dynamical functioning. Protein
and mRNA concentrations evolve with time and may
converge towards some steady state, periodic behaviour,
or other complex dynamical attractors. The emergence
of these patterns from the dynamical interactions between
the elements of the network and comparison with
experimental data help scientists to solve important
problems (Bernot et al., 2013). Also, with the advent
of computer technology, the behaviour of a few dozen
genes can be simulated, but it is tough when millions
come into play. Characterising the qualitative behaviour
helps in dealing with complexity and realizing such
gene networks synthetically using integrated circuits like
neurochips learnt from biological neural networks (Chen
and Aihara, 2002). The goal of immunotherapy or

any other treatment for that matter is the eradication of
the tumour. In the absence of therapy and given that
the tumour is highly immunogenic, the system described
by (12) has the tumour-free equilibrium point E3 to be
locally, uniformly, asymptotically stable over a certain
delay interval. The biological relevance of this being,
the eradication of the tumour may be achieved if the
state of the system at the end of therapy belongs to the
basin of attraction of the tumour-free equilibrium point,
so that the system tends to this point eventually. This
requires us to know the state of the system at the start of
therapy accurately, which is a problem in clinical practice
(d’Onofrio et al., 2010). With an increase in the delay, and
for τ = 0.4, we observed through simulations that there is
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Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1507 0.0524 −0.0027 −0.0024 0.0029 −0.2303 −0.0011 −0.0082 −0.0328
0.0524 28.4917 −0.0114 0.9181 −2.3018 −0.1295 −1.0589 0.1075 0.8676
−0.0027 −0.0114 0.0279 −0.0018 −0.0062 0.1264 −0.0045 0.0023 0.0184
−0.0024 0.9181 −0.0018 4.0556 0.0263 −0.0035 0.1638 −0.1563 0.1900
0.0029 −2.3018 −0.0062 0.0263 1.0738 −0.0339 0.0594 0.2178 −0.4999
−0.2303 −0.1295 0.1264 −0.0035 −0.0339 0.8936 −0.0187 0.0127 0.1256
−0.0011 −1.0589 −0.0045 0.1638 0.0594 −0.0187 6.4606 0.2381 −0.2664
−0.0082 0.1075 0.0023 −0.1563 0.2178 0.0127 0.2381 2.8670 0.3954
−0.0328 0.8676 0.0184 0.1900 −0.4999 0.1256 −0.2664 0.3954 4.5046

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (16)
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Fig. 6. Evolution of system trajectories with τ = 0.

an onset of periodic oscillations. The importance of such
limit cycles is that the tumour levels oscillate around a
fixed point without administering any therapy (Villasana
and Radunskaya, 2003).

5. Conclusions

In this paper, we analysed the stability of a second-order
model of a gene-regulatory network with delay using both
linear and nonlinear approaches. A Lyapunov functional
candidate having a similar structure for both linear and
nonlinear approaches is constructed using LMIs in case
of the former and SOSTOOLS in the case of the latter.
The system is found to be stable independent of the delay.
Through LMIs, sufficient conditions for local asymptotic
stability of the equilibrium point were established. For the
nonlinear system (10), a Lyapunov-Krasovskii functional
of the form (11) with v11 quadratic and v0, v12 quartic
was obtained and delay-independent asymptotic stability
of the origin was established.

For the third-order nonlinear model of immuno-
therapy for cancer, an L–K functional was constructed
numerically to prove the delay-dependent stability of the
system at a tumour-free equilibrium point. Since the
system has multiple equilibria, only the local stability
can be established. A Lyapunov functional of the
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Fig. 7. Evolution of system trajectories with τ = 0.3.

Fig. 8. Evolution of system trajectories with τ = 0.4.

form described by (15) with V0 being quartic, V1 being
quadratic and V2 = 0 was obtained, and thus delay
dependent local uniform asymptotic stability of the origin
in the delay interval (0, 0.017] is established. Through
simulations we could obtain the maximum delay before
the system breaks into periodic oscillations as τ �
0.35 (Saleem and Agrawal, 2012). The SOS approach
we adopted gives a maximum delay of 0.017 seconds,
which is conservative due to a difficulty in handling
nonlinearities with a delay.



102 H.A. Kruthika et al.

References
Aluru, S. (2005). Handbook of Computational Molecular Biol-

ogy, CRC Press, Boca Raton, FL.

Andrew, S.M., Baker, C.T. and Bocharov, G.A. (2007). Rival
approaches to mathematical modelling in immunology,
Journal of Computational and Applied Mathematics
205(2): 669–686.

Babbs, C.F. (2011). Predicting success or failure of
immunotherapy for cancer: Insights from a clinically
applicable mathematical model, American Journal of Can-
cer Research 2(2): 204–213.

Banerjee, S. (2008). Immunotherapy with interleukin-2: A
study based on mathematical modeling, International
Journal of Applied Mathematics and Computer Science
18(3): 389–398, DOI: 10.2478/v10006-008-0035-6.

Bell, G.I. (1973). Predator–prey equations simulating
an immune response, Mathematical Biosciences
16(3): 291–314.

Bernot, G., Comet, J.-P., Richard, A., Chaves, M., Gouzé, J.-L.
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