
Int. J. Appl. Math. Comput. Sci., 2017, Vol. 27, No. 1, 105–118
DOI: 10.1515/amcs-2017-0008

MACHINE–LEARNING IN OPTIMIZATION OF EXPENSIVE BLACK–BOX
FUNCTIONS

YOEL TENNE a

aDepartment of Mechanical and Mechatronic Engineering
Ariel University, Ariel 40700, Israel

e-mail: y.tenne@ariel.ac.il

Modern engineering design optimization often uses computer simulations to evaluate candidate designs. For some of these
designs the simulation can fail for an unknown reason, which in turn may hamper the optimization process. To handle
such scenarios more effectively, this study proposes the integration of classifiers, borrowed from the domain of machine
learning, into the optimization process. Several implementations of the proposed approach are described. An extensive set
of numerical experiments shows that the proposed approach improves search effectiveness.

Keywords: simulations, metamodels, classifiers, machine learning.

1. Introduction

Computer simulations are being extensively used in
engineering and science as a partial substitute for
laboratory experiments. This allows us to investigate
scenarios which may be complicated to evaluate by
real-world experiments, and reduces the costs associated
with product development. Such computer simulations,
which must be properly validated with laboratory
experiments, transform the design process into an
optimization problem which is characterized by the
following aspects (Tenne and Goh, 2010):

• The simulation maps candidate designs (vectors)
into output values, and so it acts as the problem’s
objective function. The output value of the
simulation may be a result of intricate numerical
calculations, or the simulation code itself may be
either a legacy or a commercial code whose inner
mechanics are inaccessible to the user. In either
case, this renders the simulation as a black-box
function, i.e., a function for which an analytic
expression in unavailable. Therefore, optimization
algorithms which rely on analytic functions and
gradient expressions cannot be used.

• Each run of the simulation requires considerable
computer resources, and therefore, it is a computa-
tionally expensive process, and in turn this severely

restricts the number of candidate designs (simulation
runs) which can be evaluated.

• Both the underlying physics of the problem
being solved and the numerical simulation process
itself, often result in an objective function which
has complicated features such as multiple local
optima, and this further complicates the optimization
process.

Such optimization problems are commonly referred to in
the literature as expensive black-box optimization prob-
lems, and a wide range of algorithms has been proposed
in an attempt to effectively handle them (Tenne and
Goh, 2010; Regis and Shoemaker, 2013; Muller and
Shoemaker, 2014).

On top of the above challenges, such problems
often present an additional difficulty which is related
to the evaluation process: for some candidate designs
the simulation will fail, and no objective value will
be provided. In this study, such designs are termed
simulator-infeasible (SI), while those for which the
simulation succeeds are termed simulator-feasible (SF).
The existence of SI designs has two main implications on
the optimization process:

• Since they do not have a corresponding objective
value, the objective function becomes discontinuous,
and this introduces an additional optimization

© 2017 Y. Tenne.
This is an open access article distributed under
the Creative Commons Attribution-NonCommercial-NoDerivs license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

y.tenne@ariel.ac.il

106 Y. Tenne

challenge.

• Although such designs can consume a large portion
of the allowed computational budget, they do not
provide any objective values to the optimization
algorithm. This in turn can lead to search stagnation
and a poor final result.

In this study there are two underlying assumptions
regarding simulation failures:

• They are deterministic and are not caused by
some random malfunction of the simulation code.
Therefore, evaluations of an SF design will
consistently succeed, while those of an SI design will
consistently fail.

• The reason for simulation failures is unknown prior
to the optimization search, and hence such SI designs
cannot be excluded a priori from the search space.

Numerous studies, such as those by Büche et al.
(2005), Jin et al. (2002), and Poloni et al. (2000), have
reported encountering SI designs in simulation-driven
problems, which indicates that the issue is both common
and requires an effective strategy to address it. In these
settings, this paper describes the integration of classifiers,
borrowed from the domain of machine-learning, into
the optimization search as a means of more effectively
handling SI vectors. Specifically, the role of the classifier
is to predict, prior to any evaluation, if a candidate design
will lead to a simulation failure or not. Based on this
prediction, the search is then biased towards designs for
which the simulation is expected to succeed, thereby
reducing the number of failed evaluations and focusing
the search on successful designs, which in turn can yield
a better final result. The effectiveness of the approach is
demonstrated through several implementations and their
application to simulation-driven problems.

The remainder of this paper is organized as follows.
Section 2 provides the pertinent background information,
Section 3 describes a baseline implementation of
a classifier-assisted optimization algorithm, while
Sections 4 and 5 describe implementations which select
an optimal type of classifier dynamically during the
search or employ an ensemble of multiple classifiers,
respectively. Lastly, Section 6 concludes the paper.

2. Background

2.1. Optimization problem. Basically, simula-
tion-driven optimization problems often arise in
engineering and science, and Fig. 1 shows their typical
layout. In such problems the simulation acts as the
black-box function, and the optimization algorithm
explores the design search space and generates new
candidate designs for evaluation. In this setup, candidate

Optimization
algorithm Simulation

Candidate solution

Objective value

‘Black-box’
function

Fig. 1. Layout of an expensive black-box optimization problem.

designs are represented as vectors of design variables and
are sent as inputs to the simulation.

A common strategy to circumvent the issues
mentioned in Section 1 (no analytic expression, high
evaluation cost, and challenging function features) is to
use a metamodel, also termed in the literature a response
surface or a surrogate model, which is a mathematical
approximation of the true expensive function that
provides predicted objective values at a much lower
computational cost. Common metamodel variants
include artificial neural networks, Kriging, polynomials,
and radial basis functions (RBFs) (Wortmann et al.,
2015; Forrester and Keane, 2008; Queipo et al.,
2005; Regis, 2014; Viana et al., 2013; Tenne, 2013).
Metamodel-assisted frameworks typically operate by first
training a metamodel and then seeking its optimum. The
process could also include the sampling of additional
points to update the metamodel. The search for an
optimum is often performed by combining a global
search algorithm such as an evolutionary algorithm (EA),
particle swarm optimizer (PSO), and alike, followed by
a deterministic local search performed by algorithms
such as sequential quadratic programming (SQP) or
steepest-descent, where gradient information is obtained
from the metamodel (Smoczek, 2013; Smołka et al.,
2015). Algorithm 1 gives the pseudocode of the baseline
algorithm.

Algorithm 1. Baseline metamodel-assisted optimization.
sample an initial set of vectors;
while stopping criterion not met do

train a metamodel with the vectors evaluated so far;
search for an optimum of the metamodel;
evaluate the solution found with the true expensive
function;
possibly sample additional vectors, to update the
metamodel;

return the best solution found;

Recent studies have explored more involved
frameworks which include using multiple metamodels
concurrently in an ensemble setup (see, e.g., Viana
et al., 2013; Tenne, 2015; Muller and Shoemaker, 2014),
selecting an optimal metamodel type dynamically during
the search (Gorissen et al., 2008; Tenne, 2015), or

Machine-learning in optimization of expensive black-box functions 107

using more involved optimization procedures (Wortmann
et al., 2015; Regis, 2014).

2.2. Simulation failures. SI vectors have been
reported in numerous studies, with references such as
“failure of the simulation code” (Poloni et al., 2000)
or “attempts to evaluate the objective function failed”
(Booker et al., 1999), while additional examples include
the works by Büche et al. (2005), Conn et al. (1998),
and Okabe (2007). Accordingly, several approaches
have been explored to handle such SI vectors. Rasheed
et al. (1997) used a classifier to screen vectors before
evaluating them with the simulation. Those predicted
to be SI were assigned a ‘death penalty’ to eliminate
them from consideration. It is emphasized that in their
study the authors did not consider the use of metamodels.
Emmerich et al. (2002) also used a penalty approach,
but incorporated the penalized vectors into the metamodel
to bias the search towards SF solutions. In contrast,
Büche et al. (2005) ignored the SI vectors altogether when
training the metamodel, and used only the SF ones. Such
approaches exhibit several shortcoming in the context of
expensive optimization problems:

• Incorporating penalized vectors into the metamodel
training process can severely degrade its prediction
accuracy.

• Ignoring SI vectors altogether does not leverage on
the potentially beneficial information they present,
which could be used to improve the search
effectiveness.

As an example, Fig. 2 shows the effect of incorporating
penalized SI vectors into the metamodel. The left panel
presents a metamodel which was trained by using 30
SF vectors, while the right one the resultant metamodel
when 20 SI penalized vectors were incorporated, where
the penalized value was the worst objective value of the
SF vectors. It is evident that the resultant metamodel is a
poor approximation of the true objective function, which
would in turn hamper the optimization search.

0
0.5

1 0

0.5

1
0

5

·105

(a)

0
0.5

1 0

0.5

1
−2

0

2

4

·105

(b)

Fig. 2. Kriging metamodels of the Rosenbrock function: using
a sample of 30 SF vectors (a), adding 20 SI vectors, as-
signed the worst objective value of the SF vectors (b).

Such shortcomings have motivated the development
of alternative strategies for handling SI vectors. For
example, Tenne and Armfield (2008) proposed a dual
metamodel approach, in which one metamodel was
used for the objective function and another provided
an interpolated penalty which was proportional to the
distance from the SI vectors. Other studies used classifiers
for constrained nonlinear programming, though unrelated
to SI vectors (Handoko et al., 2010). Further exploring the
use of classifiers, Tenne et al. (2011) obtained preliminary
results with a classifier-assisted algorithm for handling SI
vectors.

3. Implementation 1

This section describes a baseline implementation in which
a single classifier is incorporated into the search.

3.1. Workflow. The proposed implementation begins
by generating an initial sample of vectors based on a
Latin hypercube (LH) design of experiments (McKay
et al., 1979). This method is used to ensure that the
sample is space-filling, which improves the accuracy of
the resultant metamodel. Briefly, for a sample of l vectors,
the range of each variable is split into l equal intervals,
and one point is sampled at random in each interval.
Next, a sample point is selected at random and without
replacement for each variable, and these samples are
combined to produce a vector. This procedure is repeated
l times to generate the complete sample, which is then
evaluated with the expensive simulation, and the vectors
are stored in memory.

The main optimization loop then begins, in which
a metamodel is trained by using the SF vectors which
have been evaluated so far, and then a classifier is trained
based on all the vectors which have been evaluated,
i.e., both the SF and SI ones, to account for both the
vector classes. In this implementation, a k nearest
neighbours (kNN) classifier and a Kriging metamodel
were employed, whose details are given in Appendices A
and B. Since a metamodel is trained based on a small
sample of vectors, it will be inherently inaccurate, and
so it is necessary to safeguard the search to ensure that
it converges towards an optimum of the true objective
function. To accomplish this, a trust-region (TR) approach
is used, in which a trial step is performed and updates
are done based on the trial outcome (Conn et al., 2000).
Specifically, the best vector found so far is designated as
the TR centre (xb), and the algorithm seeks the optimum
of the metamodel in the TR, which is ball centred at xb .
The search is performed by a real-coded EA (Chipperfield
et al., 1994) and followed by an SQP solver. Since
objective values are obtained from the metamodel, the EA
uses a large population and many generations, as shown
in Table 1, to improve its search effectiveness. It is

108 Y. Tenne

emphasized that during this trial step, the values passed
on to the EA are those from the following modified objec-
tive function:

m̂(x) =

{
m(x) if the classifier predicts x is SF,

p if the classifier predicts x is SI,
(1)

where m(x) is the metamodel prediction and p is
a penalized objective value taken to be the worst
function value from the initial LH sample. Accordingly,
the EA and SQP receive the metamodel prediction
if the classifier predicts a vector is SF, but they
receive the penalized objective value otherwise. In
this setup, the classifier perseveres the knowledge about
the SI vectors encountered, but they do not affect the
resultant metamodel, which avoids the issues discussed in
Section 2.2.

The resultant vector which was obtained in the
TR step (x�) is now evaluated with the true expensive
function, and the following updates are performed
(assuming a minimization problem):

• If f(x�) < f(xb): The trial step was successful
since the predicted optimum is indeed better than
the current best solution (xb) . This implies that the
metamodel is accurate at least in the TR, and hence
its radius is doubled.

• If f(x�) ≥ f(xb) and there are sufficient SF vectors
inside the TR: The search was unsuccessful since
the solution found is not better than the current best
vector. This implies that the metamodel is inaccurate
in the TR. However, since there are sufficient SF
vectors in the TR, this inaccuracy is attributed to
the TR being too large, and hence the TR radius is
halved.

• If f(x�) ≥ f(xb) and there are insufficient SF
vectors inside the TR: As above, but the metamodel
inaccuracy is attributed to the small number of
vectors in the TR. Therefore, the algorithm samples
new vectors in the TR, as explained below.

Compared with the classical TR framework, the
framework described contracts the TR only when there
are sufficient vectors in the TR. This is done to safeguard

Table 1. Internal parameters of the EA utilized in this study.
Population size 100
Generations 100
Selection Stochastic universal selection (SUS)
Recombination Intermediate, applied with probability

p = 0.7
Mutation Breeder genetic algorithm (BGA) muta-

tion, applied with probability p = 0.1
Elitism 10%

against premature convergence, which could result if the
TR was to be contracted too rapidly (Conn et al., 2000).

Another change from the classical TR approach is the
addition of a new vector (xn) to improve the metamodel
accuracy in the TR. To achieve this, the new vector should
be far from the existing vectors in the TR. To accomplish
this efficiently, a Latin hypercube design (LHD) sample is
generated in the TR, and the sample vector which has the
largest distant to existing TR vectors is evaluated with the
true objective function.

To complete this discussion, Algorithm 2 gives a
pseudocode of the baseline implementation.

Algorithm 2. Implementation 1.
generate an initial sample and evaluate with the objective
function;
repeat

train a metamodel with the SF vectors evaluated so
far;
train a classifier with all the vectors evaluated so far;
perform a trust-region trial step and updates;

until maximum number of analyses reached ;

3.2. Performance analysis. To evaluate its
effectiveness, Implementation 1 was applied to a
simulation-driven problem of airfoil shape optimization in
which the goal is to obtain an airfoil shape that maximizes
the ratio of the lift to the drag (the aerodynamic friction) at
some prescribed flight conditions. The two aerodynamic
forces are represented by the lift and drag coefficients,
cl and cd, respectively. Accordingly, the mathematical
formulation of the problem is

min f(x) = − cl
cd

s.t. xL ≤ x ≤ xU ,
(2)

where x is the vector of design variables and xL

xU are the lower and upper bounds, as defined in
Table 2. Additional relevant physical quantities involved
are the aircraft altitude, speed, and angle of attack
(AOA), which is the angle between the airfoil velocity
vector and the chord line. Candidate airfoils were
represented with the parametric sections (PARSEC)
parameterization (Sobieszczanski-Sobieski and Haftka,
1997), which defines 11 design variables representing
geometrical features. To ensure a closed airfoil shape,
the condition dzTE = 0 was enforced, while bounds
on the other variables were set based on the work Tenne
et al. (2010), and are given in Table 2. To complete the
description, Fig. 3 shows the formulation of the airfoil
problem.

The lift and drag coefficients of candidate airfoils
were obtained by using XFoil, a computational fluid

Machine-learning in optimization of expensive black-box functions 109

Table 2. Bounds on the parametric sections (PARSEC) variables.
Variable Geometric feature Lower bound Upper bound

rLE leading-edge radius 0.001 0.003
xupp max. upper thickness location 0.175 0.5
zupp max. upper thickness 0 0.2
z
′′
upp max. upper curvature −2 −0.05
xlow max. lower thickness location 0.175 0.5
zlow max. upper thickness −0.2 0
z
′′
low max. lower curvature 0.05 2
zTE trailing edge height −0.1 0.1
dzTE trailing edge thickness 0 0
α[1] upper trailing edge angle (deg.) 150 180
β[1,2] lower trailing edge angle (deg.) 150 210

[1] measured anti-clockwise from the x-axis.
[2] β ≥ α to avoid intersecting curves.

AOA

Lift

Drag
velocity

0.2 0.4 0.6 0.8

−0.4

−0.2

0

0.2

0.4

rLE

z
′′
uppzupp

xupp

z
′′
low

zlow

xlow
dzT E

αT E

βT E

x

z

zTE

Fig. 3. Formulation of the airfoil problem in Implementation 1.

dynamics simulation tool for analysis of subsonic isolated
airfoils (Drela and Youngren, 2001). Each airfoil
evaluation required up to 30 seconds on a desktop
computer. Three AOA settings were examined (2◦,
5◦, 10◦ and 15◦) to evaluate the effectiveness of the
framework in different problem settings. In particular,
higher AOA values result in more frequent simulation
failures, since the corresponding flow field being modeled
is more turbulent and is therefore more difficult to be
simulated numerically. Two variants of Implementation 1
were employed:

• I1-SVM: a variant which employed a support vector
machine (SVM) classifier with Gaussian kernels,

• I1-KNN: a variant which employed a kNN classifier
(k = 3) .

For completeness, details of these classifiers are given
in Appendix B. Also included in the tests were

two penalty-based variants (termed reference algo-
rithms) which use the same optimization steps as in
Implementation 1, except that they did not use a classifier,
but instead assigned to the SI vectors a penalized objective
value and incorporated them into the metamodel. The two
reference algorithms used were:

• R-1: the penalized objective value was taken to be
the worst objective value in the initial sample,

• R-10: the penalized objective value was taken to
be 10 times the worst objective value in the initial
sample.

This test setup was employed since it highlights the effect
of the proposed classifier-assisted approach. In all tests
a limit of 200 function evaluations (simulation runs) was
enforced, and for a valid statistical analysis, tests were
repeated 30 times with each combination of the algorithm
and the AOA.

Table 3 shows the resultant test statistics with the best
mean and median emphasized at each AOA setting. It
follows that the I1-SVM algorithm typically outperformed
the other variants, as evident from the best mean median
statistics it obtained for AOA = 5◦, 15◦, and the best
mean which it obtained for AOA = 2◦, 10◦. Statistical
significance analysis (at the α = 0.05 level) shows that
the performance gains of the I1-SVM variant were not
statistically significant at AOA = 2◦. For AOA = 5◦ gains
were significant over the R-10 variant, and for AOA=10◦,
they were significant over the R-1 and R-10 variants. At
AOA = 15◦, gains were borderline significant over the
R-1, and significant over the R-10 variant. Overall, these
results show that incorporating a classifier improved the
effectiveness of the optimization search in the presence of
SI vectors.

110 Y. Tenne

Table 3. Test statistics: Implementation 1.
Classifier-assisted

α I1-SVM I1-KNN R-1 R-10

Mean -2.873e+02 -9.995e+01 -9.637e+01 -2.550e+02
SD 5.418e+02 3.149e+01 2.660e+01 8.370e+02

2 Median -9.815e+01 -9.876e+01 -9.768e+01 -1.126e+02
Min(best) -2.395e+03 -1.835e+02 -1.670e+02 -4.604e+03
Max(worst) -3.192e+01 -1.084e+01 -3.425e+01 -3.070e+01
Mean -1.634e+03 -1.498e+03 -2.820e+02 -3.104e+02
SD 7.492e+03 4.461e+03 3.973e+02 5.424e+02

5 Median -8.841e+01 -1.022e+02 -9.320e+01 -8.405e+01
Min(best) -3.999e+04 -2.488e+04 -1.515e+03 -2.210e+03
Max(worst) -3.615e+01 -1.879e+01 -3.635e+01 -1.518e+01
Mean -2.435e+01 -2.231e+01 -1.697e+01 -2.103e+01
SD 1.999e+01 1.202e+01 9.226e+00 1.102e+01

10 Median -2.031e+01 -2.103e+01 -1.478e+01 -1.636e+01
Min(best) -1.216e+02 -7.533e+01 -4.130e+01 -4.233e+01
Max(worst) -1.237e+01 -8.926e+00 -6.545e+00 -4.784e+00
Mean -6.079e+00 -5.172e+00 -5.690e+00 -6.043e+00
SD 2.042e+00 1.502e+00 2.111e+00 3.200e+00

15 Median -5.322e+00 -5.321e+00 -5.009e+00 -4.598e+00
Min(best) -9.923e+00 -8.834e+00 -1.119e+01 -1.701e+01
Max(worst) -3.441e+00 -2.720e+00 -3.272e+00 -3.183e+00

I1-SVM: Implementation 1 with an SVM classifier.
I1-KNN: Implementation 1 with a kNN classifier.

4. Implementation 2

The effectiveness of the framework described in the
previous section depends on the type of classifier being
used, but the optimal classifier type is problem dependent
and is typically unknown prior to the optimization
search. This implies that the search effectiveness
could be further improved by identifying the optimal
classifier type for the problem being solved. In theory,
this could be accomplished by performing several trial
optimization runs, but in practice this approach is
unsuitable due to the high computational cost of function
evaluations. In these settings, this section describes a
second implementation which introduces a classifier se-
lection stage to autonomously select an optimal classifier
type out of a family of candidates.

4.1. Workflow. The second implementation follows
the main steps of Implementation 1 from Section 3, with
the addition of the classifier selection step. To achieve
this in a mathematically valid way, the cross-validation
(CV) procedure from the domain of model selection is
employed. Specifically, the vectors which have been
evaluated with the expensive simulation (and thus have
been saved in memory) are split into a training set and
a testing set in a 80–20 ratio. A candidate classifier is
trained by using the training set and tested on the testing

set. The prediction error is calculated as

e =
l∑

i=1

(
ĉ(xi) �= F (xi)

)
, (3)

where ĉ is the prediction of the trained classifier, xi ,
i = 1, . . . , l , are the CV testing vectors, and F (xi)
is the true and known class of the latter vectors. The
class labels used were F (xi) = 1 for an SF vector,
and F (xi) = −1 for an SI one, as the ±1 labels are
commonly used in the literature (Wu et al., 2008). Three
well-established classifiers were used in the tests: kNN,
linear discriminant analysis (LDA), and the SVM, and for
completeness their details are given in Appendix B. After
identifying the best performing classifier variant, a new
classifier, which corresponds to the selected variant, is
trained by using all the vectors stored in memory, and it is
then used during the TR trial step. In this setup, an optimal
classifier variant is re-selected at each iteration, and so
the classifier being used is frequently updated during the
search. To complete the description, Algorithm 3 gives
the pseudocode of Implementation 2.

4.2. Performance analysis. The effectiveness of the
second implementation was evaluated with the airfoil
problem from Section 3.2, but here the parameterization
of Hicks and Henne (1978) was used, in which a new
airfoil shape is generated by combining a baseline airfoil

Machine-learning in optimization of expensive black-box functions 111

Algorithm 3. Implementation 2.
generate an initial sample and evaluate with the objective
function;
repeat

train a metamodel with the SF vectors evaluated so
far;
select a classifier based on cross-validation;
train a classifier of the selected type by using all the
vectors evaluated so far;
perform a trust-region trial step and updates;

until maximum number of analyses reached ;

shape with several shape functions, defined as

bi(x) =
[
sin

(
πx

log(0.5)
log(i/(h+1))

)]4
, i = 1, . . . , h, (4)

where h is user-prescribed (Wu et al., 2003). The lower
and upper curves of the new airfoil are then given by

y = yb +
h∑

i=1

αibi(x) , (5)

where yb is the baseline upper/lower curve, which was
taken as the NACA0012 symmetric airfoil, and αi ∈
[−0.01, 0.01] are the coefficients (design variables) to be
found. To complete this description, Fig. 4 gives the
problem formulation. It is emphasized that in the figure
the basis functions are shown for illustration only, and so
the number of basis functions shown is different from that
used in the tests.

In the numerical tests, h = 10 functions were used
for the upper and lower airfoil curves, respectively, which
resulted in a total of 20 design variables (coefficients) per
airfoil. Accordingly, the formulation of the optimization
problem was

min f(α) = − cl
cd

,

s.t. −0.01 ≤ αi ≤ 0.01,
(6)

where α is the vector of design variables from Eqn. (5).
As before, candidate airfoils were evaluated with the
XFoil analysis code.

For a comprehensive evaluation, the proposed
algorithm was benchmarked against the following two
representative metamodel-assisted algorithms:

• Metamodel assisted EA with periodic sampling
(EA–PS): The algorithm leverages on the concepts
by Ratle (1999) and de Jong (2006), where the
accuracy of the metamodel is safeguarded by
periodically evaluating a small subset of the EA
population with the true objective function, and then
incorporating them into the metamodel to improve
its accuracy. The algorithm begins by generating an

AOA

chord line

velocity

Lift

Drag

0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

+

x

z

baseline airfoil: NACA0012

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

z
basis functions

Fig. 4. Formulation of the airfoil problem in Implementation 2.

initial sample of vectors and evaluating them with
the true expensive function. The main optimization
loop then begins, in which the algorithm trains a
metamodel by using the vectors evaluated so far
and then employing a real-coded EA to search for
the optimum of the metamodel. After the search
is completed, the algorithm evaluates the ten best
candidate solutions in the population with the true
expensive function. The entire process is then
repeated, until the maximum number of expensive
function evaluations is reached. Following the
above references, the algorithm used the Kriging
metamodel, which is described in Appendix A.

• Expected-improvement with a metamodel-assisted
CMA-ES (EI–CMA-ES): The algorithm builds on
the approach of Büche et al. (2005), in which a
covariance matrix adaptation evolutionary strategy
(CMA-ES) optimizer (Hansen and Ostermeier, 2001)
is combined with a Kriging metamodel, and where
metamodel updates are performed based on the
expected improvement framework of Jones et al.
(1998). The algorithm begins by generating an
initial sample of vectors and evaluating them with
the true function. Its main loop then stars, where at
each generation it trains a local Kriging metamodel
based both on the recently evaluated vectors and
those stored in memory which are nearest to the
best solution. A CMA-ES algorithm is then used
to search for an optimum of the metamodel in the
region enclosing the vectors which were employed
to train the metamodel. In the spirit of the expected

112 Y. Tenne

improvement framework (Jones et al., 1998), the
objective function used was

f̂(x) = m(x)− ρζ(x) , (7)

where m(x) is the Kriging metamodel prediction, ρ
is a prescribed coefficient, and ζ(x) is the estimated
Kriging prediction error, which is zero at the sampled
points since there the true objective value is known.
The search is repeated for ρ = 0, 1, 2, and 4
to obtain four solutions corresponding to different
search profiles, i.e., ranging from a local search
(ρ = 0) to a more explorative one (ρ = 4). All
non-duplicate solutions found are evaluated with the
true expensive function and stored in memory. In
case no new solutions are evaluated, for example,
because they already match solutions stored in
memory, the algorithm generates a new solution by
perturbing the current best one. Following Büche
et al. (2005), the algorithm used a training set of 100
vectors comprising the 50 most recently evaluated
ones and the 50 nearest neighbours, and the CMA-ES
used the values suggested by Hansen and Ostermeier
(2001).

The tests also included a variant of Implementation 2
but with a fixed classifier type, namely, only kNN, to
study the contribution of the classifier selection step.
This variant is designated as I2-KK (Implementation 2
with a Kriging–kNN combination) in the following test
results. Tests were performed in three AOA settings (20◦,
30◦, and 40◦), and with an optimization budget of 200
evaluations of the true expensive function, i.e., simulation
runs. The size of the initial sample was 20. To support a
valid statistical analysis, 30 trials were repeated for each
algorithm and test case combination.

Table 4 gives the test statistics for the three AOA
scenarios, as well as the significance-level (α) at which
Implementation 2 was better than each of the other
algorithms, i.e., EA–PS, EI–CMA-ES, and KK, where
an empty entry indicates that no statistically significant
difference was observed up to the 0.05 level. Statistical
significance was measured by using the Mann–Whitney
nonparametric test (Sheskin, 2007). Also, in each AOA
setting, the best mean and median results, are emphasized.
From the test results the following trends are observed:

• AOA = 20◦: Implementation 2 achieved the
best mean, and its performance had a statistically
significant advantage over the KK and EA–PS
variants at the α = 0.01 level.

• AOA = 30◦: Implementation 2 achieved the second
best mean and median scores, following the KK
variant. Its performance had a statistically significant
advantage over the EI–CMA-ES algorithm at the
0.01 level.

• AOA = 40◦: Implementation 2 achieved the
best mean scores, and its performance had
a statistically significant advantage over the
EI–CMA-ES algorithm at the 0.01 level.

Overall, test results show that Implementation 2
typically performed better than the reference algorithms,
which proves that selecting the classifier type during the
search further improved its effectiveness.

5. Implementation 3

A further possibility to enhance the classifier-assisted
approach is to leverage on the concept of ensembles,
namely, employing multiple metamodels and classifiers
concurrently, to improve the prediction accuracy. This
section describes a third implementation which is based
on this concept.

5.1. Workflow. The proposed third implementation
leverages on the preceding discussion in Sections 3
and 4, but adds an ensemble training step to generate
the metamodel and classifier ensembles. The specific
mechanics of this training step are as follows:

(1) For each prescribed metamodel variant, a
corresponding metamodel is trained by using the
SF vectors which have been evaluated so far, which
results in a set of metamodels mi(x) , i = 1, . . . , nm ,
where nm is the number of ensemble metamodels.

(2) The accuracy of each metamodel variant is estimated
by using the CV procedure, such that the SF vectors
which have been evaluated and stored in memory
are split into a training set and a testing set. For
each candidate variant, a corresponding metamodel
is trained by using the training set, and its prediction
accuracy is measured on the testing set through the
mean prediction error defined as

MPE =
1

l

l∑
i=1

(
m̂(xi)− f(xi)

)2
, (8)

where m̂(x) is the metamodel trained with the
training set, and xi , f(x) , i = 1, . . . , l , are
the testing vectors and their corresponding objective
values, respectively.

Before proceeding, it should be noted that other
accuracy estimation methods exist, such as the leave-
one-out CV (LOOCV) (Golberg et al., 1996), and
the related generalized cross-validation (Arlot, 2010;
Molinaro et al., 2005). However, the baseline CV was
used here since it is both computationally efficient and
can be applied to any metamodel.

Machine-learning in optimization of expensive black-box functions 113

Table 4. Test statistics: Implementation 2.
Classifier-assisted

α I2 I2-KK EA–PS EI–CMA-ES

20◦

Mean -1.035e+01 -8.091e+00 -6.889e+00 -1.023e+01
SD 1.326e+00 1.697e+00 6.526e-01 2.025e+00
Median -1.049e+01 -7.283e+00 -6.843e+00 -1.107e+01
Min(best) -1.302e+01 -1.138e+01 -8.837e+00 -1.192e+01
Max(worst) -7.143e+00 -5.880e+00 -5.794e+00 -5.442e+00
α 1.000e-02 1.000e-02

30◦

Mean -3.155e+00 -3.192e+00 -3.146e+00 -2.910e+00
SD 4.694e-02 3.105e-02 3.345e-02 4.761e-02
Median -3.140e+00 -3.183e+00 -3.140e+00 -2.916e+00
Min(best) -3.270e+00 -3.298e+00 -3.223e+00 -3.005e+00
Max(worst) -3.091e+00 -3.145e+00 -3.092e+00 -2.813e+00
α 1.000e-02

40◦

Mean -2.793e+00 -2.784e+00 -2.784e+00 -2.552e+00
SD 3.380e-02 2.230e-02 4.732e-02 4.249e-02
Median -2.785e+00 -2.782e+00 -2.786e+00 -2.557e+00
Min(best) -2.875e+00 -2.827e+00 -2.869e+00 -2.637e+00
Max(worst) -2.726e+00 -2.742e+00 -2.717e+00 -2.455e+00
α 1.000e-02

I2: Proposed Implementation 2 algorithm with classifier selection.
KK: Implementation 2 with only a Kriging metamodel and a kNN classifier.

(3) Each metamodel is assigned a dedicated ensemble
weight, ui , which is calculated as

ui =
MPEi

−1∑nm

j=1 MPEj
−1 , i = 1, . . . , nm, (9)

where MPEi , MPEj are the mean prediction errors
of the i-th and j-th metamodels, respectively, as
defined in Eqn. (8), and nm is the number of
metamodels in the ensemble. In the numerical tests,
the ensemble was comprised of the Kriging and
radial basis function (RBF) metamodels, which for
completeness are described in Appendix A.

(4) The predictions of the individual metamodels are
aggregated to obtain the overall ensemble prediction

m̄(x) =

nm∑
i=1

uimi(x) , (10)

where mi(x) and ui are the prediction and weight of
the i-th metamodel, respectively, as in the preceding
steps.

In an analogous step, the algorithm then generates an
ensemble of classifiers by using both the SF and SI vectors
evaluated so far, to account for the two classes:

(1) For each prescribed classifier type, a classifier is
trained by using all the vectors which have been
evaluated so far, which results in a set of classifiers
ci(x) , i = 1, . . . , nc , where nc is the number of
ensemble classifiers.

(2) The accuracy of each classifier is estimated by
using the CV procedure described earlier, which
uses a training and a testing set, to obtain its mean
classification error defined as

MCE =
1

l

l∑
i=1

(
ĉ(xi) �= F (xi)

)
, (11)

where ĉ(x) is the prediction of the classifier trained by
using the training set, and xi , F (xi) , i = 1, . . . , l ,
are the CV testing vectors and their class labels,
respectively. For the latter, F (xi) = 1 was used for
an SF vector and F (xi) = −1 for SI one.

(3) Each classifier is assigned a dedicated ensemble
weight, vi , which is calculated as

vi =
MCE−1

i∑nc

j=1 MCE−1
j

, i = 1, . . . , nc, (12)

where MCEi , MCEj are the classification errors of
the i-th and j-th classifiers, respectively, as defined
in Eqn. (11). In the numerical tests the classifier
ensemble was comprised of a kNN, an LDA, and an
SVM classifier, which for completeness are described
in Appendix B.

Lastly, the individual classifiers predictions are
aggregated to yield the overall classifier ensemble
prediction

c̄(x) =

⎧⎨
⎩+1 (=SF) if

nc∑
i=1

vici(x) > 0,

−1 (=SI) otherwise.
(13)

114 Y. Tenne

To complete this description, Algorithm 4 gives the
pseudocode of the proposed algorithm.

Algorithm 4. Implementation 3.
generate an initial sample and evaluate with the objective
function
repeat

train a metamodel ensemble by using the SF vectors
evaluated so far;
train a classifier ensemble by using all the vectors
evaluated so far;
perform a trust-region trial step based on the ensemble
outputs, and perform updates;

until maximum number of analyses reached ;

5.2. Performance analysis. Performance analysis
used the problem from Section 4, but flight conditions
were different and, accordingly, the optimal values
attained. For evaluation, Implementation 3 was
benchmarked against the EA–PS and CMA-ES reference
algorithms described in Section 4, along with two variants
of Implementation 3: (i) I3-KK, which used a Kriging
metamodel and a kNN classifier, and (ii) I3-RS, which
employed an RBF metamodel and an SVM classifier.
The latter two variants used the same steps as in
Implementation 3 except that they employed a single
type of metamodel and classifier. They were added to
the numerical tests to gauge the contribution of using
the ensemble approach. In all tests, the optimization
budget was 200 expensive evaluations, that is, calls to
the numerical simulation. To support a valid statistical
analysis, 30 runs were repeated with each algorithm in
each test case.

Table 5 gives the test statistics for the three AOA
scenarios, as well as the significance-level (α) at which
Implementation 3 was better than each of the other
algorithms, i.e., EA–PS, EI–CMA-ES, KK, and RS,
where an empty entry indicates no statistically significant
difference up to the 0.05 level. Statistical significance was
measured by using the Mann–Whitney nonparametric test
(Sheskin, 2007).

It follows that Implementation 3 performed well,
as evident from its corresponding mean and median
statistics, which typically outperformed those of the
other algorithms. It obtained an intermediate standard
deviation (SD) score, which indicates that there was some
variability in its performance, but it was comparable to
that of the other algorithms. Lastly, its performance
had a statistically significant advantage in 6 out of 12
comparisons (four algorithms in three AOA settings),
which further indicates it performed well. Overall,
the test results show that using an ensemble setup
further improved search effectiveness when compared to
employing a single metamodel and classifier.

6. Conclusion

Expensive-black optimization problems which rely
on computer simulations are nowadays common in
engineering and science. Such problems will often
contain candidate designs which cause the simulation
to fail, but where the reason for failure is unknown.
This, in turn, may degrade search effectiveness, and
lead to a poor final result. To address this issue, this
study described three implementations which incorporate
classifiers into the optimization search. The role of the
classifiers is to predict if a candidate design would result
in a simulation-failure, and then the search is biased
towards designs for which the simulation evaluation
is expected to succeed. A baseline implementation of
this concept employs a single type of classifier, while
two more involved implementations either select the
classifier type during the search, or generate an ensemble
of metamodels and classifiers. Performance analysis
based on a simulation-driven problem of airfoil shape
optimization, which is representative of real-world
engineering problems, showed that incorporating
classifiers improved search effectiveness, and yielded
promising results when compared with several existing
algorithms from the literature.

References
Arlot, S. (2010). A survey of cross-validation procedures for

model selection, Statistics Survey 4: 40–79.

Benoudjit, N., Archambeau, C., Lendasse, A., Lee, J. and
Verleysen, M. (2002). Width optimization of the Gaussian
Kernels in radial basis function networks, Proceedings of
the 10th European Symposium on Artificial Neural Net-
works, ESANN 2002, Bruges, Belgium, pp. 425–432.

Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon,
V. and Trosset, M.W. (1999). A rigorous framework for
optimization of expensive functions by surrogates, Struc-
tural Optimization 17(1): 1–13.

Büche, D., Schraudolph, N.N. and Koumoutsakos, P. (2005).
Accelerating evolutionary algorithms with Gaussian
process fitness function models, IEEE Transactions on Sys-
tems, Man, and Cybernetics C 35(2): 183–194.

Chipperfield, A., Fleming, P., Pohlheim, H. and Fonseca, C.
(1994). Genetic Algorithm TOOLBOX for Use with MAT-
LAB, Version 1.2, Department of Automatic Control and
Systems Engineering, University of Sheffield, Sheffield.

Conn, A.R., Gould, N.I.M. and Toint, P.L. (2000). Trust Region
Methods, SIAM, Philadelphia, PA.

Conn, A.R., Scheinberg, K. and Toint, P.L. (1998). A derivative
free optimization algorithm in practice, Proceedings of the
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, St. Louis, MO, USA,
Paper No. AIAA-1998-4718.

de Jong, K.A. (2006). Evolutionary Computation: A Unified
Approach, MIT Press, Cambridge, MA.

Machine-learning in optimization of expensive black-box functions 115

Table 5. Test statistics: Implemenation 3 benchmarks.

Classifier-assisted
α I3 I3-KK I3-RS EA–PS EI–CMA-ES

20

Mean 3.669e-01 3.718e-01 3.814e-01 4.418e-01 5.675e-01
SD 7.573e-03 8.892e-03 4.515e-02 5.773e-02 2.102e-01
Median 3.672e-01 3.700e-01 3.687e-01 4.333e-01 5.052e-01
Min(best) 3.518e-01 3.577e-01 3.579e-01 3.674e-01 3.584e-01
Max(worst) 3.780e-01 3.924e-01 5.395e-01 5.686e-01 9.638e-01
α 5.000e-02 1.000e-02 1.000e-02

30

Mean 8.357e-01 8.113e-01 8.298e-01 9.842e-01 7.768e-01
SD 7.070e-02 6.413e-02 5.166e-02 1.237e-01 6.908e-02
Median 8.230e-01 8.035e-01 8.293e-01 1.026e+00 7.650e-01
Min(best) 7.617e-01 6.617e-01 7.397e-01 7.113e-01 6.831e-01
Max(worst) 1.012e+00 9.466e-01 9.011e-01 1.099e+00 1.005e+00
α 1.000e-02

40

Mean 9.529e-01 9.719e-01 9.705e-01 1.112e+00 9.761e-01
SD 4.361e-02 5.160e-02 4.218e-02 4.635e-02 4.063e-02
Median 9.528e-01 9.599e-01 9.592e-01 1.116e+00 9.668e-01
Min(best) 8.568e-01 8.814e-01 8.971e-01 1.006e+00 9.111e-01
Max(worst) 1.054e+00 1.042e+00 1.046e+00 1.204e+00 1.079e+00
α 1.000e-02

I3: Proposed Implementation 3 algorithm with ensembles.
KK: Proposed Implementation 3 but only with a Kriging metamodel and a kNN classifier.

Drela, M. and Youngren, H. (2001). Xfoil 6.9 user primer, Tech-
nical report, MIT, Cambridge, MA.

Emmerich, M.T.M., Giotis, A., Özedmir, M., Bäck, T. and
Giannakoglou, K.C. (2002). Metamodel-assisted evolution
strategies, in J.J. Merelo Guervós (Ed.), 7th International
Conference on Parallel Problem Solving from Nature—
PPSN VII, Lecture Notes in Computer Science, Vol. 2439,
Springer, Berlin, pp. 361–370.

Forrester, A.I.J. and Keane, A.J. (2008). Recent advances in
surrogate-based optimization, Progress in Aerospace Sci-
ence 45(1–3): 50–79.

Golberg, M.A., Chen, C.S. and Karur, S.R. (1996). Improved
multiquadric approximation for partial differential
equations, Engineering Analysis with Boundary Elements
18(1): 9–17.

Gorissen, D., De Tommasi, L., Croon, J. and Dhaene, T. (2008).
Automatic model type selection with heterogeneous
evolution: An application to RF circuit block modeling,
Proceedings of the IEEE Congress on Evolutionary Com-
putation (CEC), Hong Kong, China, pp. 989–996.

Handoko, S., Kwoh, C.K. and Ong, Y.-S. (2010). Feasibility
structure modeling: An effective chaperon for constrained
memetic algorithms, IEEE Transactions on Evolutionary
Computation 14(5): 740–758.

Hansen, N. and Ostermeier, A. (2001). Completely
derandomized self-adaptation in evolution strategies, Evo-
lutionary Computation 9(2): 159–195.

Hicks, R.M. and Henne, P.A. (1978). Wing design by numerical
optimization, Journal of Aircraft 15(7): 407–412.

Jin, Y., Olhofer, M. and Sendhoff, B. (2002). A framework
for evolutionary optimization with approximate fitness

functions, IEEE Transactions on Evolutionary Computa-
tion 6(5): 481–494.

Jones, D.R., Schonlau, M. and Welch, W.J. (1998). Efficient
global optimization of expensive black-box functions,
Journal of Global Optimization 13(4): 455–492.

McKay, M.D., Beckman, R.J. and Conover, W.J. (1979). A
comparison of three methods for selecting values of input
variables in the analysis of output from a computer code,
Technometrics 21(2): 239–245.

Molinaro, A.M., Simon, R. and Pfeiffer, R.M. (2005). Prediction
error estimation: A comparison of resampling methods,
Biometrika 21(15): 3301–3307.

Muller, J. and Shoemaker, C.A. (2014). Influence of
ensemble surrogate models and sampling strategy on
the solution quality of algorithms for computationally
expensive black-box global optimization problems, Jour-
nal of Global Optimization 60(2): 123–144.

Okabe, T. (2007). Stabilizing parallel computation for
evolutionary algorithms on real-world applications, Pro-
ceedings of the 7th International Conference on Optimiza-
tion Techniques and Applications (ICOTA 7), Kobe, Japan,
pp. 131–132.

Poloni, C., Giurgevich, A., Onseti, L. and Pediroda, V. (2000).
Hybridization of a multi-objective genetic algorithm, a
neural network and a classical optimizer for a complex
design problem in fluid dynamics, Computer Methods in
Applied Mechanics and Engineering 186(2–4): 403–420.

Powell, M.J.D. (2001). Radial basis function methods for
interpolation of functions of many variables, Proceedings
of the 5th Hellenic-European Conference on Computer
Mathematics and Its Applications (HERCMA-01), Athens,
Greece, pp. 2–24.

116 Y. Tenne

Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidyanathan,
R. and Tucker, K.P. (2005). Surrogate-based analysis and
optimization, Progress in Aerospace Science 41(1): 1–28.

Rasheed, K., Hirsh, H. and Gelsey, A. (1997). A genetic
algorithm for continuous design space search, Artificial In-
telligence in Engineering 11(3): 295–305.

Ratle, A. (1999). Optimal sampling strategies for learning
a fitness model, 1999 IEEE Congress on Evolution-
ary Computation—CEC 1999, Washington, DC, USA,
pp. 2078–2085.

Regis, R.G. (2014). Particle swarm with radial basis function
surrogates for expensive black-box optimization, Journal
of Computational Science 5(1): 12–23.

Regis, R.G. and Shoemaker, C.A. (2013). A quasi-multistart
framework for global optimization of expensive functions
using response surface models, International Journal of
Global Optimization 56(4): 1719–1753.

Sacks, J., Welch, W.J., Mitchell, T.J. and Wynn, H.P. (1989).
Design and analysis of computer experiments, Statistical
Science 4(4): 409–435.

Sheskin, D.J. (2007). Handbook of Parametric and Nonpara-
metric Statistical Procedures, 4th Edn., Chapman and Hall,
Boca Raton, FL.

Smoczek, J. (2013). Evolutionary optimization of interval
mathematics-based design of a TSK fuzzy controller for
anti-sway crane control, International Journal of Applied
Mathematics and Computer Science 23(4): 749–759, DOI:
10.2478/amcs-2013-0056.

Smołka, M., Schaefer, R., Paszyński, M., Pardo, D. and Álvarez
Aramberri, J. (2015). An agent-oriented hierarchic strategy
for solving inverse problems, International Journal of Ap-
plied Mathematics and Computer Science 25(3): 483–498,
DOI: 10.1515/amcs-2015-0036.

Sobieszczanski-Sobieski, J. and Haftka, R.T. (1997).
Multidisciplinary aerospace design optimization:
Survey of recent developments, Structural Optimiza-
tion 14(1): 1–23.

Tenne, Y. (2013). An optimization algorithm employing multiple
metamodels and optimizers, International Journal of Au-
tomation and Computing 10(3): 227–241.

Tenne, Y. (2015). An adaptive-topology ensemble algorithm for
engineering optimization problems, Optimization and En-
gineering 16(2): 303–334.

Tenne, Y. and Armfield, S.W. (2008). A versatile
surrogate-assisted memetic algorithm for optimization of
computationally expensive functions and its engineering
applications, in A. Yang et al. (Eds.), Success in Evolution-
ary Computation, Studies in Computational Intelligence,
Vol. 92, Springer-Verlag, Berlin/Heidelberg, pp. 43–72.

Tenne, Y. and Goh, C.K. (Eds.) (2010). Computational In-
telligence in Expensive Optimization Problems, Springer,
Berlin.

Tenne, Y., Izui, K. and Nishiwaki, S. (2010). Handling
undefined vectors in expensive optimization problems, in
C. Di Chio (Ed.), Proceedings of the 2010 EvoStar Con-
ference, Lecture Notes in Computer Science, Vol. 6024,
Springer, Berlin, pp. 582–591.

Tenne, Y., Izui, K. and Nishiwaki, S. (2011). A classifier-assisted
framework for expensive optimization problems: A
knowledge-mining approach, in C.A. Coello-Coello (Ed.),
Proceedings of the 5th Learning and Intelligent Opti-
mization Conference (LION 5), Lecture Notes in Compu-
ter Science, Vol. 6683, Springer, Berlin/Heidelberg,
pp. 161–175.

Viana, F.A.C., Haftka, R.T. and Watson, L.T. (2013). Efficient
global optimization algorithm assisted by multiple
surrogate technique, Journal of Global Optimization
56(2): 669–689.

Wortmann, T., Costa, A., Nannicini, G. and Schroepfer, T.
(2015). Advantages of surrogate models for architectural
design optimization, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing 29(4): 471–481.

Wu, H.-Y., Yang, S., Liu, F. and Tsai, H.-M. (2003).
Comparison of three geometric representations of airfoils
for aerodynamic optimization, Proceedings of the 16th
AIAA Computational Fluid Dynamics Conference, Or-
lando, FL, USA, pp. 1–11, Paper no. AIAA 2003-4095.

Wu, X., Kumar, V., Quinlan, R.J., Ghosh, J., Yang, Q., Motoda,
H., McLachlan, G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H.,
Steinbach, M., Hand, D.J. and Steinberg, D. (2008). Top
10 algorithms in data mining, Knowledge and Information
Systems 14(1): 1–37.

Yoel Tenne obtained his PhD at Sydney University, Australia, and was
then an Australia Endeavour fellow at the Korea Advanced Institute of
Technologu (KAIST), S. Korea, and a JSPS fellow at Kyoto University,
Japan. He is currently a senior lecturer at Ariel University, Israel. His
research domains include applied computational intelligence, systems
engineering, and applied optimization.

Appendix A

Metamodel variants

The details of the metamodels used in this study are as
follows.
Kriging: This is a statistically based metamodel which
combines a global coarse approximation with a local
correction which is based on the correlation between
the interpolation vectors. The metamodel replicates the
training sample, namely,

m(xi) = f(xi) , i = 1, . . . , n , (A1)

where m(x) and f(x) are the metamodel and the true
objective function, respectively, and xi are the sample
vectors. Using a constant global function gives the
Kriging metamodel

m(x) = β + κ(x) , (A2)

with the constant function β and local correction κ(x) .
The latter is defined by a stationary Gaussian process with

Machine-learning in optimization of expensive black-box functions 117

mean zero and covariance,

Cov[κ(x)κ(�y)] = σ2c(θ ,x, �y) , (A3)

where c(θ ,x, �y) is a user-prescribed correlation function.
A common choice for the latter is the Gaussian correlation
function (Forrester and Keane, 2008), defined as

c(θ ,x, �y) =

d∏
i=1

exp
(
−θ (xi − yi)

2
)
, (A4)

and combining it with the constant drift function
transforms the metamodel from (A2) into the following
form:

m(x) = β̂ + �r(x)TR−1(�f − �1β̂) . (A5)

Here, β̂ is the estimated drift coefficient, R is the
symmetric matrix of correlations between all interpolation
vectors, �f is the vector of objective values, and �1 is a
vector with all elements equal to 1. �rT is the correlation
vector between a new vector x and the sample vectors,
i.e.,

�rT = [c(θ,x , x1), . . . , c(θ ,x , xn)] . (A6)

The estimated drift coefficient β̂ and variance σ̂2 ,
which are required in Eqn. (A5), are obtained as follows:

β̂ =
(
�1TR−1�1

)−1
�1TR−1 �f , (A7a)

σ̂2 =
1

n

[
(�f − �1β̂)TR−1(�f − �1β̂)

]
. (A7b)

Fully defining the metamodel requires the correlation
parameters θ, which are commonly taken as the
maximizers of the metamodel likelihood. This is achieved
by minimizing the expression (Sacks et al., 1989)

ψ(θ) = |R|1/nσ̂2 , (A8)

which is a function only of �θ and the sample data.

Radial basis functions (RBFs): The metamodel
approximates the objective function as a superposition of
basis functions of the form

φi(x) = φ(‖x− xi‖2) , (A9)

where xi is a sampled vector. Given the training sample
vectors and responses xi , f(xi) , i = 1, . . . , n , the
metamodel is given by

m(x) = αi

n∑
i=1

φi(x) + c , (A10)

where αi and c are coefficients which are determined from
the interpolation conditions

m(xi) = f(xi), i = 1, . . . , n , (A11a)
n∑

i=1

αi = 0 . (A11b)

A common choice is the Gaussian basis function (Powell,
2001)

φi(x) = exp

(
−x− xi

τ

)
, (A12)

where τ controls the width of the Gaussians and is
determined by cross-validation (Forrester and Keane,
2008; Benoudjit et al., 2002). The weight coefficients αi

are obtained by solving the linear system(
Φ �1
�1T 0

)
�α =

[
�f
�0

]
, (A13)

where Φ is the Gram matrix such that Φi,j = φi(xj) , �1 is
a vector whose elements are all one, and �f is the vector of
objective values of the sample vectors.

Appendix B

Classifier variants

The details of the classifier variants used in this study are
as follows.

k nearest neighbours (kNN): The classifier assigns the
new vector the class of the closest training vector (the
nearest neighbor), i.e.,

c(x) = F (xNN) : d(x,xNN) = min d
(
x,xi

)
,

i = 1, . . . , n , (B1)

where d(x, �y) is distance measure such as the l2 norm.
An extension of this technique is to assign the class most
frequent among the k > 1 nearest neighbours (kNN). In
this study the classifier used was k = 3 .

Linear discriminant analysis (LDA): In a two-class
problem, where the class labels are F (xi) ∈ I =
{−1,+1} , the classifier attempts to model the conditional
probability density functions of a vector belonging to
each class where the latter functions are assumed to
be normally distributed. The classifier considers the
separation between classes as the ratio of (a) the variance
between classes, and (b) the variance within the classes,
and obtains a vector �w which maximizes this ratio. The
vector �w is such that it is orthogonal to the hyperplane
separating the two classes. A new vector �x is classified
based on its projection with respect to the separating
hyperplane, that is,

c(x) = sign (�w · �x) . (B2)

Support vector machines (SVMs): The method projects
the data into a high-dimensional space so it can be
more easily separated into disjoint classes. For a
linearly separable training set comprising of two classes, a
linear classification function is the separating hyperplane

118 Y. Tenne

passing through the middle of the two classes. Once
this hyperplane has been fixed, new vectors are classified
based on their relative position to this hyperplane. To fix
the hyperplane, a condition is added that the hyperplane
should maximize its distance to the nearest vectors from
each class. This is accomplished by maximizing the
Lagrangian

LP =
1

2
‖�w‖−

n∑
i=1

αiF (xi)(�w · �xi + b) +

n∑
i=1

αi , (B3)

where n is the number of samples (training vectors),
F (xi) is the class of the ith training vector, and αi ≥ 0 ,
i = 1, . . . , n , are the Lagrange multipliers, such that the
derivatives of LP with respect to αi are zero. The vector
�w and scalar b define the hyperplane.

Received: 3 March 2016
Revised: 4 September 2016
Accepted: 11 October 2016

