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Missing values in data are common in real world applications. There are several methods that deal with this problem.
In this paper we present lookahead selective sampling (LSS) algorithms for datasets with missing values. We developed
two versions of selective sampling. The first one integrates a distance function that can measure the similarity between
pairs of incomplete points within the framework of the LSS algorithm. The second algorithm uses ensemble clustering
in order to represent the data in a cluster matrix without missing values and then run the LSS algorithm based on the
ensemble clustering instance space (LSS-EC). To construct the cluster matrix, we use the k-means and mean shift clustering
algorithms especially modified to deal with incomplete datasets. We tested our algorithms on six standard numerical
datasets from different fields. On these datasets we simulated missing values and compared the performance of the LSS
and LSS-EC algorithms for incomplete data to two other basic methods. Our experiments show that the suggested selective
sampling algorithms outperform the other methods.
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1. Introduction

Supervised learning algorithms require that a set of
labeled examples be given to the algorithm in order to
train a classifier. In many cases we want to construct a
training dataset or add examples to the training dataset
in order to improve the classifier’s quality. In real
environments, it is usually difficult to obtain a large set
of labeled examples since each example must be labeled
by a domain expert. It is therefore important to reduce the
number of the training examples that were labeled by the
expert. In other words, we should ask the expert to label
the most informative unlabeled examples. To achieve this
goal, we should provide the learning algorithm with some
control over the inputs on which it trains. This paradigm
is called active learning.

Selective sampling is one of the most common active
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learning approaches. It assumes that a set of unlabeled
examples is available, and the learner selects an unlabeled
example from the given set and asks the teacher to label it.

The problem with these approaches is that they
cannot deal with datasets that contain missing values
which are common in many real world datasets. Missing
values can be caused by human errors, equipment failures,
system generated errors, and so on. We were introduced
to the problem of missing data when we received datasets
from Applied Materials (AMAT), a company which
develops inspection machines for the semiconductor
industry.

To this end, in this research we developed two
versions of a selective sampling algorithm that can deal
with datasets with missing values. One version is for
the original LSS described by Lindenbaum et al. (2004)
while the other for LSS-EC described by Abdallah and
Shimshoni (2013).
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Studying the LSS algorithm we saw that to compute
the expected utility all we need is a dissimilarity metric
between the points and not the points themselves. As
a result, in this research we decided to work with
a variance of the mean Euclidean distance (MDE)
presented by Abdallah and Shimshoni (2014) to measure
the dissimilarity between the incomplete points. The
MDE distance is not only efficient, but also takes into
account the distribution of each attribute. This distance
assumes that the missing values are randomly distributed
across all the samples. In this case, samples with complete
data are generated from the same distribution as those with
incomplete data. But, in real world datasets, the missing
values may depend on information from the known values
of the data. As a result, in this research we generalize
this distance function to deal with other types of missing
values.

Abdallah and Shimshoni (2013) show that LSS
using ensemble clustering (EC) performed better than
LSS using the Euclidean distance. As a result, in this
research we also decided to extend this algorithm (i.e.,
LSS-EC) for datasets with missing values. Ensemble
clustering means running several clustering runs with
different parameters or different clustering algorithms.
Using ensemble clustering yields a new instance space
where each data point is represented as the cluster’s label
at each clustering run. This new space has two important
advantages. Firstly, there is a distance metric defined
by Abdallah and Shimshoni (2013) that can reflect the
similarity between the objects better than the Euclidean
distance. Moreover, it is a new way to represent the
incomplete data as complete categorical data using cluster
labels. Ensemble clustering is general and any good
clustering algorithm can be used. But since this research
is for incomplete data, we use only clustering algorithms
that are able to cluster incomplete datasets. In our
experiments we decided to work with the mean shift
clustering algorithm (Abdallah and Shimshoni, 2014)
and the k-means clustering algorithm (Abdallah and
Shimshoni, 2016), which were developed to deal with
missing values.

To measure the performance of the suggested
selective sampling algorithms we experimented on six
standard numerical datasets from different fields from the
Speech and Image Processing Unit (Clustering datasets,
2008). Our experiments show that the performance of the
LSS using the MDE distance (LSS-MDE) and LSS-EC
using the MDE distance (LSS-EC-MDE) algorithms
with our distance function was superior to LSS using other
methods.

The paper is organized as follows. Related work
is discussed in Section 2. The LSS algorithm for
incomplete datasets using the MDE distance is described
in Section 3. Section 4 presents lookahead selective
sampling using ensemble clustering for incomplete

datasets. Experimental results on numerical datasets are
given in Section 5. Finally, our conclusions are presented
in Section 6.

2. Related work

Previous work on the problem of selecting a sample of
relevant instances from a set of unlabeled data falls under
the paradigm of active learning and, more specifically, se-
lective sampling, which is more common in practice. Here
it is assumed that a set of unlabeled examples is available.
In this approach the learner selects an unlabeled example
from the given set and asks the teacher to label it.

Much work has been done in selective sampling of
examples related mainly to training classifiers. The most
simple sampling technique is random sampling, where
we select a group of instances from the instance space.
Another option is to select the point with the largest
uncertainty (Lewis and Gale, 1994).

Lindenbaum et al. (2004) claimed that the problem
of selective sampling is similar to that of cost-sensitive
learning (Tan and Schlimmer, 1990; Turney, 1995). They
proposed the lookahead algorithm for selective sampling
(LSS) for the nearest neighbor classifier. The main goal
of their algorithm is to develop a selective sampling
methodology for nearest-neighbor (NN) classification
learning algorithms. Later, Abdallah and Shimshoni
(2013) developed a selective sampling algorithm based on
ensemble clustering.

Dasgupta and Hsu (2008) use hierarchical clustering.
Their method exploits the cluster structure (if there is
any) in the unlabeled data. Their algorithm assumes that
querying the label of only one of the data points in a
cluster is sufficient to determine the label of the other data
points in that cluster.

Similarly, Xu et al. (2007) use clustering to construct
sets of queries for batch-mode active learning with SVMs.
Specifically, they query the centroids of clusters of
instances that lie closest to the decision boundary.

Hospedales et al. (2013) developed an active
learning algorithm to optimize both rare class discovery
and classification simultaneously. In their paper they
addressed these issues with two contributions: a unified
active learning model to jointly discover new categories
and learn to classify them by adapting query criteria
online, and a classifier combination algorithm that
switches generative and discriminative classifiers as
learning progresses.

Lughofer (2012) proposed a novel active learning
strategy for data-driven classifiers, which is essential
for reducing the annotation and supervision effort of
operators in off-line and on-line classification systems, as
operators only have to label an exquisite subset of off-line
training data. Li et al. (2012) proposed a joint active
learning approach which combines a novel generative
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query strategy and the existing discriminative one, which
adaptively fits the distribution difference and shows higher
robustness than the ones using a single strategy.

Zhang et al. (2014) combined the benefits of
both co-training and active learning to propose a new
semi-supervised learning algorithm. The algorithm
applies co-training to select the most reliable instances
according to the two criterions of high confidence and
nearest neighbor for boosting the classifier, as well as
to exploit the most informative instances with human
annotation to improve the classification performance.

Dekel et al. (2012) introduced an online active
learning algorithm, designed to incrementally make
binary predictions on a sequence of adversarially
generated instances. However, they can also convert their
algorithm into an efficient statistical active learning one
working under standard statistical assumptions, which
receives a sample of instances from some unknown
distribution, queries the teacher for a subset of the labels,
and outputs a hypothesis with a small error rate. This
work did not take into account the difference between
the teachers. For example, one could imagine a setting
where the cost of each label depends on each teacher’s
confidence in his/her own answer. In consequence, it
would be interesting to extend our work to a setting where
different teachers charge different rates. For example,
one could imagine a setting where the cost of each label
depends on each teacher’s confidence in his/her own
answer.

The problem of these algorithms is that they cannot
deal with incomplete datasets. This is an important
problem, since missing values are common in real world
datasets. Based on the work of Donders et al. (2006),
Ibrahim et al. (2005), Little (1988), and Little and Rubin
(2014), there are three basic types of missing data:

1. Missing completely at random: data are said to be
MCAR if the failure to observe a value is not related
to any other sample.

2. Missing at random: data are said to be MAR if
the probability that a value is missing does not
depend on the other missing values. Thus the
conditional probability of missingness may depend
on any known values.

3. Not missing at random: data are said to be NMAR if
the probability that a known value is missing depends
on the value that would have been observed.

Several methods have been proposed to deal with
missing data. These methods can be classified into three
basic categories:

(a) The case deletion method, which assumes that the
missing values are missing completely at random
(MCAR). It therefore ignores all the instances with

missing values and performs the analysis on the
rest (Zhang et al., 2005).

(b) Missing data imputation, which replaces each
missing one with a known value according to the
dataset distribution.

A common method that imputes missing data is
the most common attribute (MCA) value method.
The value of the attribute that occurs most often is
selected to be the value for all the unknown values
of the attribute (Grzymala-Busse and Hu, 2001). The
mean imputation (MI) method replaces a data point
with missing values with the mean of all the instances
in the data. A variant of this method is to replace
the missing data for a given attribute with the mean
of all known values of that attribute (MA) (i.e., the
mean of each attribute) in the coordinate where the
instance with missing data belongs (Magnani, 2004).
All these methods assume MCAR since each one is
based on the distribution of the whole data and does
not take into account the correlations between the
observed and unobserved values.

It is important to note that by using these methods the
LSS algorithm can run like on the complete dataset
(each missing item replaced with a known value).
But, as we show in this paper, they perform poorly
and our proposed methods yield better results.

(c) Rough set theory, which deals with four kinds of
missing attributes values: lost values (the values
that were recorded but currently are unavailable),
“do not care” conditions (the original values were
irrelevant), restricted “do not care” conditions
(similar to ordinary “do not care” conditions
but interpreted differently), and attribute-concept
values (these missing attribute values may be
replaced by any attribute value limited to the
same concept) (Stefanowski and Tsoukias, 2001;
Grzymala-Busse, 2006; Bai et al., 2015). Clark
et al. (2013) use rough sets theory to deal with
consistency of incomplete data sets (a data set is
defined as consistent when any pair of samples
with the same attribute values belongs to the same
class); they discuss two types of missing attribute
values: lost values and “do not care” conditions.
In their work, two possible types of consistencies
are defined using probabilistic approximations. The
first type occurs if there exists some probability for
which the corresponding approximation of the type
singleton, subset or concept is equal to the concept.
In the second type of consistency, for any probability
the corresponding approximations are all equal to
the concept. Nowicki et al. (2016) proposed an
application of rough sets in the k-nearest-neighbor
algorithm for classification of incomplete samples.
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Another work of Nowicki (2010) presents a new
approach to fuzzy classification in the case of
missing data. Rough-fuzzy sets are incorporated
into logical type neuro-fuzzy structures and a
rough-neuro-fuzzy classifier is derived. The main
benefit of the proposed modification is protection
against mistakes in the case of missing input data.
The complexity of the proposed solution is similar to
that of other fuzzy and neuro-fuzzy systems.

Abdallah and Shimshoni (2014) developed a new
method to compute the distance function between
incomplete points. Their distance is not only efficient, but
also takes into account the distribution of each attribute.
In the computation procedure they take into account all
the possible values with their probabilities, which are
computed according to the attribute’s distribution. This is
in contrast to MCA and the MA methods, which replace
each missing value only with the mode or the mean of
each attribute.

The main limitation of this distance is that it assumes
MCAR (the probabilities were computed according to the
distributions of the whole datasets without taking into
account any correlations between the missing values and
the other known values). But in real world datasets, the
MCAR assumption is too stringent for some situations.
As a result, in this research we generalize this distance to
deal with other types of missing data.

3. Lookahead algorithm for selective
sampling for incomplete datasets

In this research we develop two versions of the selective
sampling algorithm that deal with incomplete datasets.
The first one is based on selective sampling for the
nearest neighbor classifier (LSS) (Lindenbaum et al.,
2004), and the second one is based on selective sam-
pling using ensemble the clustering based distance met-
ric (LSS-EC) (Abdallah and Shimshoni, 2013). In this
section we will describe the LSS algorithm for incomplete
datasets. In order to run this algorithm on an incomplete
dataset, we need a distance function that can measure the
distance between incomplete points. In this research we
decide to work with the mean Euclidean distance (MDE)
presented by Abdallah and Shimshoni (2014) to measure
the dissimilarity between incomplete points. We will
therefore first review the LSS algorithm. Then we will
give a short review of the MDE distance. Finally, we
will describe how we integrated this distance within the
framework of LSS.

3.1. Original lookahead algorithm for selective sam-
pling. In this section we will describe the original LSS
for complete datasets developed by Lindenbaum et al.
(2004). Selective sampling is a common active learning

approach. It assumes that a set of unlabeled examples
is available, and the learner selects an unlabeled example
from the given set and asks the teacher to label it.

An active-learner consists of a classifier learning
algorithm L and a selective sampling algorithm SL. The
selective sampling algorithm determines which unlabeled
instance in X should be labeled by the teacher f , which is
a mapping f : χ→W , where χ is the instance space and
W describes the classes.

The active learner first applies SL to choose one
unlabeled instance x from X . The label w of x is then
revealed and the pair (x,w) is added to the training set D
and x is removed from X . Then the learner applies L to
induce a new classifier. This sequence repeats until some
stopping criterion is satisfied.

The lookahead algorithm for selective sampling
considers all the unlabeled examples and selects the
example that yields the best expected classifier. Let
UL (x,D) be a utility function that estimates the
merit of adding an unlabeled instance x to the set
D as a training example for the learning algorithm
L. Let P (f (x) = w|D) denote the conditional class
probabilities of x for a given labeled set D. For each
unlabeled example, its expected utility is measured using
the utility function on the training set and employing
expected probabilities for the possible classes of the
unlabeled example. Then the lookahead algorithm for
selective sampling with respect to the learning algorithm
L selects the example that leads to the learning example
with the highest expected utility. This is described in
Algorithm 1.

In order to be able to use this general algorithm for
a specific learner, AL(D) and P (f (x) = w|D) have to
be defined. AL(D) denotes the expected accuracy of
classifier h = L(D) as

AL(D) =
1

|X |
∑

x∈X

P (f (x) = h (x) |D) , (1)

is produced by a learning algorithm L on labeled data D.
The last piece of the puzzle is to assign conditional

class probabilities to the nearest neighbor classifier. To
this end, the random field model is used to estimate the
probabilities for the 2-NN classifier.

In order to calculate P (f (x) = 1|D), first the two
nearest neighbors y, z from the labeled data D must be
found. Then the probability is computed as

P (f (x) = 1|y, z)

=
1

2
+

l(y)γ (d(x, y)) + l(z)γ (d(x, z))
1
2 + 2l(y)l(z)γ (d(y, z))

, (2)

where l(x) is the label of x and d(x, y) is the distance
between x and y, and
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Algorithm 1. LSS (lookahead selective sampling) (X ,
D).

1. If D is empty, return a random point from X .

2. Otherwise, set Umax ← 0.

3. For each x ∈ X do:

(a) D′ ← D ∪ {〈x,−1〉}.
(b) Compute class probabilities for all points in X

based on data D′.

(c) Compute utility by approximating the accuracy
AL (D′) of the classifier based on data D′,
U1 ← AL (D′).

(d) Repeat steps (a)–(c) for D′ ← D ∪ {〈x, 1〉}
and get U2(x).

(e) Compute class probabilities for x based on data
D.

(f) U(x)← P (f(x) = −1|D) · U1(x)
+ P (f(x) = 1|D) · U2(x).

(g) If Umax < U(x) then Umax ← U(x) and
xbest ← x.

4. Return xbest.

γ (d) = 0.25e−d/σ, σ =
1

D

1

|N |2
∑

p∈X

∑

q∈X

d(p, q),

where D is a scaling parameter.
In order to run the LSS algorithm on a incomplete

dataset, we need to compute the probabilities using
Eqn. (2). To do this, we should take into account
the completeness of the points x, y and z. In order
to compute the probability, we need the labels and the
distances between each point to other points. To compute
the distance, we decided to use the MDE distance as
described at the beginning of this section. Thus, in the
next section we will give a short review of this distance,
developed by Abdallah and Shimshoni (2014).

3.2. Mean Euclidean distance on incomplete datasets.
In this section we describe how to measure the distance
between pairs of points when they may contain missing
values.

Let A ⊆ R
K be a set of points. For the i-th attribute

Ai, the conditional probability for Ai will be computed
according to the known values for this attribute from A
(i.e., P (Ai) ∼ χi), where χi is the distribution of the i-th
coordinate.

Given two sample points X and Y from A, the goal
is to compute the distance between them. Let xi and yi be

the i-th coordinate values from points X,Y , respectively.
There are three possible cases for the values of xi and yi:

1. Two values are known: when the values of xi and yi

are given, the distance between them will be defined
as the Euclidean distance,

DE(x
i, yi) = (xi − yi)2. (3)

2. One value is missing: suppose that xi is missing
and the value yi is given. Since the value of xi is
unknown, we cannot compute its Euclidean distance.
Instead, we model the distance as a random selection
of a point from the distribution of its attribute χi

and compute its distance. The expectation of this
computation is our distance.

As a result, we approximate the mean Euclidean
distance (MDE) between yi and the missing value
mi as

MDE(m
i, yi) = E[(x− yi)2]

=

∫
p(x)(x − yi)2 dx

= (yi − μi)2 + (σi)2.

(4)

This metric measures the distance between yi and
each suggested value of xi, and takes into account
the probability p(x) for this value according to the
evaluated probability distribution. It is important
to note that in this computation the probability was
computed according to the whole dataset. The
authors did not take into account the possible
correlations between the missing values and the other
known values. This means that they assumed the
MCAR (missing completely at random) missing data
type. The resulting mean Euclidian distance will be

MDE(m
i, yi) = (yi − μi)2 + (σi)2, (5)

where μi and (σi)2 are the mean and the variance
for all the known values of the attribute. The distance
computed according to the last equation has several
important properties:

• it is identical to the Euclidean distance when
the dataset is complete;

• it can be applied to any distribution and used in
any algorithm that employs a distance function;

• it is simple to implement;

• it is very efficient because, to compute the
MDE between two values when one of them is
missing, we need only to compute in advance
the two statistics (i.e., μ and σ) for each
attribute. This means that, after we compute
them, the runtime to measure the distance is
O(1);
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• when the variance is small, the real value of
the missing value is close to the mean of the
attribute and our distance will converge to the
Euclidian one;

• when the variance is large, the uncertainty is
high, and as a result the distance should be
large;

• it is basically the sum of the bias term (yi −
μi)2 and the variance (σi)2, yielding the mean
squared error (MSE).

3. The two values are missing: in this case, in order
to estimate the mean Euclidian distance, we have to
randomly select values for both xi and yi. Both of
these values are selected from distribution χi.

We compute the expectation of the Euclidean
distance between each selected value as we did for
the one missing value. As a result, the distance is

MDE(xi, yi) =

∫ ∫
p(x)p(y)(x − y)2 dxdy

= (E[x]− E[y])2 + σ2
x + σ2

y .

As x and y belong to the same attribute, E[x] =
E[y] := μi and σx = σy := σi. Thus

MDE(x
i, yi) = 2(σi)2. (6)

Based on this distance function, a formula for the
mean of a set with missing values derived according to
this distance is equal to the mean of the known values of
each coordinate.

Studying the equation described above, we conclude
that the main limitation of this distance is its assumption
that the missing data is MCAR. However, many real world
datasets are not MCAR. This is because the probabilities
that were computed for each suggested value of the
missing value do not take into account the type of the
missing values. Accordingly, if the missing values are
MAR (missing at random), then the probability p(x)
depends on the other observed values, and then the
distance will be computed as:

MDE(m
i, yi) =

∫
p(x|xobs)(x − yi)2dx

= (yi − μi
x|xobs

)2 + (σi
x|xobs

)2,

where xobs denotes the observed attributes of point X ,
and μi

x|xobs
and (σi

x|xobs
)2 are the conditional mean and

variance, respectively.
On the other hand, if the missing values are of type

NMAR (not missing at random), this means that whether
a known value is missing depends on the value that would
have been observed, and then the probability p(x) that

was used in Eqn. (4) will be computed according to this
information and so the distance will be

MDE(m
i, yi) =

∫
p(x|mi)(x − yi)2dx

= (yi − μi
x|mi)2 + (σi

x|mi)2,

where p(x|mi) is the distribution of x when x is missing.

3.3. LSS using the MDE distance for incom-
plete datasets. Now we will show how to integrate the
distance function described above within the framework
of the LSS algorithm in order to run this algorithm on
incomplete datasets. This distance function, after our
generalization, can deal with the different types of missing
values. However, for simplicity, in this section we will
describe only the MCAR missing value type.

The LSS algorithm (i.e., Algorithm 1) consists of
several steps. Formally, we need to establish the utility
function UL(x,D) that estimates the merit of adding
an unlabeled instance x to the training data D, taking
into account that x or D may contain missing values.
However, in order to deal with missing values, all we
need is to modify Eqn. (2) to compute the probabilities
when some of the points are incomplete. Thus, now we
will describe how to design probability computation in
order to deal with missing values. Since in this research
we decided to work with 2-NN probability, in probability
computation we have three points, x is the point for which
we want to compute its probability, and y and z are the
two nearest samples to x. Because all the points come
from the data, each point may contain missing values.
To this end, in our computation we take into account all
the completeness possibilities for each point as described
below:
(a) x is complete, which implies there are three possible
cases for y and z:

1. Both of them are complete—then we use the
Euclidean distance.

2. One of them contains missing values: let y be the
incomplete point and let the coordinate j be the
missing value; then

d2(x, y) =
∑

k �=j

(xk − yk)2 + ((xj − μj)2 + (σj)2),

d2(x, z) =
n∑

k=1

(xk − yk)2,

d2(y, z) =
∑

k �=j

(zk − yk)2 + ((zk − μj)2 + (σj)2).
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3. Both of them contain missing values: y and z are
incomplete; let j1, j2 be the missing values in y, z,
respectively; then

d2(x, y) =
∑

k �=j1

(xk − yk)2

+ ((xj1 − μj1)2 + (σj1)2),

d2(x, z) =
∑

k �=j2

(xk − zk)2

+ ((xj2 − μj2)2 + (σj2 )2),

and, if j1 
= j2, then

d2(y, z) =
∑

k �=j1,j2

(yk − zk)2

+ ((zj1 − μj1)2 + (σj1 )2)

+ ((yj2 − μj2)2 + (σj2 )2),

otherwise

d2(y, z) =
∑

k �=j1

(yk − zk)2 + (2(σj1)2).

(b) x contains missing values—let the coordinate l be
the missing value. Below we will describe the designed
equations for distance computations:

1. Both of them are complete, which yields

d2(x, y) =
∑

k �=l

(xk − yk)2 + ((yl − μl)2 + (σl)2),

d2(x, z) =
∑

k �=l

(xk − zk)2 + ((zl − μl)2 + (σl)2),

d2(y, z) =
n∑

k=1

(yk − zk)2.

2. One of them contains missing values: let y be the
incomplete point and let the coordinate j be the
missing value. If j 
= l,

d2(x, y) =
∑

k �=j,l

(xk − yk)2

+ ((yl − μl)2 + (σl)2)

+ ((xj − μj)2 + (σj)2),

and, if l = j, then

d2(x, y) =
∑

k �=l

(xk − yk)2 + 2(σl)2,

d2(x, z) =
∑

k �=l

(xk − zk)2 + ((zl − μl)2 + (σl)2),

d2(y, z) =
∑

k �=j

(zk − yk)2 + ((zj − μj)2 + (σj)2).

3. Both of them contain missing values: in a similar
way, we compute the distances between the points
when y and z are incomplete.

According to these computations, we can now
compute the probabilities for each point in the data. As
a result, we can run the LSS algorithm on an incomplete
dataset using the MDE distance function.

4. Selective sampling using ensemble
clustering for incomplete datasets

We will now describe LSS for incomplete data based on
the ensemble clustering. Accordingly, we firstly describe
distance metric learning using ensemble clustering. Then
we will describe how we run the ensemble clustering
on datasets with missing values. The third part of this
section describes the changes we made to the original LSS
formulas to cause the algorithm to work with the new
distance metric and the new instance space.

4.1. Distance metric learning using ensemble cluster-
ing. Let A be a set of instances, where each xi ∈ A
is a vector in some space χ. Instances are assumed to
be i.i.d. distributed according to some unknown fixed
distribution ρ.

In our approach the clustering results are stored in a
matrix denoted as the cluster matrix C ∈ R

N×K , where
N = |A| and K is the number of times the clustering
algorithms were run. The i-th row consists of the cluster
identities of the i-th point in the different runs. This results
in a new instance space, χcl = Z

K , which contains the
rows of the cluster matrix.

It is important to note that the new instance space
χcl is a new way to represent the dataset. With this
instance space we overcome the problem of missing data
and move from the continuous space with missing values
to the categorical space without missing values.

The new distance between points from this space
should be defined in order to reflect our intuitive notion
of proximity among the corresponding points.

Given two points x, y ∈ χcl, we define a new
distance function dcl as

dcl(x, y) =

K∑

i=1

dis(xi, yi), (7)

where

dis(xi, yi) =

{
1, xi 
= yi,

0, xi = yi

is the metric of a single feature. This metric is known as
the Hamming distance. The idea of measuring similarity
between objects according to their clustering labels was
introduced by Strehl and Ghosh (2002). Moreover, points



878 L. Abdallah and I. Shimshoni

which were always clustered together in the same clusters
are defined as members of an equivalence class.

The main problem with a clustering based approach
is that there is no known method for choosing the best
clustering. It is unknown how many clusters there should
be, and so are their shapes, which clustering algorithm
is best, and which parameter values should be used. We
therefore decided to run different clustering algorithms
several times with different parameter values. In general,
each clustering algorithm that maps the dataset structure
and yields close to pure equivalence classes will work.
In addition, the clustering matrix can contain clustering
results from different clustering algorithms.

4.2. Ensemble clustering for incomplete datasets.
As described in the previous section, our algorithm is
general and any good clustering algorithm could be used.
Therefore, in our case the datasets contain missing values.
In consequence, we need to run clustering algorithms
that can deal with datasets of this type. As a result, we
decided to use the k-means clustering algorithm (Abdallah
and Shimshoni, 2016) and the mean shift clustering
algorithm (Abdallah and Shimshoni, 2014), designed to
cluster incomplete datasets in order to build the cluster
matrix.

For completeness, we will now give a short overview
of the k-means and mean shift clustering algorithms we
use to cluster incomplete datasets. Here we only review
some of the results described earlier in detail (Abedallah
and Shimshoni, 2016; 2014).

• k-means (MacQueen, 1967) is the most popular and
the simplest partitional clustering algorithm. It has
two basic steps, performed at each iteration: (i) it
associates each point with its closest centroid, and
(ii) it computes the new centroids. They use the
MDE distance function to associate each point to
the closest centers, and to compute the mean three
directions are suggested. In the first one, incomplete
points are dealt with as one point and the centroid is
computed according to the developed formula based
on the known values at each coordinate. The other
two directions assume that each incomplete point
represents a set of complete points according to the
data distribution, so they replace each incomplete
point with a set of points and then compute the mean
according to the new dataset. It is important to
note that even though they replace each incomplete
point with a large number of points, they use the
histograms of the data distribution in order to make
the suggested algorithm more efficient. As a result,
the runtime complexity of the suggested k-means
algorithms is the same as the standard k-means over
complete datasets.

• Mean shift is a non-parametric clustering algorithm.

In addition, it is an iterative technique, but instead of
the mean, it estimates the modes of the multivariate
distribution underlying the feature space. The
number of clusters is obtained automatically by
finding the centers of the densest regions in the space
(the modes).

Assume that each data point xi ∈ R
d, i = 1, . . . , n,

is associated with a bandwidth value h > 0. The
sample point density estimator at point x is

f̂h,k(x) =
ck,d
nhd

n∑

i=1

k

(∥∥∥∥
x− xi

h

∥∥∥∥
2
)
, (8)

where the function k(x), 0 ≤ x ≤ 1, is called the
profile of the kernel, and the normalization constant
ck,d assures that the kernel integrates to one.

Using theMDE distance, the density estimator in (8)
is written as

f̂h,k(x) =
ck,d
nhd

n∑

i=1

k

(∥∥∥∥
x− xi

h

∥∥∥∥
2
)

=
ck,d
nhd

n∑

i=1

k

⎛

⎝ 1

h2

d∑

j=1

MDE(x
j , xj

i )
2

⎞

⎠ .

For each data point, a gradient ascent process
is performed on the local estimated density until
convergence. The convergence points represent the
modes of the density function. All points associated
with the same convergence point belong to the same
cluster.

Some clustering algorithms work with continuous
parameters, such as the mean shift algorithm described
above. In these cases the differences between two
consecutive iterations might be small. We therefore
represent similar clusterings by a single column, weighted
by the number of clusterings it represents.

It is important to note that using EC has several
important features:

• a new data structure, where the points are now
represented in a categorical space by the labels of the
clusters at each iteration;

• it is a new way to overcome the missing values
without replacing it with any value;

• defining a similarity measurement over incomplete
datasets.

4.3. Selective sampling using ensemble clustering
for incomplete datasets. We will now describe the
changes we made to the original LSS formulas to cause
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the algorithm to work with the new distance metric and
the new instance space.

We are looking for x that maximizes the utility
function UL(x,Dcl) described in the previous sections to
be added to the training data. It is important to note that in
this situation each point x is an equivalence class, so we
should take into account the cardinality of each point x,
which is the size of the equivalence class of x.

In each iteration of the LSS-EC algorithm, one of the
equivalence classes is chosen to be added to the training
dataset. Its representative point x0 is labeled by the expert
and added to Dcl. This is in contrast to the original LSS,
where a single point is chosen. In order to choose the
equivalence class, the expected accuracy will be

AL(D
′
cl) =

1

|X |

[
∑

x∈Dcl

Pmax (x|D′
cl) · card (x)

+Pmax (x0|D′
cl) · card (x0)

+
∑

x∈Xeq
cl \D′

cl

Pmax (x|D′
cl) · card (x)

⎤

⎦ ,

where Xeq
cl is a set of equivalence points, D′

cl = Dcl ∪
{x0}, and card(x) is the cardinality of x, which is
the size of the equivalence class of x. The probability
Pmax(x|D′

cl) of each point is multiplied by its cardinality
because in the original space X each point represents
|[x]E | points which we assume have the same label.
Pmax (x ∈ Dcl|D′

cl) = 1 because Dcl is labeled. As a
result, the expected accuracy will be

AL(D
′
cl) =

1

|X |

[
∑

x∈Dcl

card (x) + card (x0)

+
∑

x∈Xeq
cl \D′

cl

Pmax (x|D′
cl) · card (x)

⎤

⎦ .

The contribution of the point x0 to the utility function
is

1

|X |
[
(1− Pmax(x0|Dcl)) · card(x0)

+
∑

x∈Xeq
cl \D′

cl

(Pmax (x|D′
cl)− Pmax (x|Dcl)) · card (x)

]
.

(9)

Studying the two components of (9), we can see
that the first one, which is termed the uncertainty
component, is the product of the cardinality of the set of
points equivalent to x0 with the reduction in uncertainty
obtained since x0 has been chosen. Pmax (x0|Dcl) is
the probability of x0 to be classified correctly in the
past, and now since x0 is chosen its probability will

be 1. The second component, which is termed the
classifier component, estimates the added contribution to
the utility function, which will be obtained by reducing
the uncertainty of the neighbors of x0 to less than what
it was for set Dcl. This term measures how the classifier
improves when x0 is added to the labeled set.

We ran the lookahead selective sampling algorithm
using the dcl metric and the new accuracy measure to
choose the most informative points to be given to the
expert. The rest of the points were labeled by the classifier
h using the dcl metric.

In conclusion, to run the LSS-EC over an incomplete
dataset, all we need is to construct the cluster matrix,
which we compute using the k-means and mean shift
clustering algorithms, which deal with missing values
described in Section 4.2.

5. Experiments on numerical datasets

In order to evaluate the performance of the suggested
LSS-MDE and LSS-EC-MDE algorithms over datasets
with missing values we compare the performance of the
original LSS algorithm on complete data (i.e., without
missing values) to its performance on data with missing
values, using our distance measure (MDE), and then
again using LSS-(MCA, MA), where each missing value
in each attribute is replaced using the MCA or MA
methods (described in Section 2), respectively, and then
the standard LSS is run.

We ran our experiments on six standard numerical
datasets from the Speech and Image Processing
Unit (Clustering datasets, 2008) from different fields:
the Flame dataset, the Jain dataset, the Path based
dataset, the Spiral dataset, the Compound dataset, and
the Aggregation dataset. The dataset characteristics are
shown in Table 1.

Table 1. Speech and Image Processing Unit dataset properties.
Dataset Dataset size Clusters

Flame 240× 2 2
Jain 373× 2 2

Path based 300× 2 3
Spiral 312× 2 3

Compound 399× 2 6
Aggregation 788× 2 7

All these datasets were labeled, but this knowledge
was used only to evaluate the quality of the resulting
classifier. In all the experiments the algorithm assumes
that these datasets are unlabeled. Originally, these datasets
were complete, and in our experiments a subset of these
points were selected randomly to be incomplete.

In the first stage of the algorithms, 30% of the
data were selected to be incomplete points, and then a
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training set of size 4 was randomly drawn and labeled.
The algorithms were then asked to select 20 additional
points. During each iteration the active learner selects
a sample point to be labeled and adds it to the training
set. After each iteration the accuracy was evaluated by the
ability of the classifier to label the rest of the unlabeled
points. The results were averaged over 10 different runs
of the algorithms on each dataset. For each dataset we
constructed curves to evaluate how well the algorithms
select the points.

To build the cluster matrix for the LSS-EC-MDE

algorithm, we use the mean shift or k-means clustering
algorithms that were designed to deal with missing values,
as discussed in Section 4.2. We arbitrarily chose to start
with the k-means algorithm for all the numerical datasets
with k = 2, . . . , 15 . Since the k-means algorithm did
not yield pure equivalence classes for the spiral dataset
while the mean shift clustering algorithm did, we used the
mean shift algorithm for this dataset. In our experiments
we chose 11 different values of h with fixed intervals
from 0.5 to 5. It is important to note that the values
of h are not critical for algorithm performance, and any
clustering results that yield pure equivalence classes can
work. The results are stored in the cluster matrix C. The
new space is usually smaller than the original one without
the equivalence classes.

As can be seen in Fig. 1, for the Flame, Spiral,
Path based, Compound, and Aggregation datasets, the
curves show that our suggested algorithms outperform
their competitors over all these datasets. According to
Fig. 1(e), for example, we see that the accuracy of LSS
using the MDE distance is 85% and the accuracy of
LSS-EC-Missing is 75% after selecting 6 points, while
the accuracy of LSS using the other methods is only
60-70%.

An interesting result is that for the Jain dataset
(as shown in Fig. 1(b)), where the performance of
LSS-EC-MDE on incomplete datasets outperforms the
standard LSS on a complete dataset. This means that,
although there are missing values, the performance of
LSS-EC over the dataset with missing values is better
than that of LSS using the Euclidean distance over the
complete dataset. This is because for this dataset the
distance based on ensemble clustering reflects the actual
similarity between the objects better than the Euclidian
distance even when there are missing values in the
dataset. This means that representing the incomplete
dataset according to the ensemble clustering space that is
described in this research may be better than using the
Euclidean distance on the actual values of the missing
values in the dataset. It is important to note that, in
general, the performance of the standard LSS on the
complete dataset outperforms the other algorithms when
the dataset is incomplete, and only in the case when the
Euclidean distance does not reflect the actual similarity

between the data objects LSS-EC-MDE can achieve
better results on incomplete datasets, as we can see in the
other datasets in Fig. 1.

According to Fig. 1, in some cases the next step gives
worse results than the previous one. This may be caused
by two reasons:

(i) in LSS–EC we worked with equivalence classes and
we assume that each equivalence class is pure, which
is not correct in all the classes, and in some cases the
class will be labeled by the minority label and will
cause mistakes.

(ii) The performance of the algorithm was computed
using 1NN over incomplete datasets because our
algorithm selects points without filling the missing
values; then the classifier will be asked to classify all
the points according to the training set, which may
include incomplete points.

Looking at the curves in Fig. 1 in general, we can
see that, when we use LSS, the results are better than
when we select the points randomly. That means that
using selective sampling methods reduces the number
of selected points that the domain expert has to classify
and brings us more informative samples as well as better
classification results.

Another experiment was conducted where the
percentage of missing values changes. In this experiment
we asked the algorithm to select 20 points from each
dataset, where 5–50% of the data were selected to be
incomplete.

As can be seen in Fig. 2, for the Spiral, Path
based, Compound, and Aggregation datasets, the curves
show that our two suggested algorithms (LSS-MDE and
LSS-EC-MDE) outperformed the other methods for all
missing value percentages, while for the Jain dataset
the performance of the LSS-EC-MDE algorithm, where
5–30% of the data were incomplete, was superior and
outperformed the original LSS over the complete data
(i.e., the original data without missing values). This is
because running LSS over the new instance space based
on ensemble clustering results over incomplete datasets
reflects the actual similarity better than the Euclidean
distance even though the dataset is complete. Moreover,
we can conclude that, as the percentage of the missing
values further increases, the performance of the algorithm
degrades gracefully.

6. Conclusions and future work

Missing attribute values are very common in real-world
datasets. Several methods have been proposed to measure
the similarity between objects with missing values. To
this end, in this research we developed two versions of the
selective sampling algorithm that can deal with datasets
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Fig. 1. Results of the original LSS on complete datasets and the suggested algorithms on incomplete datasets when 20 points were
selected. The x axis denotes the number of selected points, and the y axis the accuracy of the kNN classifier. The solid curve
describes the original LSS results on a complete dataset, the dashed and dash-dotted curves describe the LSS-MDE and LSS-
EC-MDE results on incomplete datasets, respectively, while the black and grey dotted curves describe LSS using the MA and
MCA methods, respectively. (Best viewed in color.)
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Fig. 2. Results of the original LSS on complete datasets and the suggested algorithms on incomplete datasets when 20 points were
selected, where the percentage of the missing values changes. The x axis denotes the percentage of the missing values in
the data, and the y axis denotes the accuracy of the kNN classifier. The solid curve describes the original LSS results on
a complete dataset, the dashed and dash-dotted curves describe the LSS-MDE and LSS-EC-MDE results on incomplete
datasets, respectively, while the black and grey dotted curves describe LSS using the MA and MCA methods, respectively.
(Best viewed in color.)
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with missing values. One version is for the original LSS
described by Lindenbaum et al. (2004) using the MDE

distance that was presented by Abdallah and Shimshoni
(2014), and the other is for LSS-EC described by Abdallah
and Shimshoni (2013) using clustering algorithms that
were designed to deal with incomplete datasets presented
by Abdallah and Shimshoni (2014; 2016).

These new algorithms have several important
benefits and contributions. The first contribution is that,
according to this study, we run the selective sampling
algorithm over missing values without any preprocessing
procedure and imputations. The second and more general
contribution is that using ensemble clustering brings
us two benefits; the first one is that it allows us to
represent the incomplete dataset as complete categorical
data. The second one is that the performance of LSS using
ensemble clustering is usually better than LSS using the
Euclidean distance. From the experiments we conclude
that our method is more appropriate for selecting the most
informative samples for datasets with missing values.

The proposed methods also have disadvantages. The
first algorithm that integrates the MDE distance function
within the framework of the original LSS algorithm has
two limitations:

(i) The MDE distance is equivalent to the Euclidean
distance and we show in previous work over
complete datasets that this distance function might
not reflect the actual similarity between the objects.

(ii) After selecting the samples, the data still contain
missing values and we should use classifiers that can
deal with missing values. In our case we use the kNN
that we developed to deal with missing values, but we
cannot use the SVM or decision trees classifiers, for
example.

As a result, we decided to develop algorithm that uses
the ensemble clustering and solves these two limitations.
This algorithm also has some limitations:

(i) It is less efficient, because it needs to run clustering
algorithms first and then LSS.

(ii) It assumes that each equivalence class is pure, which
is not satisfied in each class, especially when data are
incomplete.

(iii) It is based on the results of clustering algorithms that
were developed to deal with missing values.

Another problem with these methods is that at each
iteration only a single point is selected to be labeled by the
expert. This is especially problematic when the training
process is time consuming; the algorithm will not be
efficient. As a result, the classification model has to be
retrained after each labeled example is requested.

Moreover, for each selected point from the data the
application has to retrieve this example and bring it to
the expert in a form which can be used for classification.
As a result, in our future work we intend to develop a
new batch mode active learning method that selects a
group of k points at once and gives them to the expert
to be classified. This method cannot use the result of
the expert’s classification of the previous points to help
in selecting the next point in the same batch, but has to
take it into account.
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