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This paper proposes a data projection method (DPM) to detect a mode switching and recognize the current mode in a
switching system. The main feature of this method is that the precise knowledge of the system model, i.e., the parameter
values, is not needed. One direct application of this technique is fault detection and identification (FDI) when a fault pro-
duces a change in the system dynamics. Mode detection and recognition correspond to fault detection and identification,
and switching time estimation to fault occurrence time estimation. The general principle of the DPM is to generate mode
indicators, namely, residuals, using matrix projection techniques, where matrices are composed of input and output mea-
sured data. The DPM is presented in detail, and properties of switching detectability (fault detectability) and discernability
between modes (fault identifiability) are characterized and discussed. The great advantage of this method, compared with
other techniques in the literature, is that it does not need the model parameter values and thus can be applied to systems of
the same type without identifying their parameters. This is particularly interesting in the design of generic embedded fault
diagnosis algorithms.

Keywords: switching systems, mode recognition, fault detection and isolation, data-driven method, mode discernability,
switching detectability, fault identifiability.

1. Introduction

Switching systems are characterized by the interaction
between a finite state automaton and a finite number of
dynamical subsystems called operating modes (Liberzon,
2005). These operating modes may be described by
differential or difference equations (Lin and Antsaklis,
2009). The switching between modes could be governed
by a logical switching rule called the switching law. It
determines which mode is active at each time instant and
is governed by (Lin and Antsaklis, 2009)

• internal features: system input, output, state
variables or system parameters changing, etc.;

• external actions: human operators actions,
environment conditions changing, etc.

Recently, switching systems have been the subject
of intensive investigations. A motivation comes from the
fact that they represent a large class of physical systems,
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such as mechanical and chemical processes (Engell et al.,
2000), communication networks, aircraft and air traffic
control systems (Livadas et al., 2000), automotive systems
(Antsaklis, 2000), robotics (Petroff, 2007), embedded
systems (Zhang et al., 2007), DC/DC converters (Ma
et al., 2004), oscillators (Torikai and Saito, 1998) or chaos
generators (Mitsubori and Saito, 1997).

Another motivation for studying switching systems
comes from the simplicity of representing complex
non-linear systems using a set of simple structure models
(linear time invariant subsystems, for example), where
each operating zone is described by a mode (Goebel
et al., 2012).

Various problems for switching systems have been
investigated, such as modeling (Heemels et al., 2001),
stability studies (Williams and Hoft, 1991), observability
and controllability analysis (Daizhan, 2007), or fault
detection and identification (FDI) (Akhenak et al., 2008;
Domlan et al., 2007b), etc.
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All these studies show that, at each time instant, it is
very important to know the exact active mode. Because
it is not always possible to implement specialized sensors
that indicate the active mode, estimation techniques have
to be designed. The aims of such algorithms are to detect
any switching and to accurately recognize the current
mode. One direct use of such techniques is FDI.

The data projection method (DPM) is different
from other methods proposed in the literature
for switching detection, mode recognition and
discernability characterization (Narasimhan and
Biswas, 2007; Anderson et al., 2001; Akhenak
et al., 2008; Domlan et al., 2007a). The DPM is a
data-driven method, which is guided by the structure of
the model which has to be known. However, differently
from the cited literature, the parameter values are not
needed to apply the DPM. This makes this method
evidently intrinsically robust to parameters values and
easier to apply. In this paper, the discernability conditions
between modes and the conditions of mode switching
detectability are revisited. It is shown that these conditions
are not equivalent: a transition between non-discernable
modes can be detected in certain situations.

This original result was not obtained by Narasimhan
and Biswas (2007), Anderson et al. (2001), Akhenak
et al. (2008) or Domlan et al. (2007a). Early fault
detection and identification (FDI) is crucial for human
and system safety. Indeed, if a fault occurs in the system
and is not detected, it may produce a severe damage in
the system and in its environment. Even if the fault
does not cause a severe damage in the system, it can
weaken its dependability and performance. If the fault
is detected, the control law can be adjusted in order to
maintain the system performance (Yang et al., 2010) or
maintenance actions can be performed. It is thus of
paramount importance to detect accurately and as fast as
possible a fault, to localize precisely the faulty component
and to characterize (identify) the fault.

Internal component faults modify the system
dynamics (Cocquempot et al., 2004). A way to deal with
these faults is to consider faulty modes. Fault detection
is thus equivalent to detect a faulty mode switching, and
fault identification is equivalent to recognize the mode
after switching.

Several approaches for switching detection and
mode recognition have been studied in the literature
(Narasimhan and Biswas, 2007; Anderson et al., 2001),
including model-based methods and data-driven ones.
One difficulty in model-based methods (Narasimhan
and Biswas, 2007; Anderson et al., 2001) is accurate
estimation of system parameters in each mode.

Moreover, even for the same kind of physical
systems, the parameter values are not exactly the same
and may slightly change in the system’s life, which
leads to model uncertainties. To cope with this problem,

robust methods are proposed in the literature. These
methods are based on observers (Belkhiat, 2011), Kalman
filters (Akhenak et al., 2008), and analytical redundancy
relations (ARRs) (Bayoudh and Travé Massuyès, 2014;
El Mezyani, 2005). However, these methods are limited
to given classes of uncertainties.

The DPM, which is considered in this paper, uses
the collected data and the knowledge of the mode class.
However, it does not need the values of the model
parameters. Previous publications have introduced the
DPM for linear systems (Pekpe et al., 2006) to detect
and to isolate sensor faults. A residual is generated by
projecting the system output matrix onto the kernel of an
input Hankel matrix. The proposed residual is calculated
using only on-line input-output data.

The DPM is extended in this paper for switching
detection and mode recognition. The condition for mode
recognition is the discernability between modes. Indeed,
if two modes are not discernable, it is not possible to
determine which one is active. Finding the conditions
for discernability between modes has been the subject of
intensive studies, and several results have been reported in
the literature (see, e.g., Cocquempot et al., 2004; Bayoudh
and Travé Massuyès, 2014).

Discernability and switching detectability will be
characterized using the DPM. It is shown that these
two conditions are not equivalent; in other words, a
switching between two non discernable modes could be
the following detected.

The main contributions of this paper are

• a method, called the DPM, to estimate the switching
time by using only on-line collected measured data.
This method will be extended to recognize the active
mode by using on-line collected data and a database
of inputs and outputs collected off-line;

• a characterization of several properties, such
as discernability between modes and switching
detectability.

The rest of the paper is organized as follows. In
Section 2, the switching system with linear modes is
described. In Section 3, the data projection method
(DPM) is detailed and used for switching time estimation.
In Section 4, the DPM is extended for active mode
recognition. In Section 5, DPM tuning is explained.
Finally, two illustrative examples are presented to show
the efficiency of the proposed method.

2. Problem setting

Consider the dynamic switching system with linear
discrete-time modes described by
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⎧
⎪⎨

⎪⎩

xk+1 = Aσk
xk +Bσk

uk,

yk = Cσk
xk +Dσk

uk + wk,

(x0, σ0) ∈ Init,

(1)

where Aσk
∈ R

n×n, Bσk
∈ R

n×m, Cσk
∈ R

�×n,
Dσk

∈ R
�×m are constant matrices, and vectors uk ∈

R
m, xk ∈ R

n and yk ∈ R
� are respectively input, state

and output signals at time-instant kTe, with Te being
the sampling period. The system outputs are affected
by a centered Gaussian noise wk ∈ R

�, where var(ws
k)

represents the variance of ws
k, wk =

(
w1

k . . . w�
k

)T
.

σk ∈ {1, 2, · · · , Q} is the mode index and ‘Init’ is
the set of initial states (x0, σ0), Q being the number of
modes.

2.1. Definition, objectives and hypotheses. Given the
switching system described by Eqn. (1), the objectives
of this paper are to estimate the switching time and
to recognize the current mode under the following
hypotheses:

1. Matrices Aσk
, Bσk

, Cσk
, Dσk

are all unknown.

2. State matrices Aσk
are stable for all σk .

3. uk and yk are known for all values of k.

4. The time period between two successive switchings
is long enough to allow mode identification, i.e.,
the system has a dwell-time (Hespanha and Morse,
1999). This condition will be precisely characterized
later when the method is detailed.

Definition 1. Two modes (m1, m2) are discernible for
all inputs in a time interval [0, T ] (T is a positive integer),
if for all initial states and for the same input applied in
modes m1 and m2, the outputs in the two modes m1 and
m2 are different.

2.2. Data projection method for sensor FDI. For
simplicity, let us consider first the dynamic linear system
described by

{
xk+1 = Axk +Buk,

yk = Cxk +Duk + wk + fk,
(2)

where fk represents the vector of sensor faults at time k.
The DPM framework is described here for one mode

(see the work of Pekpe et al. (2006) for more details):

1. By stacking Eqn. (2) on a time window of size L
(L ∈ N), we obtain

Yk−L+1:k = CAiXk−L−i+1:k−i +HiUk−L+1:k

+ Fk−L+1:k +Wk−L+1:k, (3)

with

Hi =
[
CAi−1B| · · · | CB| D

]
,

Uk−L+1:k =
[
uk−L+1, i uk−L+2, i

· · · uk, i

]
,

(4)

where

uk, i =
(
uT
k−i uT

k−i+1 . . . uT
k

)T

∈ R
m(i+1)×1 (5)

and

Yk−L+1:k =
[
yk−L+1 · · · yk−1 yk

]

∈ R
�×L. (6)

Matrices Xk−L−i+1:k−i and Wk−L+1:k are defined
as Yk−L+1:k (using xk−i (resp. wk) instead of yk).
Matrix Fk−L+1:k is also defined as Yk−L+1:k using
fk instead of yk, where fk represents a sensor fault
at time instant k. Moreover,

• the term CAiXk−L−i+1:k−i depends on model
parameters and a set of states in a time window
of size L;

• the term HiUk−L+1:k depends on the inputs
Uk−L+1:k and Hi on model parameters;

• the term Fk−L+1:k depends on additive sensor
faults;

• the term Wk−L+1:k depends on measurement
noise.

2. A judicious choice of the time window (integers i and
L):

• owing to the stability of matrix A, the term
CAiXk−L−i+1:k−i becomes very small if i is
large enough;

• there exist projection matrices Π, such that
Uk−L+1:kΠ = 0; these matrices project
onto the right orthogonal space of the matrix
Uk−L+1:k and one of them is ΠUk−L+1:k

:

ΠUk−L+1:k

= IL − Uk−L+1:k
T

× (Uk−L+1:kUk−L+1:k
T)+uk,i

(7)

where IL is an identity matrix of size
L and M+ represents the Moore–Penrose
pseudo-inverse of matrix M .

3. Post-multiplying (3) by ΠUk−L+1:k
gives the residual

εk = Yk−L+1:kΠUk−L+1:k

= Δi + Fk−L+1:kΠUk−L+1:k

+Wk−L+1:kΠUk−L+1:k
.

(8)
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Since the state matrix A is stable, the term

Δi = CAiXk−L−i+1:k−i

can be neglected if i is large enough (see Pekpe et al.,
2006).

4. Finally, a statistical test on εk is used for fault
detection.

3. Switching time estimation

3.1. Residual generation. In this section, the DPM is
proposed for switching time estimation. It is proved that a
switching can be detected under a detectability condition
which will be given in Section 3.2).

We assume that integers i and L satisfy the condition
L > m(i + 1) and L is an even integer such
that dim(ker(Uk−L+1:k)) > 1, ∀uk(k ∈ N), where
ker(Uk−L+1:k) represents the kernel of matrix Uk−L+1:k.

Theorem 1. Let i and L be two integers and suppose
all the inputs are not null and no change occurs in time
window [k − L − i + 1, k]. Then there exist is ∈ N such
that ∀i ≥ is and L > m(i+ 1), and the vector εk defined
by

εk = Yk−L+1:kΠUk−L+1:k
∈ R

� (9)

is a centered Gaussian noise with variance Rε (εk ∼
N(0,Rε)), where

Rε = E[Wk−L+1:kΠUk−L+1:k
ΠT

Uk−L+1:k
WT

k−L+1:k].
(10)

Proof. Equation (8) applied to (1) gives

εk = Δi +Wk−L+1:kΠUk−L+1:k
. (11)

Since Wk−L+1:k is a zero mean Gaussian noise and the
inputs are deterministic, Wk−L+1:kΠUk−L+1:k

is also a
zero mean Gaussian noise.

Consider a multiplicative norm ‖Δi‖ of Δi. We have

‖Δi‖ =
∥
∥CAiXk−L−i+1:k−i

∥
∥

≤ ‖C‖ ‖A‖i ‖Xk−L−i+1:k−i‖ .
(12)

Since all the modes are stable, the state norm is bounded.
Let ‖Xm‖ be the maximum of ‖Xk−L−i+1:k−i‖, k ∈ N.
Then, the following inequality holds:

‖Δi‖ ≤ ‖C‖ ‖A‖i ‖Xm‖ . (13)

Therefore, if we choose is such that

is ≥ log(Vm)− log(N ‖C‖ ‖Xm‖)
log(‖A‖) , (14)

where Vm is the minimum of var(ws
k), s ∈ 1, 2, . . . , �,

and N is an integer which is supposed to be sufficiently
large. If the inequality (14) holds, then ∀i > is,

‖Δi‖ ≤
∥
∥
∥
∥
Vm

N

∥
∥
∥
∥ . (15)

If N is a large integer, then the influence of Δi is
negligible before the noise and εk is Gaussian zero mean.

Finally, the variance of εk is

Rε = E[Wk−L+1:kΠUk−L+1:k
ΠT

Uk−L+1:k
WT

k−L+1:k].
(16)

�

3.2. Residual analysis. Introduce matrices

Ω =
[H(στ , στ+1), i, 1 −H(στ ), i|
H(στ , στ+1), i, 2 −H(στ ), i| · · · |
H(στ , στ+1), i, i−1 −H(στ ), i|
H(στ , στ+1), i, i −H(στ ), i

] [
0mi(i+1)×τ+L−k−1|

Ŭ |0mi(i+1)×k−τ−i+1

]
+ (H(στ+1), i

−H(στ ), i)
[
0m(i+1)×L−k+τ+i−1|Uτ+i:k

]
.

(17)

H(σk), i =
[
Cσk

Ai−1
σk

Bσk
|Cσk

Ai−2
σk

Bσk
| · · · |

Cσk
Bσk

|Dσk
] ,

(18)

where

H(στ , στ+1), i, t−τ+1

= [H(στ , στ+1), i, t−τ+1|H(στ+1), t−τ+1]

∈ R
�×m(i+1)

and H(στ , στ+1), i, t−τ+1 is constructed as follows:

H(στ , στ+1), i, t−τ+1

= Cστ+1A
t−τ+1
στ+1

[
Ai−t+τ−2

στ
Bστ |

Ai−t+τ−3
στ

Bστ | · · · |AστBστ |Bστ

]

∈ R
�×m(i−t+τ−1).

(19)

A condition of switching detectability (internal fault
detectability) is given by the following theorem and
proposition.

Theorem 2. If a switching occurs on time interval [k −
L − i + 1, k] and the inputs are not identically zero, then
for all i ∈ N and i > is (is given by Theorem 1), vector εk
is not a centered Gaussian noise with variance Rε if and
only if

span(Ω) �⊂ span(Uk−L+1:k), (20)

where span(M) denotes the row space of matrix M and
the condition (20) implies
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1. Hστ , i �= Hστ+1, i or

2. Hστ ,i = Hστ+1,i and ∃r ∈ {1, 2, . . . , i} :
H(στ ,στ+1),i,r �= H(στ ),i.

The proof of Theorem 2 is provided in Appendix.

We specify now two particular cases which may
respect the previous detectability condition (20):

1. Case of Hστ , i �= Hστ+1, i. This condition implies
that modes στ and στ+1 have different Markov
parameters (their minimal realizations are different);
in other words, these two modes are discernible as
defined by Cocquempot et al. (2004), Hofbaur et al.
(2010) or Bayoudh and Travé Massuyès (2014):

The first condition is sufficient for switching
detectability but not necessary. This means that the
proposed residual can detect a switching between
discernable modes. In addition to that, it can detect
switching between non-discernible modes under the
second condition (so discernbility between modes is
not necessary for switching detectability).

2. The second condition consists of two sub-conditions:

• non-discernible modes: if Hστ ,i = Hστ+1,i,
then there exists a non-singular matrix Ψ ∈
R

n×n satisfying
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aστ+1 = Ψ−1AστΨ,

Bστ+1 = Ψ−1Bστ ,

Cστ+1 = CστΨ,

Dστ+1 = Dστ ,

• and there is an index r ∈ {1, 2, . . . , i} such that
if H(στ ,στ+1),i,r �= H(στ ),i, then Ψ is not an
identity matrix.

In other words, this condition can be derived by
substituting Aστ+1 , Bστ+1 , Cστ+1 and Dστ+1 in
Eqn. (19).

The second condition expresses that the transition
between two non-discernible modes is transiently
detectable (there exists r ∈ {1, 2, . . . , i} such that
H(στ , στ+1), i, r �= H(στ ), i). This is due to
the modification of the state by matrix Ψ after a
switching.

The following proposition provides a statistical tool
for switching detection.

Proposition 1. If a switching occurs on time interval
[k − L − i + 1, k], the inputs are not identically zero and
for all i ∈ N and i > is (is given by Theorem 1) such that
the condition (20) is satisfied. Then

� ≥ χ2
L,α, (21)

where χL,α is the critical value with significance level α
and

� = εTkR
−1
ε εk, (22)

otherwise
� < χ2

L,α. (23)

4. Current mode recognition

In this section, the DPM is extended to recognize the
current mode and the discernibility condition is derived.

4.1. Residual generation using on-line and off-line
data. Let us consider two input matrices

Uk−L
2 +1:k ∈ R

m(i+1)×L
2

and
U∗
(γ), 1:L2

∈ R
m(i+1)×L

2

which are constructed using respectively inputs collected
on-line in the current mode (to be identified) and collected
off-line in mode γ.

It should be noted that the inputs collected off-line
are persistently exciting (see Van Overschee and De Moor,
1996), and vary to excite all modes in each operating
mode, which implies that the matrix U∗

(γ), 1:L2
is of

full row rank. Unlike for inputs collected on-line, the
persistence condition is no longer indispensable.

Let us consider the two output matrices Yk−L
2 +1:k

and Y ∗
(γ), 1:L2

constructed using respectively outputs

collected on-line in the current mode (to be identified) and
collected off-line in mode γ.

Let us construct the input and output matrices as
follows:

U(γ, σk), k−L
2 +1:k =

[
U∗
(γ), 1:L2

|Uk−L
2 +1:k

]
,

Y(γ, σk), k−L
2 +1:k =

[
Y ∗
(γ), 1:L2

|Yk−L
2 +1:k

]
.

(24)

The following theorem presents the residual
generator for the current mode recognition.

Theorem 3. If no change occurs in time interval [k −
L/2 − i + 1, k] and the inputs are not identically zero,
then for all i ∈ N and i > is (is given by Theorem 1) the
residual ε(γ), k defined by

ε(γ), k = Y(γ, σk), k−L
2 +1:kΠU

(γ, σk), k−L
2

+1:k
(25)

has the following evaluation form:

ε(γ), k = δik + (H(σk), i −H(γ), i)
[
0m(i+1)×L

2
|

Uk−L
2 +1:k

]
ΠU

(γ, σk), k−L
2

+1:k

+WkΠU
(γ, σk), k−L

2
+1:k

,

(26)
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where
δ̃i(σk), k−L+1−i:k−i = Cσk

Ai
σk
Xk

and

δik

=
[
δ̃i(γ), 1:L2

|δ̃i(σk), k−L
2 +1−i:k−i

]
ΠU

(γ, σk), k−L
2

+1:k

If γ = σ (σk is denoted by σ since it does not change
on [k − L/2− i+ 1, k]), then

ε(γ), k = δik +WkΠU
(γ, σk), k−L

2
+1:k

(27)

and ∀η > 0, ∃i0 ∈ N such that ∀i > i0(i ∈ N):
∣
∣δik

∣
∣ < η.

The proof of Theorem 3 is provided in Appendix.
Using Theorem 3, one can recognize the active mode
using Proposition 1.

4.2. Residual analysis. A condition for mode
discernibility (internal faults identifiability) is given in the
following theorem.

Theorem 4. If no change occurs in time interval [k −
L/2 − i + 1, k] and the inputs are not identically null,
then for all i ∈ N and i > is (is given by Theorem 1), a
necessary and sufficient condition for mode discernibility
is

span
(
(H(σk), i −H(γ), i)

[
0m(i+1)×L

2
|Uk−L

2 +1:k

] )

�⊂ span(U(γ, σk), k−L
2 +1:k). (28)

The proof of Theorem 4 is provided in Appendix.

5. DPM tuning

Consider the linear dynamic system described by
{
xk+1 = Axk +Bu∗

k,

y∗k = Cxk +Du∗
k + wk.

(29)

The time window size i in the DPM allows neglecting
the past state influence. In order to find a good
trade-off between low sensitivity to neglected terms and a
reasonable complexity of on-line computation, this integer
is determined using a criterion J(p) which minimizes the
approximation error between the reference model of the
system and the implicit model used in the projection. The
integer i has to be determined in a preliminary phase
executed off-line in the healthy case using a persistently
excited input.

Let us define

u∗
k, p =

(
u∗, T
k−p u∗, T

k−p+1 . . . u∗, T
k

)T

∈ R
m(p+1)×1,

the input matrix

U∗
k =

[
u∗
k−L+1, p u∗

k−L+2, p · · · u∗
k, p

]

∈ R
m(p+1)×L,

the output matrix

Y ∗
k =

[
y∗k−L+1 · · · y∗k−1 y∗k

] ∈ R
�×L

and the state matrix

Xk−L−i+1:k−i

=
[
xk−i−L+1 · · · xk−i−1 xk−i

] ∈ R
n×L.

Theorem 5. Let r, p and L be three integers such that
L > m(p + 1) and J(p) is defined by (with ‖·‖2, the 2-
norm)

J(p) =
1

r

r∑

k=p+1

∥
∥Y ∗

k ΠU∗
k

∥
∥2
2
. (30)

Let X1 be a positive real. There exists p0 such that ∀p >
p0, and the criterion J(p) defined by Eqn. (30) satisfies
the following inequality:

J(p) ≤ var(Wk) + X1. (31)

Proof. From the residual expressions (9), the criterion
J(p) given by (30) can be written as

J(p)

=
1

r

r∑

k=p+1

∥
∥WkΠU∗

k
+ CApXk−L−i+1:k−iΠU∗

k

∥
∥2
2
.

(32)

From the 2-norm properties and from a certain rank
p0, we have

J(p) ≤ 1

r

r∑

k=p+1

∥
∥WkΠU∗

k

∥
∥2
2

+
1

r

r∑

k=p+1

∥
∥CApXk−L−p+1:k−pΠU∗

k

∥
∥2

2
,

(33)

where

∥
∥WkΠU∗

k

∥
∥
2
≤ ‖Wk‖2

∥
∥ΠU∗

k

∥
∥
2︸ ︷︷ ︸

=1

⇒ ∥
∥WkΠU∗

k

∥
∥
2
≤ ‖Wk‖2 . (34)

The inequality (33) becomes

J(p) ≤ 1

r

r∑

k=p+1

‖Wk‖22 + X , (35)
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where

X =
1

r

r∑

k=p+1

‖CApXk−L−i+1:k−i‖22.

Since

var(Wk) = lim
r→∞

1

r

r∑

k=p+1

‖Wk‖22,

under the stability hypothesis and using the same method
as in the proof of Theorem 1, one can have (31).

Remark 1. The integer i should be chosen in the interval
[p0, px[ (px ∈ N), where px is the maximum value
with acceptable computational complexity and p0 the
minimum integer which makes the criterion acceptable.
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Fig. 1. Illustration of the criterion.

6. Illustrative examples

Consider a system with three operating modes (σk ∈
{1, 2, 3}), where Mode 1 is a normal operating mode
and the other two modes represent faulty modes resulting
from two internal faults (Fig. 2). Output measurements
are affected by Gaussian white noise with zero mean and
variance var(wk) = 0.15.

The switching sequence is given by Table 1.

Table 1. Simulated switching sequence.
k ∈ [0, 1500[ [1500, 2500[ [2500, 4000[

mode number 1 3 2

The 3 modes are stable. Numerical values of the
parameters in these modes are given below. These
parameters are used to simulate the system output, but
they are not used to compute the residuals.

Two examples are described below. In the first one,
all modes are discernible, while in the second, Modes 2
and 3 are not discernible.

=
0

=
1

0	0x

1�k	 2�k	
Mode�1:�
operating�mode

Mode�2:�
faulty mode�2

3�k	k
Mode�3:�
faulty mode 3faulty mode�3

Fig. 2. Switching system.

6.1. Example 1 with all discernible modes. The
parameters of Mode 1 are given by

A1 =

⎡

⎢
⎢
⎣

−0.7 0 0 0
0 0.6 0 0
0 0 0.3 0
0 0 0 0.1

⎤

⎥
⎥
⎦ ,

B1 =

⎡

⎢
⎢
⎣

1 1
1 1
1 1
1 1

⎤

⎥
⎥
⎦ ,

C1 =

⎡

⎢
⎢
⎣

0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

⎤

⎥
⎥
⎦ ,

D1 =

⎡

⎢
⎢
⎣

0.1 0.1
0.1 0.1
0.1 0.1
0.1 0.1

⎤

⎥
⎥
⎦ .

The parameters of Mode 2 are given by

A2 =

⎡

⎢
⎢
⎣

−0.5 0 0 0
0 0.2 0 0
0 0 0.4 0
0 0 0 0.3

⎤

⎥
⎥
⎦ ,

B2 =

⎡

⎢
⎢
⎣

0.1 0.1
1.2 1.2
0.5 0.5
0.8 0.8

⎤

⎥
⎥
⎦ ,

C2 =

⎡

⎢
⎢
⎣

0.3 0 0 0
0 0.3 0 0
0 0 0.3 0
0 0 0 0.3

⎤

⎥
⎥
⎦ ,

D2 =

⎡

⎢
⎢
⎣

0.3 0.3
0.3 0.3
0.3 0.3
0.3 0.3

⎤

⎥
⎥
⎦ .
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The parameters of Mode 3 are given by

A3 =

⎡

⎢
⎢
⎣

−0.4 0 0 0
0 0.5 0 0
0 0 0.2 0
0 0 0 0.6

⎤

⎥
⎥
⎦ ,

B3 =

⎡

⎢
⎢
⎣

0.3 0.3
0.1 0.1
0.7 0.7
0.9 0.9

⎤

⎥
⎥
⎦ ,

C3 =

⎡

⎢
⎢
⎣

0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

⎤

⎥
⎥
⎦ ,

D3 =

⎡

⎢
⎢
⎣

0.5 0.5
0.5 0.5
0.5 0.5
0.5 0.5

⎤

⎥
⎥
⎦ .

The three modes are discernible since they do not
have the same Markov parameters.

DPM tuning. The first step of DMP is to tune
parameters i and L.

The integers i = 15 and L = 68 are chosen to
calculate the proposed residual. This choice is based on
the proposed criterion detailed in Section 5.

Input and output generation. Figures 3 and 4
represent the system inputs and outputs, which are the
only data used for residual computation to estimate the
switching time and to recognize the active mode on-line.

Switching time estimation. As shown in Fig. 5, the
switching times τ = 1500 and τ = 2500 are
well estimated by the proposed residuals. All residual
components are sensitive to all switching times.

Active mode recognition. The residual ε(1), k is
calculated using input-output data collected on-line and
off-line in Mode 1. The residual components allow Mode
1 recognition during interval [0, 1500], as is shown in
Fig. 6.

The residual ε(2), k is calculated using input-output
data collected on-line and off-line in Mode 2. The residual
components allow Mode 2 recognition during interval
[2501, 4000], as shown in Fig. 7.

The residual ε(3), k is calculated using input-output
data collected on-line and off-line in Mode 3. The residual
components allow Mode 3 recognition during interval
[1501, 2500], as shown in Fig. 8.

6.2. Example 2 with non-discernible modes. The
parameters of Mode 1 are

A1 =

⎡

⎢
⎢
⎣

1.0792 1.9072 0.9395 0.5389
−0.1542 −0.3322 −0.2895 −0.2139
−0.3538 −0.7776 −0.3280 −0.2391
−0.6090 −1.4554 −0.8149 −0.1190

⎤

⎥
⎥
⎦ ,

B1 =

⎡

⎢
⎢
⎣

−0.1152 −0.1152
0.1152 0.1152
0.0419 0.0419
0.1859 0.1859

⎤

⎥
⎥
⎦ ,

C1 =

⎡

⎢
⎢
⎣

0.1 0.3 0.2 0.1
0.5 0.7 0.2 0.1
0.3 0 −0.2 0.5
−0.2 0.4 −0.9 0.1

⎤

⎥
⎥
⎦ ,

D1 =

⎡

⎢
⎢
⎣

0.7 0.7
1.5 1.5
0.6 0.6
−0.6 −0.6

⎤

⎥
⎥
⎦ .

The parameters of Mode 2 are

A2 =

⎡

⎢
⎢
⎣

0.5669 0.9342 0.6730 0.3711
−0.1919 −0.2092 −0.3230 −0.1961
−0.1630 −0.5192 −0.0584 −0.1918
−0.1653 −0.7682 −0.5872 0.1007

⎤

⎥
⎥
⎦ ,

B2 =

⎡

⎢
⎢
⎣

0.1054 0.1054
0.0321 0.0321
−0.0577 −0.0577
−0.0363 −0.0363

⎤

⎥
⎥
⎦ ,

C2 =

⎡

⎢
⎢
⎣

0.3 0.9 0.6 0.3
1.5 2.1 0.6 0.3
0.9 0 −0.6 1.5
−0.6 1.2 −2.7 0.3

⎤

⎥
⎥
⎦ ,

D2 =

⎡

⎢
⎢
⎣

0.7 0.7
1.5 1.5
0.6 0.6
−0.6 −0.6

⎤

⎥
⎥
⎦ .

The parameters of Mode 3 are

A3 =

⎡

⎢
⎢
⎣

−3.1682 −5.0342 1.2697 −2.7353
1.0859 1.8972 −0.4467 0.8729
2.0977 2.9268 −0.3946 1.6441
2.2298 3.2131 −0.8241 2.0657

⎤

⎥
⎥
⎦ ,

B3 =

⎡

⎢
⎢
⎣

−0.0418 −0.0418
0.0234 0.0234
0.0264 0.0264
0.0241 0.0241

⎤

⎥
⎥
⎦ ,
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C3 =

⎡

⎢
⎢
⎣

6 8.4 −1.5 4.5
13.2 20.4 3.3 6.9
−3.9 8.7 −10.5 −0.6
−3.3 7.8 3.9 −12.6

⎤

⎥
⎥
⎦ ,

D3 =

⎡

⎢
⎢
⎣

0.7 0.7
1.5 1.5
0.6 0.6
−0.6 −0.6

⎤

⎥
⎥
⎦ .

The matrix Ψ such that
⎧
⎪⎪⎨

⎪⎪⎩

A3 = Ψ−1A2Ψ,
B3 = Ψ−1B2,
C3 = C2Ψ,
D3 = D2

is

Ψ =

⎡

⎢
⎢
⎣

1 3 2 1
5 7 2 1
3 0 −2 5
−2 4 −9 1

⎤

⎥
⎥
⎦ .

Modes 2 and 3 are not discernible (i.e., they have
the same Markov parameters H2 = H3) and ∃r ∈
{1, 2, . . . , i} : H(2, 3), i, r �= H(2), i.

DPM tuning. The two integers i = 20 and L = 88
are chosen for the three modes by calculating the criterion
given by (30).

Input and output generation. Figures 9 and 10
represent the system inputs and outputs, which are the
only data used for residual computation to estimate
switching times and to recognize the active mode on-line.

Estimation of switching times.

• Switching between discernible modes: A switching
at time instant τ = 1500 between Modes 1 and 3 is
well detected as shown in Fig. 11.

• Switching between non discernible modes: A
switching at time instant τ = 2500 between Modes 3
and 2 is also well detected despite the fact that these
modes are not discernible, H2 = H3 this means that
∃r ∈ {1, 2, . . . , i} : H(2, 3), i, r �= H(2), i.

The switching times τ = 1500 and τ = 2500 have
been well estimated by the proposed residual, as shown in
Fig. 11. All residuals are sensitive to these switchings.

Active mode recognition. The bank of residuals ε(1), k,
ε(2), k and ε(3), k (cf. Figs. 12–14) shows the following:

• From Fig. 12: Mode 1 is active during the time
interval [0, 1500].

• From Figs. 13 and 14: Modes 2 and 3 are not
discernible and one of them is active. The exact
active mode cannot be determined, but one can just
conclude that Mode 2 or 3 is active during the time
interval [1501, 2500]. This non-discernibility is due
to the fact that the condition of discernibility of
Theorem 4 is not satisfied.

• Since the switching occurs during these two modes’
activity at time instant τ = 2500: if Mode 2 (resp. 3)
is active during the time interval [1501, 2500], then
Mode 3 (resp. 2) is active during the time interval
[2501, 4000].

The switching at time instant τ = 2500 occurs
between Modes 2 and 3, which are not discernible.
Despite the fact that these modes are not discernable the
switching at time instant τ = 2500 is well detected
in Fig. 11 and also in Figs. 13 and 14. Indeed, the
detectability condition given by the third equation of
Theorem 2 is satisfied.

7. Conclusion

A data projection method (DPM) was proposed in this
paper to estimate the switching time and recognize the
active mode in a switching system. This method can be
used to detect and identify internal faults. The diagnosis
problem may be viewed as that of estimating the switching
time and recognizing the faulty mode. Two conditions,
namely, those of discernibility and detectability, are
established. Under the discernibility condition, the active
mode can be well recognized, and under the detectability
condition, the switching time can be well estimated.

The main advantage of this method, compared with
others described in the literature (e.g., Akhenak et al.,
2008; Domlan et al., 2007a; Cocquempot et al., 2004;
Bayoudh and Travé Massuyès, 2014), is that the DPM
does not need the parameter values of the model. The
residuals are generated by projecting the input-output data
in a way that depends on the model structure, which is
supposed to linear in the paper. As a consequence, the
DPM can be directly implemented on systems of the same
type (the same model structure) without identifying, for
each system, the parameters. This is of great interest
in practice. The main drawback of the method is what
can happen if the eigenvalue of the state matrix for one
mode is close to 1. One can have in this case a large
size of input, output and projection matrices, and the time
complexity of the algorithm will increase. This problem
will be considered in our future works.
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Hofbaur, M., Travé-Massuyès, L., Rienmüller, T. and
Bayoudh, M. (2010). Overcoming non-discernibility
through mode-sequence analytic redundancy relations in
hybrid diagnosis and estimation, 21st International Work-
shop on Principles of Diagnosis DX-10, Portland, OR,
USA, pp. 1–7.

Kailath, T. (1980). Linear Systems, Englewood Cliffs, NJ.

Liberzon, D. (2005). Switched Systems, Birkhauser, Boston,
MA.

Lin, H. and Antsaklis, J.P. (2009). Stability and stabilizability of
switched linear systems: A survey of recent results, IEEE
Transactions on Automatic Control 54(2): 308–322.

Livadas, C., Lygeros, J. and Lynch, N.A. (2000). High-level
modeling and analysis of the traffic alert and collision
avoidance system (TCAS), Proceedings of the IEEE,
88(7): 926–948.

Ma, Y., Kawakami, H. and Tse, C.K. (2004). Bifurcation
analysis of switched dynamical systems with periodically
moving borders, IEEE Transactions on Circuits and Sys-
tems 51(6): 1184–1193.

Mitsubori, K. and Saito, T. (1997). Dependent switched
capacitor chaos generator and its synchronization, IEEE
Transactions on Circuits and Systems 44(12): 1122–1128.

Narasimhan, S. and Biswas, G. (2007). Model-based diagnosis
of hybrid systems, IEEE Transaction on Systems, Man,
and Cybernetics A: Systems and Humans 37(3): 348–361,
DOI:10.1109/TSMCA.2007.893487.

Pekpe, K.M., Mourot, G. and Ragot, J. (2006). Subspace
method for sensor fault detection and isolation–application
to grinding circuit monitoring, 11th IFAC Symposium on
automation in Mining, Mineral and Metal Processing,
Nancy, France, pp. 47–52.

Petroff, B.N. (2007). Biomimetic Sensing for Robotic Manipu-
lation, Ph.D. thesis, Graduate School of the University of
Notre Dame, Notre Dame, IN.



838 A. Hakem et al.

Torikai, H. and Saito, T. (1998), Synchronization of chaos and its
itinerancy from a network by occasional linear connection,
IEEE Transactions on Circuits and Systems I: Fundamen-
tal Theory and Applications 45(4): 464–472.

Van Overschee, P. and De Moor, B. (1996), Subspace Identi-
fication for Linear Systems Theory: Implementation and
Applications, Kluwer Academic Publishers, Boston, MA.

Williams, S.M. and Hoft, R.G. (1991), Adaptive frequency
domain control of ppm switched power line conditioner,
IEEE Transactions on Power Electronics 6(4): 665–670.

Yang, H., Jiang, B. and Cocquempot, V. (2010), Fault tolerant
control and hybrid systems, in H. Yang et al. (Eds.), Fault
Tolerant Control Design for Hybrid Systems, Springer
Verlag, Berlin/Heidelberg.

Zhang, W., Hu, J. and Lu, Y.H. (2007), Optimal power
modes scheduling using hybrid systems, Proceedings of
the American Control Conference, New York City, NY,
USA, pp. 2781–2786.

Assia Hakem received her Master’s degree
in intelligent systems of transportation from
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Appendix

A1. Theorems proofs

A1.1. Proof of Theorem 2. The first part of the proof
determines the evaluation form of the proposed residual

when a switching occurs in the time window considered
(τ ∈ [k − L− i+ 1, k]).

The first step is to determine the output expression
in the time window [k − L − i + 1, k] that contains the
switching time τ . The output yt is expressed differently,
depending on whether t < τ , τ ≤ t ≤ τ + i − 1 and
t > τ + i− 1, as detailed in Fig. A1.

Occurrence�time�of�internal fault =�switching time


 1�� i

 1� i

Time


�t 1��� it 
1�� it 



Time window of length L1
ty

Time�window of�length L3
ty 2

ty

Fig. A1. Computation time window decomposition in three
parts.

1. Output expression yt = y1t for t < τ :

y1t = CστA
i
στ
xt−i

+
i−1∑

j=0

CστA
j
στ
Bστut−1−j

+Dστut + wt

= CστA
i
στ
xt−i +H(στ ), iut, i + wt.

(A1)

2. Output expression yt = y2t for t > τ + i− 1:

y2t = Cστ+1A
i
στ+1

xt−i

+

i−1∑

j=0

Cστ+1A
j
στ+1

Bστ+1ut−1−j

+Dστ+1ut + wt

= Cστ+1A
i
στ+1

xt−i +H(στ+1), iut, i + wt.

(A2)

3. Output expression yt = y3t for τ ≤ t ≤ τ + i− 1:

y3t = Cστ+1A
t−τ+1
στ+1

Ai−t+τ−1
στ

xt−i

+
i−t+τ−2∑

j=0

Cστ+1A
t−τ+1
στ+1

Aj
στ
Bστuτ−2−j

+

t−τ∑

j=0

Cστ+1A
j
στ+1

Bστ+1ut−j−1

+Dστ+1ut + wt

= Cστ+1A
t−τ+1
στ+1

Ai−t+τ−1
στ

xt−i

+H(στ , στ+1), i, t−τ+1ut, i + wt.
(A3)
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Let us construct now the matrix Yk = Yk−L+1:k. For
the three expressions for yt, we have

Yk =
[
y1k−L+1 · · · y1τ−2 y1τ−1 y3τ · · ·

y3τ+i−2 y3τ+i−1 y2τ+i · · · y2k−1 y2k
]
,

which gives

Yk−L+1:k

=
[
δ̃i(στ ), k−L+1−i:τ−1−i|

δ̃i(στ , στ+1), τ−i:τ−1|δ̃i(στ+1), τ :k−i

]

+H(στ ), i

[
Uk−L+1:τ−1|0m(i+1)×k−τ+1

]

+
[H(στ , στ+1), i, 1|H(στ , στ+1), i, 2| · · · |

H(στ , στ+1), i, i−1|

H(στ , στ+1), i, i

] [
0mi(i+1)×τ+L−k−1|

Ŭ |0mi(i+1)×k−τ−i+1

]

+H(στ+1), i

[
0m(i+1)×L−k+τ+i−1|Uτ+i:k

]
+Wk

(A4)
where

δ̃i(στ , στ+1), τ−i:τ−1

=
[
Cστ+1Aστ+1A

i−1
στ

xτ−i|
Cστ+1A

2
στ+1

Ai−2
στ

xτ−i+1|
· · · |Cστ+1A

i−1
στ+1

Aστxτ−2| Cστ+1A
i
στ+1

xτ−1

]

and Ŭ ∈ R
mi(i+1)×i is defined as follows:

Ŭ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uτ, i O · · · · · · O

O uτ+1, i
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . O

O · · · · · · O uτ+i−1, i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

with O = 0m(i+1)×1 ∈ R
m(i+1)×1 being a zero column

vector.
In order to make the matrix Uk−L+1:k appear, we add

and we subtract the term

H(στ ), i

[
0m(i+1)×τ−k+L−1|Uτ :k

]

from Eqn. (A4). Thereafter, the output matrix Yk−L+1:k

is given by

Yk−L+1:k

=
[
δ̃i(στ ), k−L+1−i:τ−1−i|δ̃i(στ , στ+1), τ−i:τ−1|

δ̃i(στ+1), τ :k−i

]
+H(στ ), iUk−L+1:k

+Ω +Wk,

(A5)

Post-multiplying Eqn. (A5) byΠUk−L+1:k
, we get the

residual evaluation form

εk = ΩΠUk−L+1:k
+WkΠUk−L+1:k

+ δik, (A6)

where

δik =
[
δ̃i(στ ), k−L+1−i:τ−1−i|δ̃i(στ , στ+1), τ−i:τ−1|

δ̃i(στ+1), τ :k−i

]
ΠUk−L+1:k

∈ R
�×1.

The initial state contribution δik can be neglected for
the following reasons (Kailath, 1980):

1. For t < τ and t > τ + i− 1:
Under stability hypothesis of Aστ and Aστ+1 , the
initial state contribution can be neglected for i
sufficiently large, i.e., limi→∞ CστA

i
στ
xt−i = 0

and limi→∞Cστ+1A
i
στ+1

xt−i = 0.

2. For τ ≤ t ≤ τ + i− 1):
The state is multiplied by a term of a general form
At−τ+1

στ+1
Ai−t+τ−1

στ
as shown in Eqn. (A3), where the

sum of powers is always equal to i. Let ‖·‖ represent
a multiplicative norm. Then we have
∥
∥
∥At−τ+1

στ+1
Ai−t+τ−1

στ

∥
∥
∥ <

∥
∥
∥At−τ+1

στ+1

∥
∥
∥
∥
∥Ai−t+τ−1

στ

∥
∥ ,

and we also have
∥
∥
∥At−τ+1

στ+1
Ai−t+τ−1

στ

∥
∥
∥ < (max(

∥
∥Aστ+1

∥
∥ , ‖Aστ ‖))i.

For i → ∞, the term (max(
∥
∥Aστ+1

∥
∥ , ‖Aστ ‖))i is

negligible. Consequently,

lim
i→∞

Cστ+1A
t−τ+1
στ+1

Ai−t+τ−1
στ

xt−i = 0.

Therefore, ∀η > 0, ∃i0 ∈ N such that ∀i > i0(i ∈
N) and

∥
∥δik

∥
∥ < η.

• Sufficient condition:
If span(Ω) �⊂ span(Uk−L+1:k), then ∀X and we
have Ω �= XUk−L+1:k. Consequently, the residual
mean and variance change.

• Necessary condition:
If the residual mean and variance change, then
ΩΠUk−L+1:k

�= 0, which implies that span(Ω) �⊂
span(Uk−L+1:k).
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A1.2. Proof of Theorem 3. If a mode σk is active in a
time window [k − L − i + 1, k], then the output matrix
Yk−L+1:k is given by

Yk−L+1:k = δ̃i(σk), k−L+1−i:k−i

+H(σk), iUk−L+1:k +Wk. (A7)

By replacing the first L/2 columns of the matrix
Uk−L+1:k (resp. Yk−L+1:k) by the input matrix U∗

(γ), 1:L2
(resp. the output matrix Y ∗

(γ), 1:L2
) constructed with

input-output data collected off-line from mode γ (γ ∈
{1, 2, . . . , d}), the resulting input and output matrices
are given (24). From Eqn. (A7), the general expression of
Y(γ, σk), k−L

2 +1:k becomes

Y(γ, σk), k−L
2 +1:k

=
[
δ̃i
(γ), 1:L2

|δ̃i
(σk), k−L

2 +1−i:k−i

]

+H(γ), i

[
U∗
(γ), 1:L2

|0m(i+1)×L
2

]

+H(σk), i

[
0m(i+1)×L

2
|Uk−L

2 +1:k

]
+Wk,

(A8)

In order to make the matrix U(γ, σk), k−L
2 +1:k

appear, we add and subtract the term

H(γ), i

[
0m(i+1)×L

2
|Uk−L

2 +1:k

]
from Eqn. (A8):

Y(γ, σk), k−L
2 +1:k

=
[
δ̃i
(γ), 1:L2

|δ̃i
(σk), k−L

2 +1−i:k−i

]

+H(γ), iU(γ, σk), k−L
2 +1:k

+ (H(σk), i −H(γ), i)
[
0m(i+1)×L

2
|Uk−L

2 +1:k

]

+Wk.
(A9)

Post-multiplying both the sides of Eqn. (A9) by
ΠU

(γ, σk), k−L
2

+1:k
, the evaluation form of the proposed

residual yields

ε(γ), k = (H(σk), i −H(γ), i)
[
0m(i+1)×L

2
|

Uk−L
2 +1:k

]
ΠU

(γ, σk), k− L
2

+1:k
+ δik (A10)

with

δik =
[
δ̃i(γ), 1:L2

|δ̃i(σk), k−L
2 +1−i:k−i

]
ΠU

(γ, σk), k−L
2

+1:k

∈ R
�×1.

on the assumption that the modes are stable, which is
equivalent to stating that eigenvalues of matrices Aγ and

Aσk
are inside the unit circle. Then we have (Kailath,

1980)
lim
i→∞

Ai
γ = 0, lim

i→∞
Ai

σk
= 0. (A11)

As a consequence, δik in Eqn. (A10) becomes
negligible for i sufficiently large.

By neglecting the initial state contribution, where the
approximation term is δik and ∀η > 0, ∃i0 ∈ N such that
∀i > i0(i ∈ N):

∣
∣δik

∣
∣ < η.

The evaluation form (A10) of the residual can be
approximated by

ε(γ), k = (H(σk), i −H(γ), i)
[
0m(i+1)×L

2
|

Uk−L
2 +1:k

]
ΠU

(γ, σk), k−L
2

+1:k
.

(A12)

If the active mode is σk = γ, then H(σk), i = H(γ), i

and we have (27 ).

A1.3. Proof of Theorem 4.

• Sufficient condition:
If

span((H(σk), i−H(γ), i)
[
0m(i+1)×L

2
|Uk−L

2 +1:k

]
)

�⊂ span(U(γ, σk), k−L
2 +1:k),

then for any X we have

(H(σk), i −H(γ), i)
[
0m(i+1)×L

2
|Uk−L

2 +1:k

]

�= XU(γ, σk), k−L
2 +1:k

and, according to Theorem 3, the residual is not zero
mean Gaussian noise while the mode is discernible.

• Necessary condition:
If the residual is not zero mean Gaussian noise, then,
according to Theorem 3,

(H(σk), i −H(γ), i)
[
0m(i+1)×L

2
|Uk−L

2 +1:k

]

ΠU
(γ, σk), k−L

2
+1:k

�= 0,

which implies that

span((H(σk), i−H(γ), i)
[
0m(i+1)×L

2
|Uk−L

2 +1:k

]
)

�⊂ span(U(γ, σk), k−L
2 +1:k).
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