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1. Introduction

The congestion problem is frequently encountered in
communication networks. Network routers transmit
packets by links having a limited bandwidth and, if the
number of incoming packets exceeds a link capacity, the
link is congested and router buffers storing packets to be
transmitted via this link may overflow.

To address this problem in TCP/IP networks, the
Internet Engineering Task Force (IETF), which develops
and promotes Internet standards, in particular those
that comprise the Internet protocol suite (TCP/IP),
recommends to use in IP routers active queue manage-
ment (AQM), a mechanism of preventive packet dropping
even if there is still place to store packets, which
aims at advertising that the queue is increasing and the
danger of congestion approaches. The probability of
packet rejection is increasing together with the level
of congestion. The packets are dropped randomly,
hence only certain users are notified and the global
synchronization of connections is avoided. AQM enhan-
ces the efficiency of transfers and cooperates with the TCP
congestion window mechanism in adapting flow intensity
to the congestion at a network (Braden et al., 1998).
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The most well-known AQM scheme is RED (random
early detection), proposed by Floyd and Jacobson (1993).
At each packet arrival, a moving queue average ν is
determined as the current queue length taken with the
weight w and the old moving average taken with the
weight 1 − w. In this way, the moving average acts as a
low-pass filter. The probability of rejection p is a function
of the moving average: if ν is smaller than a defined
lower threshold Minth, then p = 0; p increases linearly
from 0 to a determined Pmax within the lower and upper
threshold Maxth, and then for greater ν all packets are
rejected: p = 1.

This mechanism improves link utilization and is very
useful in keeping the average queue size and queuing
delay on a reasonable level. The choice of its parameters
is not evident (Tan et al., 2006) and has been thoroughly
discussed (see, e.g., Chang Feng et al., 1999; May et al.,
2000). If they are not chosen correctly, RED performance
can degrade and the TCP/RED system may become
unstable (Unal et al., 2013). Tan et al. (2006) derived
some explicit conditions under which the TCP/RED
system is stable in terms of the average queue length.
Despite its evident highlights, RED also shows such
drawbacks as unfair bandwidth sharing, introduction of
variable latency, or deterioration of network stability. The
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TCP/RED system becomes unstable when the round-trip
delay and link capacity increase, and the number of TCP
sessions decreases (Tan et al., 2006). A number of studies
how to improve the basic algorithm have appeared; their
comparison may be found, e.g., in the work of Hassan
and Jain (2004). We have also proposed and evaluated a
few variants (cf. Domańska et al. 2014a; 2014c; 2012;
2007; 2008; 2013; Augustyn et al., 2010; Domańska and
Domański, 2008; Domański et al., 2012).

The AQM mechanism may be seen as part of closed
loop control of TCP/IP traffic. The feedback control
system includes a TCP congestion window increasing
or decreasing the TCP flow as a function of losses, the
queue of packets at a bottleneck router reacting to the
changes in the input flow, and AQM determining the loss
probability, which in turn, after a certain delay, modifies
the congestion window.

As has been discussed in many papers (e.g., Misra
et al., 2000; Hollot et al., 2002), this feedback control
system may be modeled and the model used to investigate
the system stability with the use of control theory. The
most common model is based on fluid flow approximation
and is presented more formally in the next section. Each
element of the control loop, after its linearization, is
represented by its transfer function. The RED mechanism,
seen as a control block with the queue length q(t) as the
input signal and loss probability ploss(t) as the output
signal, turns out to be a first-order system (Hollot et
al., 2001b), i.e., having the Laplace transform of the
transfer function of type k/(sT + 1), where k and T are
constant.

We may also investigate the performance of this
closed loop control if the RED mechanism is replaced
by any other controller. Hollot et al. (2002) focused
on the design of a proportional-integral controller on
low-frequency dynamics. Quet and Ozbay (2004)
described a robust controller based on a known technique
for H∞ control of systems with time delays. The
H∞ controller was designed for the original linear
system proposed by Hollot et al. (2002) but without
neglecting high-frequency dynamics that ensure robust
stability and good performance for a wider range of
network parameters. The AQM scheme proposed by
Quet and Ozbay (2004) performs better than RED by
obtaining shorter transients and less oscillatory responses,
which gives higher link utilization, a low packet loss rate
and smaller queue fluctuations. Chen and Yang (2007)
proposed a robust AQM controller for IP routers based
on modern robust μ-analysis and H∞ optimal control
theory. The authors approximated the μ-optimal control
problem by the H∞S/T/U mixed sensitivity problem.
In the work of Manfredi et al. (2009) an H∞ state
feedback controller for time-delay systems was used to
adjust the queue length against variations in the average
round-trip time, the load and link capacity. Zheng and

Nelson (2009) proposed an AQM congestion controller
based on the H∞ approach and studied the problem of
the robustness of the congestion control algorithm against
the disturbance on the available link bandwidth since it
is often time-varying and cannot be exactly measured.
The disadvantage of the above described controllers is
their difficult implementation in real networks due to their
computational complexities.

The PI AQM controller proposed by Hollot et al.
(2001b; 2002) was designed following the small-gain
theorem. Based on easy implementation of PI
AQM controllers in real networks, a number of PI
controllers have been proposed (Michiels et al., 2006;
Melchor-Aquilar and Castillo-Tores, 2007; Ustebay et al.,
2007; Melchor-Aquilar and Niculescu, 2009). Unal et al.
(2013) compared the performance of several of them.

During the last few years, fractional order calculus
has been used in many mathematical models of dynamical
systems both continuous and discrete. The literature
(Podlubny, 1999b; Chen et al., 2009) indicates that
non-integer order controllers may have better performance
than traditional integer order ones. Luo and Chen
(2009) showed that, in many instances, fractional order
controllers outperform the best integer order controllers.
The first application of the fractional order PI controller
as an AQM policy in the fluid flow model of a
TCP connection was presented by Krajewski and Viaro
(2014). The authors focused on determining the parameter
regions, where the PIα controller ensures a given modulus
margin (inverse of the H∞ norm of the sensitivity
function).

Our article investigates the performance of a
fractional order PI controller (PIα) applied to control
Internet traffic supervised by TCP and UDP transport
protocols. We investigate the influence of parameters
of the controller on the packet loss probability, the
queue length (hence also transmission time) and its
variability (jitter), which are usual determinants of the
quality of service for network transmissions. We also
compare its performance with the RED mechanism,
usually implemented in IP routers. The performance
of TCP closed loop control is investigated with the use
of fluid flow approximation, as proposed earlier (Misra
et al., 2000; Hollot et al., 2002) and summarized in
Section 2.1. The basic definition and properties of the
theory of fractional calculus are summarized in Section
2.2. Section 2.3 gives features of the fractional order PI
controller. The results of comparing the PIα controller
with the RED policy are presented in Section 3.

We also model open loop performance of an
AQM router with the PIα controller via discrete event
simulation. In this case we include a more detailed
Internet traffic model reflecting self-similarity, a feature
frequently observed in traffic and having decisive impact
on the quality of service. Section 4 provides simulation
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results of open loop performance of the AQM router with
the PIα controller versus RED policy in the presence of
self-similar traffic. Concluding remarks are presented in
Section 5.

2. Theoretical background

2.1. Fluid flow analysis. This section presents
a fluid flow model of a TCP connection having a
bottleneck router with RED or an AQM policy. This
model demonstrates the TCP protocol dynamics based
on a model developed by Misra et al. (2000), as well
as Hollot et al. (2001a), which uses fluid flow and
stochastic differential equation analysis. The model
ignores TCP timeout mechanisms and allows obtaining
the average value of key network variables. In Misra
et al. (2000), a differential-equation-based fluid model
was presented to enable transient analysis of TCP/AQM
networks. The authors described the behavior of TCP
networks (flows and queues) using a set of stochastic
differential equations. They also showed how to obtain
ordinary differential equations by taking expectations
of stochastic differential equations, and how to solve
the resultant coupled ordinary differential equations
numerically. These equations represent the expected or
mean behavior of the system.

The dynamics of the TCP window for the i-th stream
are approximated by (Hollot et al., 2001a)

dWi(t)

dt
=

1

Ri(t)

− Wi(t)Wi(t−Ri(t))

2Ri(t−Ri(t))
p(t−Ri(t)),

(1)

where Wi(t) is the expected TCP sending window size
(packets),

Ri(t) =
q(t)

C
+ Tpi

is the round-trip time [s], q(t) is the queue length
(packets), C is the link capacity [packets/s], Tpi is the
propagation delay [s], p is the probability of packet drop,
i is the index of flow.

The first term on the right-hand side of Eqn. (1)
represents the rate of increase in the congestion window
due to incoming acknowledgments, while the second
represents the rate with which the congestion window
decreases due to packet losses. The model ignores the
slow start phase in congestion window algorithm, where
the increase of its size is non-linear. Each packet loss
halves the congestion window size as it is done in Reno.
The router transmits also UDP packets, assuming that
there are n2 UDP constant bit rate streams with intensities
Ui.

The dynamics of a queue are given by

dq(t)

dt
=

n1∑

i=1

Wi(t)

Ri(t)
+

n2∑

i=1

Ui − C, (2)

where n1 is the number of TCP streams, n2 is the number
of UDP streams.

Figure 1 presents the control block diagram based on
the differential equations presented above.

Fig. 1. Non-linear dynamic model for TCP/UDP/AQM connec-
tion.

The maximum values of q and W (queue length and
congestion window size) depend on the buffer capacity
and the maximum window size. The dropping probability
p depends on the AQM queue algorithm. Equation (2)
gives the speed of the bottleneck router queue changes due
to incoming and leaving flows of packets.

The traffic composed of TCP and UDP streams was
considered by Wang et al. (2005) and Domański et al.
(2012). In these works, all TCP sources had the same
window dynamics and UDP streams were permanently
associated with the TCP stream. The pair taken into
consideration was the TCP stream being limited by the
UDP stream. In this article, the TCP and UDP streams are
treated as separate streams. In the works of Kiddle et al.
(2003) and Yung et al. (2001) a separate UDP stream was
used; our work (described by Domańska et al. (2014c))
differs in this respect in that TCP can start from various
initial window sizes. Additionally, we can set up a time
after which the stream (TCP or UDP) will be started.
The dynamics of the queue described by Eqn. (2) are
influenced only by the streams that had started and have
not yet sent a predetermined number of packets.

The model may be extended to any network topology
and any number of TCP flows (e.g., Nycz et al., 2015)
presents a numerical example for a real network topology
with 134,023 nodes and 50,000 flows. In this case, for a
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flow i,

dW i(t)

dt
=

1

Ri(q(t))
− Wi(t)

2

Wi(t− τ)

Ri(q(t− τ))

×
(
1−

∏

j∈Vi

(1 − pij)
)
. (3)

A router allows reception of traffic from K TCP
flows (K ≤ N ), where N is the entire number of flows in
the network, pij denotes the loss probability at node j for
packets of connection i, Vi is the set of nodes belonging to
this connection, and q(t) is the vector of queues at these
nodes. Delays Ri consist of queue delays at all nodes j,
defined as qj(t)/Cj along this connection and propagation
delay Tpi:

Ri(q(t)) =

M∑

j∈Vi

qj(t)

Cj
+ Tpi, (4)

where M is the number of hops, i.e., M − 1 is the
number of intermediate routers in connection i. The
drop probability pij is determined according to RED or
another AQM mechanism, while the differential equations
are solved numerically.

2.2. Fractional calculus. As was already mentioned
in Introduction, fractional calculus is important in
many areas, e.g., viscoelasticity, capacitor theory,
electrical circuits, electro-analytical chemistry, neurology,
diffusion, control theory and statistics (Podlubny, 1999a).

Fractional order derivatives and integrals
(FODs/FOIs) are a natural extension of the well
known integrals and derivatives. Differ-integrals of
non-integer orders enable better and more precise control
of physical processes. In this section, basic definition and
properties of the fractional integral and fractional calculus
are presented. These definitions unify the definition of a
derivative and an integral to one differ-integral definition.
The function is a fractional derivative (for α > 0) or a
fractional integral (for α < 0). For α = 0, a function is
the function itself.

The most popular formulas to calculate
differ-integral numerically are the Grunwald–Letnikov
(GrLET) formula and the Riemann–Liouville (RL)
formulas (Miller and Ross, 1993; Podlubny, 1999a;
Ciesielski, 2006). The Grunwald–Letnikov formula is

dα

dtα
= lim

h→0

1

hα

∞∑

r=0

(−1)r
(
α

r

)
f(t− rh). (5)

In active queue management, packet drop
probabilities are determined at discrete moments of
packet arrivals, so in simulations we consider the queue
as a discrete system.

In the case of discrete systems, there is only one
definition of differ-integrals of non-integer order. This
definition is a generalization of the traditional definition
of the difference of integer order to non-integer order,
and it is analogous to a generalization used in GrLET
formula. In discretization it is generally assumed that the
step discretization h > 0 is given. The difference of a
non-integer order is defined as follows:

�αxk =

k∑

j=0

(−1)j
(
α

j

)
xk−1, (6)

where α ∈ R is generally a non-integer fractional order,
xx is a differentiated discrete function and the coefficient(
α
j

)
is defined as follows:

(
α

j

)
=

⎧
⎨

⎩

1 for j = 0,
α(α − 1) . . . (α− j + 1)

j!
for j = 1, 2, . . . ,

(7)
i.e., the difference of a non-integer order is the sum of
all samples from point x0 to point xk with coefficients
ν(j) =

(
α
j

)
defined above.

2.3. Fractional order PIα controller. Recall that
the proportional-integral controller (PI controller) is a
traditional mechanism used in feedback control systems.
Earlier works show that the non-integer order controllers
have better behavior than classic controllers (Podlubny,
1999b). PIα may be used instead of the RED mechanism
to determine the probability p of a packet drop in the
following way:

p = max{0,−(Kpe+Ki

∑

j∈Vi

ν(j)e)}, (8)

where Kp,Ki are tuning parameters, ν(j) is a coefficient
associated with the non-integer integral order, e is the
error e = q − qd (q: actual queue size, qd: desired queue
size).

In this proposal the dropping probability depends on
three parameters: the coefficients for the proportional and
integral terms (Kp,Ki) and the integral order (α).

Figures 2–4 present the probability of packet
dropping p given by Eqn. (8) and based on the PIα

response. In Figs. 2 and 3 we have α = −1, so it is in fact
a PI controller. The integral term in PIα yields a strong
correlation between the packet dropping probability and
the history of queue occupancy and this probability is not
the same as in the RED mechanism. The figures present
how to change of the probability of packet dropping
during a continuous increase in buffer occupancy as a
result of the continuous packets incoming. Naturally, the
response depends on the choice of parameters.
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Fig. 2. Packet dropping probability based on a PIα controller
response (the influence of the parameter Kp): α = −1,
Ki = 0.0008.
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Fig. 3. Packet dropping probability based on a PIα controller
response (the influence of the parameter Ki): α = −1,
Kp = 0.00115.

3. Fluid flow analysis of PIα controller
performance

Our main goal is here to evaluate the PIα controller as an
active queue management mechanism taking into account
the queue length and packet loss. For numerical fluid flow
computations, we used software written in Python and
presented previously (Domańska et al., 2014c). During
the tests we assumed the following TCP connection
parameters:

• transmission capacity of AQM router: C = 0.075,

• propagation delay for the i-th flow: Tpi = 2,

• initial congestion window size for the i-th flow
(measured in packets): Wi = 1, 2, 3, 4, . . . ,

• starting time for the i-th flow (TCP and UDP),
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Fig. 4. Packet dropping probability on a PIα controller response
(the influence of the integral order α): Kp = 0.00115,
Ki = 0.0011.

• the number of packets sent by the i-th flow (TCP and
UDP).

The results were compared with the performance
of the RED mechanism with the following parameters:
Minth = 10, Maxth = 15, buffer size (measured in
packets) = 20, Pmax = 0.1, weight parameterw = 0.007,
and PIα behavior with setpoint = 10.

Fig. 5. TCP congestion window evolution. PIα parameters:
Kp = 0.00115, Ki = 0.0011.

Figure 5 displays the evolution of the congestion
window W in the case of one TCP flow. The experiment
was repeated for four different AQM mechanisms: RED
and a PIα controller with different integral orders: −0.8,
−1.0, −1.2. The tuning parameters were Kp = 0.00115,
Ki = 0.0011. The controller with the same set parameters
was used later in an open loop scenario. In all cases, the
size of the congestion window increases as long as the
drop probability (given by the AQM mechanism based on
the queue length) equals zero. When the AQM mechanism
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Table 1. Average queue length.
AQM Avg. queue length

RED 10.4067
PI,α = −0.8 8.6814
PI,α = −1.0 8.3312
PI,α = −1.2 8.1807

starts dropping packets, the size of the congestion window
decreases, causing a decrease in the queue length and this
pattern is repeated periodically. For all graphs, time is
represented in abstract simulation units.

We remark that congestion window changes have
several properties.

The politics of packet dropping (compared with
RED) are more aggressive for the PIα controller (W
decreases more). The reaction of the PIα controller is
also more delayed than in RED. This is due to a slightly
different method of calculating packet drop probability.
Contrary to RED, in the case of the PIα controller, the
length of the period when queue occupancy does not
exceed the desired point influences the drop probability.
In the case of a single TCP stream, the PIα parameters
are not as significant. The obtained average queue
length (Table 1) differs slightly and does not exceed the
setpoint. However, the trends are consistent with the
results obtained earlier. The most aggressive controller
reacts first on buffer overflow.

Fig. 6. TCP congestion window W evolution: 4 TCP streams.

The next example shows the cooperation of four TCP
streams. The experiment is divided into phases. In the first
part, only one stream transmits data. Then at t = 200000
the next TCP flow starts transmission and at t = 400000
two further streams become active. The first stream sends
60,000, the second stream 40,000, the third and fourth
stream send 20,000 packets.

Figure 6 presents the congestion window for the
first TCP flow depending on the AQM mechanism. The

Fig. 7. TCP congestion window evolution: 4 TCP stream coop-
eration, RED.

Fig. 8. TCP congestion window evolution: 4 TCP stream coop-
eration, PI.

changes in the first phase are similar to the ones presented
in Eqn. (5). In the next phase the second TCP flow reduces
the available bandwidth and the congestion window. This
reduction is continued when the next two streams appear.
We see how AQM effects TCP behavior and the speed of
data transmission. First the transmission with the RED
algorithm is ended—Fig. 7 explains it. The first stream in
the first phase when it is alone accelerates its transmission
and then appropriates the channel until it sends all data.
In the case of the PIα controller (Fig. 8) the streams are
treated fairly. The congestion windows of the cooperating
streams fluctuate identically. Figures 7 and 8 show the
TCP streams cooperation. The third and fourth streams
begin transmission at the same time and transmit the
same number of packets. Therefore, the evolution of the
window for these streams is identical.
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4. PIα controller under self-similar traffic:
An open loop discrete-event simulation
model

Over the last two decades, long-range dependence
(LRD), self-similarity and heavy-tailed distributions
have dominated Internet traffic analysis. Extensive
measurements have revealed these phenomena in network
traffic (Crovella and Bestavros, 1997; Karagiannis et al.,
2004; Domańska et al., 2008; 2014b; 2015). These
features have great impact on network performance
(Domańska and Domański, 2005; Domański et al., 2008;
Domańska et al., 2012). They enlarge mean queue lengths
at buffers and increase the packet loss probability, thereby
reducing the quality of the services provided by a network
(Stallings, 1998).

A continuous time process Y (t) is exactly
self-similar with the Hurst parameter H if (Gong
et al., 2005)

Y (t)
d
= a−HY (at)

for t ≥ 0, a ≥ 0 and 0 < H < 1. The above equality
is in the sense of finite dimensional distributions and the
Hurst parameter expresses the degree of self-similarity
(Bhattacharjee and Nandi, 2010). The process Y (t) may
be non-stationary (Nogueira et al., 2011).

In the case of network traffic one usually has to deal
with time series, rather than a continuous process. In
that context the above definition can be summarized as
follows. Let X(t) be a stationary sequence representing
an increment process (e.g., in bytes/second). The
corresponding aggregated sequence having the level of
aggregation m,

X(m)(k) =
1

m

m∑

i=1

X((k − 1)m+ i), k = 1, 2, . . . ,

is obtained by averaging X(t) over non-overlapping
blocks of length m. The following condition is satisfied
for a self-similar process:

X
d
= m1−HX(m)

for all integers m. A stationary sequence X is
second-order self-similar if m1−HX(m) has the same
variance and auto-correlation as X for all m. A stationary
sequence X is asymptotically second-order self-similar if
m1−HX(m) has the same variance and auto-correlation as
X as m → ∞.

Asymptotically second-order self-similar processes
are also called long-range dependent processes, and this is
a property exhibited by network traffic (Gong et al., 2005).

To take into account the self-similar and LRD
characteristics of network traffic, we used in the
experiments the fGn (fractional Gaussian noise) to

simulate network traffic. The Hurst parameter was varied
from 0.5 to 0.9.

Fractional Gaussian noise has been proposed as
a model (Mandelbrot and Ness, 1968) for long-range
dependence in a variety of hydrological and geophysical
time series. Nowadays, fGn is one of the most commonly
used self-similar processes in network performance
evaluation (Lopez-Ardao et al., 2000). Let Bh(t) be a
fractional Brownian motion process. Then the sequence
of increments

X(t) = Bh(t)−Bh(t− 1)

is an exactly self-similar stationary Gaussian process with
zero mean, referred to as an fGn process.

The autocorrelation function of the fGn process is
given by (Karagiannis et al., 2004)

ρ(m)(k) = ρ(k) =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H ],

whose existence is the sufficient condition for
second-order self-similarity. The fGn process is the only
stationary Gaussian process that is exactly self-similar
(Samorodnitsky and Taqqu, 1994).

For 0.5 < H < 1, the auto-correlation decays
hyperbolically (Cox, 1984):

ρ(k) ∼ H(2H − 1)k2H−2,

so the process exhibits long-range dependence.
The spectral density of the fGn process is given by

(Lopez-Ardao et al., 2000)

f(λ) = c|eJλ − 1|2
∞∑

i=−∞
|2πi+ λ|2H−1,

where λ ∈ [−π, π], 0.5 < H < 1 and c is a normalization
constant such that

∫ π

−π f(λ) dλ = Var(X).
An important problem is synthetic generation

of sample paths (traces) of self-similar processes
(Lopez-Ardao et al., 2000). Here we use a fast
algorithm for generating approximate sample paths for
an fGn process, first introduced by Paxson (1997). The
simulations were done using the Simpy Python simulation
packet.

Table 2. Obtained results for the FIFO queue.
Hurst Avg. queue length Dropped packets

0.50 299.0801 249621
0.60 298.9145 249740
0.70 298.1436 249829
0.80 296.9191 250367
0.90 248.2070 256447

Figures 9–12 present unstable behavior of the queue
depending on the self-similarity factor of packet sources.



784 A. Domański et al.

0 20000 40000 60000 80000 100000

Time

0

50

100

150

200

250

300

Q
u
e
u
e
 l
e
n
g
th

Fig. 9. Queue length: FIFO queue, α = 0.5, H = 0.50, fGn
source.
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Fig. 10. Queue length: FIFO queue, α = 0.5, H = 0.70, fGn
source.

The stormy characteristic of network traffic causes
extreme fluctuations in queue occupancy. Detailed results
are presented Table 2. The increasing values of the Hurst
parameter make the number of lost packets grow and
decrease the average queue length. Similar correlations
were obtained during simulations for the RED queue
(Figs. 13–15). The parameters of the RED queue
were selected as follows: w = (0.02, 0.007),Minth =
100,Minth = 200,Maxth = 0.1, maximum queue
length= 300. Tables 3 and 4 present average queue length
and packets loss obtained during the simulations. The
column RED1 presents the number of packets dropped at
the queue length shorter then Maxth. The column RED2
shows the number of packets dropped due to exceeding
the parameter Maxth. There were no packets dropped due
to exceeding the buffer size.

The absence of losses caused by exceeding the buffer
size and the low average queue size in combination with
a large number of losses caused by RED for H = 0.90
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Fig. 11. Queue length: FIFO queue, α = 0.5, H = 0.80, fGn
source.
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Fig. 12. Queue length: FIFO queue, α = 0.5, H = 0.90, fGn
source.

shows incorrect operation of the RED mechanism in the
case of LRD traffic. The RED mechanism does not
work correctly in the case of large fluctuations in traffic.
Changing the w parameter and increasing the impact of
historical data does not bring any positive effect.

Table 3. Obtained results for the RED queue w = 0.007.
Packets dropped by

Hurst Avg. queue length RED1 RED2

0.50 199.8494 27743 222034
0.60 199.5653 27200 222743
0.70 198.4269 27028 223165
0.80 196.6820 26562 223607
0.90 158.6728 19184 242195

Tables 5, 6, 7 present results obtained during testing
the PIα controller as the AQM mechanism. As the
desired setpoint, 100 packets buffer occupancy (the same
value as for the Minth RED parameter) was set. These
results show how important controller parameters are for
proper queue management, and display three completely
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Table 4. Obtained results for the RED queue w = 0.02.
Packet dropped by

Hurst Avg. queue length RED1 RED2

0.50 199.8232 27461 222108
0.60 199.5370 27505 221995
0.70 198.5152 27038 222934
0.80 196.9210 26534 223337
0.90 158.2300 19074 240355
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Fig. 13. Queue length: RED queue, α = 0.5, μ = 0.25, H =
0.50, w = 0.02, fGn source.

different types of controller behavior.

Table 5 presents ideal queue behavior. The
number of dropped packets increases with the increase
in the Hurst parameter. For the RED mechanism, we
observe a simultaneous decrease in the average queue
length. The PI controller allows an increase in the
buffer occupancy. Figure 16 additionally shows the
advantages of the PIα mechanism. After periods of traffic
stagnation (queue occupancy reaches minimal values),
the management mechanism allows temporarily for an
increased buffer occupancy (much larger than the desired
point). This situation is unprecedented for traditional
AQM mechanism.

Table 6 shows an intermediate situation. Albeit
packet losses are similar, the lower queue length shows
the mechanism overreaction. Figure 17 exactly shows
controller behavior. The controller for such selected
parameters perfectly stabilizes the queue around the
desired point, but does not respond at all to the stormy
traffic character.

The situation of a total failure of the mechanism is
presented in Table 7. Most packets are removed because
of exceeding the maximum queue size. Poorly chosen
parameters make the mechanism completely useless.
Figure 18 shows a total instability of queue behavior.
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Fig. 14. Queue length: RED queue, α = 0.5, μ = 0.25, H =
0.80, w = 0.02, fGn source.
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Fig. 15. Queue length: RED queue, α = 0.5, μ = 0.25, H =
0.90, w = 0.02, fGn source.

5. Conclusions

The article presents an evaluation of the fractional order
PIα controller used as an active queue management
mechanism. Its quality highly depends on proper selection
of parameters. Three sets of parameter were tested,
and they determine completely different behavior of the
controller. The three selected controllers have the same
proportional and integral terms and differ only by the
integral non-integer fractional order to study its influence
on the controller performance.

Controllers behavior was also compared with RED,
a well-known active queue management mechanism.
The performance of the PIα and RED controllers was
investigated with the use of two methods: fluid flow
approximation (closed loop control) and simulation (open
loop scenario). In the open loop scenario, Internet traffic is
considered the sum of a large number of streams, and the
influence of the AQM mechanism on a single TCP stream
is passed over. This influence can be assessed using fluid
flow analysis. Both the approaches confirm the advantage



786 A. Domański et al.

Table 5. Obtained results for the PIα queue: Kp = 0.00115,
Ki = 0.0011 , α = −1.0.

Hurst Avg. queue length Dropped

0.50 106.4579 249685
0.60 108.59444 249638
0.70 113.3477 249758
0.80 119.2418 249792
0.90 123.6004 263439

Table 6. Obtained results for the PIα queue: Kp = 0.00115,
Ki = 0.0011 , α = −1.2.

Hurst Avg. queue length Dropped packets

0.50 100.2944 250357
0.60 99.9524 250092
0.70 99.0882 249943
0.80 97.2899 249740
0.90 75.7385 265413

Table 7. Obtained results for the PIα queue: Kp = 0.00115,
Ki = 0.0011 , α = −0.8.

Packet dropped by
Hurst Avg. queue length PIα Queue

0.50 297.8812 96916 152562
0.60 297.3174 97317 151756
0.70 295.0205 95333 154864
0.80 291.0318 93749 155355
0.90 234.3215 71571 185790

of the PIα controller over the RED mechanism. Open loop
simulations display greater abilities of the PIα controller
to stabilize the queue. With a comparable number of
losses, the PIα controller stabilized the queue length at a
lower level. An interesting property is obtained for the
controller with fractional order α = 1. After periods
of low traffic, the controller temporarily allows higher
queue occupancy. This is impossible for the standard RED
mechanism.

Fluid flow analysis allows a less detailed study of
the PIα controller impact on the router buffer; however,
it demonstrates a fairer treatment of TCP streams by the
PIα controller.
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Joanna Domańska, Ph.D., Eng., works in the
Computer Systems Modelling and Performance
Evaluation Group of the Institute of Theoretical
and Applied Informatics, Polish Academy of Sci-
ences. Her main areas of research include per-
formance modeling methods for computer net-
works.



The use of a non-integer order PI controller with an active queue management mechanism 789

Tadeusz Czachórski, Ph.D., Prof., the head of
the Institute of Theoretical and Applied Informat-
ics of the Polish Academy of Sciences. His main
areas of interest are mathematical and numeri-
cal methods for modeling and evaluation of com-
puter networks.

Jerzy Klamka, Ph.D., Prof., a full member of the
Polish Academy of Sciences, works in the Quan-
tum Systems of Informatics Group of the Insti-
tute of Theoretical and Applied Informatics of
the Polish Academy of Sciences. His main areas
of research are controllability and observability
of linear and nonlinear dynamical systems, and
mathematical foundations of quantum computa-
tions. He is an author of monographs and numer-
ous papers published in international journals.

Received: 14 March 2016
Revised: 30 May 2016
Accepted: 8 July 2016


