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Currently existing solutions rarely protect message integrity, authenticity and user anonymity without burdening the user
with details of key management. To address this problem, we present Aldeon—a protocol for anonymous group conver-
sations in a peer-to-peer system. The efficiency of Aldeon is based on a novel tree synchronization algorithm, which is
proposed and discussed in this paper. By using this algorithm, a significant reduction in the number of exchanged messages
is achieved. In the paper, the formal definition of the proposed hash branch function and the proof of its efficiency are
presented.
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1. Introduction

The enormous growth of the Internet has initiated various
new trends. It has become common to use forums, instant
messaging services, social networks and other tools
enabling group communication (e.g., Facebook, Reddit,
Twitter). Consequently, exchanging information, finding
people of similar opinions, and organizing meetings and
social movements have become common (Moore and
Zuev, 2005; Xiao et al., 2007; Xie and Wang, 2012;
Baruah, 2012). However, along with the continuous
growth in the popularity of group communication tools
and services, their drawbacks also become more apparent
(Sakarindr and Ansari, 2010; Völker et al., 2011).

Many currently existing communication tools and
services rely on dedicated servers (Zhang et al., 2010;
Miller, 2014). Such servers can be set up, maintained
and accessed relatively easily. But the reliability of
message servers depends on the proprietary infrastructure,
and thus constitutes a single point of failure. Moreover,
participants are required to trust the central service, being
a third party. This means that the anonymity and integrity
of messages depends on the good will and professionalism
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of the service administrators. It can be easily seen that this
may lead to problems related to privacy and censorship.
Finally, in the most common cases, connections between
communication participants and message servers are
direct, which makes them vulnerable to spying.

The problems mentioned above may be addressed
by employing a peer-to-peer (P2P) system model
(Schollmeier, 2001; Schoder and Fischbach, 2003; Lv
et al., 2012; Aditya et al., 2014). In such a model, nodes
(also called peers) interact directly with each other in
order to utilize shared resources. Resources serve various
purposes—most commonly they are used to provide
service or content, e.g., file uploading and downloading,
streaming multimedia or instant messaging. The emerging
peer-to-peer concepts provide new possibilities—their
architecture makes the system independent of any
supervisor, thus eliminating the single point of failure.
Furthermore, decentralization makes the system more
scalable, and reduces the risk of conversation censorship
or control. In addition, the availability of services
increases with the number of users.

With these concerns in mind, in this paper we
propose Aldeon—a peer-to-peer protocol that enables
anonymous group communication. In Aldeon, nodes
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participate in conversations by publishing and exchanging
posts organized into topics. A node collects and stores
posts related to the chosen topic, and makes them
available for other nodes to download. Topics form tree
structures—each post can have any number of response
posts. As can be seen, e.g., in Reddit (Weninger, 2014),
trees that represent human conversations are massive
and almost never balanced. Consequently, an efficient
synchronization mechanism that enables fast exchange of
posts between nodes is necessary.

Although the idea of exchanging posts and ensuring
the eventual consistency of shared data structures seems
to be straightforward, in fact protocols providing such
a mechanism face several problems. In P2P systems,
epidemic protocols are commonly applied to exchange
information on a large scale. The eventual consistency
of a shared topic tree structure can thus be achieved by
epidemic broadcasting of either individual posts or of the
entire state of a topic data structure. Although it may seem
that broadcasting posts is better (due to a smaller data
transfer overhead), this is not always the case. It must
be ensured that the post recipient already has its causal
dependencies (ancestor posts). A naive approach would
be to gossip the whole tree structure periodically, but that
would introduce a large overhead. This solution can be
improved by exchanging only the missing posts. It is
difficult to determine which posts should be downloaded
because of constant changes in the conversation held by
the nodes. These changes may be resulting from adding
new posts or deleting those already possessed by others
(Gilbert and Lynch, 2002).

To address this problem, we present our approach
to synchronizing tree structures by introducing a gossip
algorithm based on a branch hash function (BHF). The
proposed solution reduces synchronization overhead and
enables fast exchange and synchronization of posts. In the
following sections, we describe this function’s properties
and show its efficiency.

The paper is structured as follows. The system
model and basic assumptions are presented in Section 2.
Section 3 describes the general idea of the branch hash
function, and discusses its advantages and limitations.
Next, Section 4 presents the Aldeon protocol, which
uses the introduced branch hash function in order to
synchronize the information on exchanged posts that
make up the conversation. The discussion on Aldeon
protocol security considerations is conducted in Section
5. Related work is characterized in Section 7. Finally,
Section 8 concludes the paper.

2. System model and basic assumptions

Throughout this paper, a peer-to-peer (P2P) system model
(Schollmeier, 2001; Schoder and Fischbach, 2003) is

considered. The system consists of nodes similar in role,
function and capabilities, which act simultaneously as
clients and servers. Nodes interact with each other and
exchange posts to take part in conversations.

All conversations in the system model considered
are organized into topics. To interact with others, a
user (author of posts) may create topics, download posts
written by other users and respond to them. The most
often used form of representing conversations in the
Internet is a list of posts, ordered by date. While useful in
small conversations, it is not comfortable for application
when the number of participants grows, mainly because
it leads to connecting independent threads into one stream
of messages. As a result, in the paper we assume that posts
which make up the conversation, form a tree structure
(each conversation forms a separate tree). The root post
of such a tree is called a conversation topic. Every other
post is treated as a response to another post, called its
parent. Since posts in a tree structure point to their
parents, each response causally depends on its parent.
The posts considered in this paper are represented by
a quadruple of the following variables: the parent post
identifier, the author public key, the post content and the
signature (generated using the author private key). A
distributed hash table (DHT) (Dabek et al., 2004) is used
to organize nodes according to their topic preferences. As
a result, posts are delivered epidemically only to those
nodes that seek them.

We assume that nodes can be malicious, and as
such they may generate corrupted messages (either
intentionally or because of an incorrect implementation)
(Laprie et al., 1992). Consequently, nodes cannot be
trusted, and the criteria for asserting whether or not a
given post is correct are needed. In the case of a protocol
in which each post has its author, a natural choice of the
post integrity validation method is signature correctness
criteria. We provide this mechanism using the RSA
algorithm (Rivest et al., 1978; ENISA, 2012). Each
user (author of posts) in the protocol possesses a pair of
asymmetric keys, from now on referred to as the iden-
tity. The term user refers to post author and is not directly
related to any node, though in the most common scenario
each user will control its own node. The public key acts
as the user identifier, while the private key is used to sign
posts. Thus, nodes are able to identify the author of a post
by combining the public key of the given identity with the
post.

As a consequence of using the RSA algorithm, all
public keys in the system considered are unique. However,
it is not possible to determine which identity is assigned
to which node. This anonymity in the system is based
on the fact that there is no mapping between nodes and
user identities, and this is known as plausible deniability
(Boyd et al., 2005; Saxena et al., 2014).
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3. Posts synchronization

In Aldeon, each node should eventually receive all
posts associated with a given conversation. Each node
uses a distributed hash table to find a subset S of
conversation participants. Afterwards, an instance of
the synchronization algorithm is ran for each member of
S. The purpose of the synchronization algorithm is to
efficiently download missing posts from another node.
The exchanged posts are selected based on the analysis
and comparison of different branches of the conversation
tree. The algorithm traverses the topic tree from the root to
leaves, processing each branch (possibly in parallel). As a
result, all posts that are not stored locally are gradually
detected and downloaded. After the synchronization,
nodes periodically send updates about the posts that have
arrived since the last update. This way nodes can stay
synchronized for as long as necessary.

The proposed algorithm tackles the problem of
synchronizing unbalanced trees. It may happen that
the tree is formed as a long list, and in that case
synchronization would require many consequent queries
and responses. Network latency may make this process
prohibitively expensive in terms of time. On the other
hand, sending all known posts in advance could involve
transferring large amounts of unnecessary data. To solve
this problem, we introduced a branch hash function that
allows identifying the differences in the trees stored by
nodes. The proposed function significantly reduces the
amount of exchanged data and the number of requests
necessary to complete the synchronization process.

3.1. Branch hash function. Let us denote by ⊗ a
XOR function. XOR forms an abelian group over Zn.
Furthermore, every value is its own inverse under the XOR
operation:

a⊗ 0 = a, (1)

a⊗ b = b⊗ a, (2)

a⊗ (b⊗ c) = (a⊗ b)⊗ c, (3)

a⊗ a = 0. (4)

We will write a XOR sum of multiple values as
⊗

e∈E

e ≡ e1 ⊗ e2 ⊗ ...⊗ en, ei ∈ E. (5)

Each post i is identified by Ii, called the post
identifier. The post identifier is an integer in the Zn

modulo group. Each post has a parent post identifier,
denoted by P (I). For the root post (topic post), the parent
post identifier equals 0:

Root(Ir) ≡ P (Ir) = 0. (6)

A children set is defined as follows:

Ch(In) ≡ {Ic : P (Ic) = In}. (7)

We define a descendant set of a post In as a set of all
posts that form a branch descending from the post In:

De(In) ≡ {Id : Id ∈ Ch(In) ∨ P (Id) ∈ De(In)}. (8)

Let us now define a branch hash function, denoted
by S(Ib):

S(Ib) ≡ Ib ⊗
⊗

Ic∈Ch(Ib)

S(Ic). (9)

From the commutativity (2) and the associativity (3),
the branch hash function S(Ib) can be rewritten in the
following way:

S(Ib) = Ib ⊗
⊗

Id∈De(Ib)

Id. (10)

If the post has no children, the value of a branch hash
function S(Ib) is equal to its post identifier:

(Ch(Ib) = ∅)⇒ S(Ib) = Ib. (11)

Figure 1 shows an example of a tree and its branch
hash function values.

3.2. Properties of the branch hash function. In this
section we prove that the proposed branch hash function
selects only the differences in trees of posts stored in the
nodes. As a result, posts that have been already possessed
by nodes are not exchanged.

Let Wn denote a set of identifiers of posts stored by
a node n. A set Wn forms a single tree, as it contains
exactly one root post ((12), (13)). It is assumed that a set
Wn is consistent, i.e., for each post in the set, its parent is
also in the set (14):

∃Ia ∈Wn : Root(Ia). (12)

18,48

13,46

16,1625,2542,42

47,12

59,29

38,38

62,62

S(18) = 18⊗ 12⊗ 46 = 48
S(47) = 47⊗ 62⊗ 29 = 12
S(13) = 13⊗ 42⊗ 25⊗ 16 = 46
S(59) = 59⊗ 38 = 29

Fig. 1. Example of correctly calculated branch hash function
values.
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�Ia, Ib ∈Wn : Root(Ia) ∧Root(Ib). (13)

(Iq ∈Wn ∧ ¬Root(Iq))⇒ P (Iq) ∈Wn. (14)

Let us consider nodes a and b. Nodes store sets of
post identifiers Wa, Wb, including the root post identifier
Ir. Further, let us denote by Sa a value of a branch hash
function, calculated with the use of posts stored in the set
Wa. Sb is defined analogously for the node b. We define
the branch hash value of an unknown post to equal 0:

(I /∈Wn)⇒ S(I) = 0. (15)

If both the nodes possess the same posts, the values
of the branch hash function for nodes a and b are equal:

(Wa = Wb)⇒ Sa(Ir) = Sb(Ir). (16)

In turn, if the post sets Wa, Wb differ from each other,
there exist messages stored only by one of these nodes.
Let the symbol

⊕
denote a symmetric difference of sets:

A
⊕

B = {x : x ∈ A \B ∨ x ∈ B \A}. (17)

Based on the above properties, we show that for the
branch hash function the following theorem holds.

Theorem 1. The branch hash function makes it possi-
ble to find a XOR sum of posts constituting a difference
between the trees:

Sa(Ir)⊗ Sb(Ir) =
⊗

Ix∈Wa
⊕

Wb

Ix. (18)

Proof. On account of (12)–(14), we have

Dea(Ir) ∪ {Ir} = Wa. (19)

This means that from (10) we get

Sa(Ir) =
⊗

In∈Wa

In. (20)

Thus, the left-hand side of (18) can be rewritten as
follows: (

⊗

Ii∈Wa

Ii

)
⊗
(
⊗

Ii∈Wb

Ii

)
. (21)

This can be further expanded to
⎛

⎝
⊗

Ii∈Wa\Wb

Ii

⎞

⎠⊗
(

⊗

Ii∈Wa∩Wb

Ii

)
(22)

⊗
⎛

⎝
⊗

Ii∈Wb\Wa

Ii

⎞

⎠⊗
(

⊗

Ii∈Wa∩Wb

Ii

)
.

Using Eqn. (4), this can be reduced to
⎛

⎝
⊗

Ii∈Wa\Wb

Ii

⎞

⎠⊗ .

⎛

⎝
⊗

Ii∈Wb\Wa

Ii

⎞

⎠ . (23)

This leads to the right-hand side of (18) of which
ends the proof: ⊗

Ix∈Wa
⊕

Wb

Ix. (24)

�

3.3. Examples of and difficulties in using the
branch hash function. Storing precomputed values of
the branch hash function allows fast identification of
differences in sets Wn between nodes. As shown in
Eqn. (16), for the same sets Wn the sum of differences
equals 0. When one of the sets contains another, the sum
of differences is the following:

Wb ⊆Wa ⇒ S(Wb)⊗ S(Wa) =
⊗

Ix∈Wa\Wb

Ix. (25)

18,48

Node A

13,46

16,1625,2542,42

47,12

59,29

38,38

62,62

18,26

Node B

13,04

16,1625,25

47,12

59,29

38,38

62,62

48⊗ 26 = 42 = S(42)

Fig. 2. Node A has one additional message in comparison to
node B.

By adding the values of the branch hash function, the
nodes get insight into what value the missing elements
sum up to. If the difference forms a single branch, the
returned value allows determining which branch has to be
sent in order to synchronize trees. This scenario is shown
in Fig. 2, where the only difference is a single node, and in

18,15

Node A

13,17

16,1625,2542,21

36,63

03,0324,24

47,12

59,29

38,38

62,62

18,26

Node B

13,04

16,1625,25

47,12

59,29

38,38

62,62

15⊗ 26 = 21 = S(42)

Fig. 3. Node A has one additional branch in comparison to
node B.
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Fig. 3, where the difference forms a branch of messages.
Differences in multiple places remain a problem, as it is
impossible to decompose the sum into its summands. As
shown in Fig. 4, a branch hash function indicates the
existence of differences, but not their location. It should
be noted that the uniqueness of posts does not imply the
uniqueness of values returned by the branch hash function.
This leads to two important conclusions:

1. The equality of values returned by functionS(In) for
two trees does not imply the equality of these trees.
In other words, the implication (16) works only in
one way.

2. Finding a post In for which S(In) = Sa(Ir)⊗Sb(Ir)
does not mean that this particular post is missing in
the other node.

The probability of the occurrence of events described
above is related to the size of the modulus in group
〈⊗,Zn〉. Let n be the number of bits needed to store
any message identifier:

P
(
Sa(Ir) = Sb(Ir) ∧Wa = Wb

)
=

max(Wa,Wb)

2n
.

(26)
The impact of this probability on the stability of the

synchronization protocol is presented in Section 5.

4. Synchronization protocol based on the
branch hash function

In this section we present a synchronization protocol
that allows nodes to effectively exchange missing posts
on a given topic. The protocol employs recursive
message tree comparison, and uses the branch hash
function, introduced in Section 3.1, to minimize the
number of exchanged messages. First, the general idea
of synchronization based on the branch hash function

18,48

Node A

13,46

16,1625,2542,42

47,12

59,29

38,38

62,62

18,09

Node B

13,04

16,1625,25

47,31

59,14

38,53

19,19

62,62

48⊗ 9 = 57 = Sa(42)⊗ Sb(19)

Fig. 4. Both nodes have posts, which are unknown to the other
party.

is described. Afterwards, the proposed synchronization
protocol is presented.

4.1. General idea of synchronization. Each node, in
order to synchronize its knowledge on the given branch
containing the post with the information held by other
nodes, performs the synchronization procedure shown in
the form of a block diagram in Fig. 5.

The presented protocol is one-way—each peer must
perform the algorithm separately to identify and download
missing posts. The procedure, described by the block
diagram in Fig. 5, can occur on the same connection and
is safe to run concurrently in both ways.

Let us denote by NA the local node (performing the
procedure), and by NB the remote node (answering to
requests). According to Fig. 5, the node NA performs
the following steps: it calculates a local hash value SA(I)
of the branch I and sends a request for a branch hash value
comparison to the remote node. The request contains the
identifier of the post I and the obtained hash value SA(I).

As a result of obtaining a request for branch
comparison, the remote node NB responds in one of three
ways: if the values of the branch hash function SA(I) and
SB(I) are equal, then the procedure terminates because
the nodes are synchronized. Otherwise, if the non-zero
difference branch hash value corresponds to one of the
branch hash values in NB , a Suggest response indicating
this branch is sent back. Upon receiving the Suggest
response, the node NA downloads the suggested message
together with its descendants and also terminates. Finally,
if a Children response with the children list is returned,
the synchronization procedure is recursively called for
each child.

In the latter case, the following optimizations can

procedure Synchronize(Ib)

send

CompareBranch{Ib, SA(Ib)}

response type GetBranch (Ig)

parallel foreach

{Ic, SB(Ic)}
if SA(Ic) �= SB(Ic)

Synchronize(Ic)

end

Suggest{Ig}

BranchInSync{}

Children[{I1, SB(I1)}, {I2, SB(I2)}, ..., {In, SB, (In)}]

Fig. 5. Simplified synchronization process.
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be applied: first, the analysis of the message list can be
run in parallel. Furthermore, since a reply containing
missing messages has the form of a list of pairs (I, S(I)),
the node is able to compare hash values, and stop the
synchronization process if the sub-branches are equal. It
is also able to deduce if the tree differences are located in
local memory. This way the messages can be sent directly
to the server, effectively turning synchronization into a
two-way process.

Despite the speedup obtained by using the branch
hash function, the synchronization process can still be
time-consuming because of request transmission time.
Therefore, to maintain a coherent state after the initial
synchronization, each node can maintain a logical clock
and increment it for each new post stored locally. By
periodically asking for posts that were created after the
last observed clock value, nodes can keep up with the
changes and stay consistent.

4.2. Synchronization protocol. The proposed
protocol is executed by each node in the system.

Nodes use a DHT mechanism to find other nodes
interested in following the same topics, thus enabling
efficient post propagation using the epidemic approach.
The DHT implementation is not in the scope of this paper
and thus, for the clarity of presentation, here we omit its
implementation details.

In the proposed protocol we use types and data
structures presented in Algorithm 1.

Algorithm 1. Types and data structures.
define ID uint256
define Post {id, parent : ID, content}
define GetBranch {id : ID}
define CompareBranch {id, hash : ID, f : bool}
define BranchFound {posts : Post[]}
define Suggest {id, parent : ID}
define Children [{id, hash : ID}, ...]
define BranchInSync {}
define BranchNotFound {}

The ID type represents a post identifier—in the
case of our protocol, a 256-bit vector. In the minimal
case, each post contains its identifier, its parent identifier
and content. The cryptographic aspects are not included
in the algorithm description, as they are independent of
the stated problem. The only guarantee required by the
algorithm is that posts have distinct, uniformly random
identifiers.

The algorithm begins when the initiator node (NA)
obtains an identifier Ib of the branch it wants to
synchronize. Algorithm 2 is executed with the Ib identifier
and the false flag. The node checks if the post is
already stored (Algorithm 2, line 1), and downloads it

from the remote node IB if necessary (Algorithm 2,
lines 2–4); Algorithm 4. Then, the branch hash value
SA(IB) is computed (or fetched from storage, if it was
precomputed). The identifier, branch hash and flag
are sent to the remote node in a CompareBranch
request (Algorithm 2, line 9). The remote node
handles the request (Algorithm 3) by first checking if
the post is known (Algorithm 3, line 1). If not, the
BranchNotFound is returned and the synchronization
process terminates (Algorithm 3, line 2). Otherwise, in
the case of the known post, the remote node calculates
its own branch hash SB(Ib) (Algorithm 3, line 4) and
compares it with the received value (Algorithm 3, line 5).
When the values are the same, there is a high probability
that the branches are equal (Eqn. (26)). In such a case
the BranchInSync message is returned to inform the
initiator node that there are no more posts to download
(Algorithm 3, line 8). In turn, if the values differ, the
node checks whether there are any known branches that
have a matching branch hash value (Algorithm 3, line 10).
Consequently, these values can be precomputed.

Each time a match is found, the node suggests
downloading the particular branch by sending the
Suggest response (Algorithm 2, line 10). After obtaining
a response, the nodeNA verifies whether the post is in fact
not known and the dependencies are met (the parent post
should be in currently synchronized branch) (Algorithm 2,
line 11). It is only when the above the conditions are
met that the node synchronizes the suggested branch and
then retries synchronizing the previous one (Algorithm 2,
lines 12–13). After that, the procedure needs to be carried
out again, as the suggested branch may be just one of
the missing branches. Consequently, synchronizing again
with the node NA ensures that eventually all branches
are in sync. If the suggested branch does not meet the
conditions, the synchronization procedure is repeated with
the flag set to true (Algorithm 2, line 14). This way
the next synchronization attempt will proceed without any
suggestions, and the Children response will be returned.

When receiving the Children response
(Algorithm 2, line 17), the node NA tries to synchronize
the child branches. These subbranches can be processed
in parallel (Algorithm 2, lines 18–22). When the
synchronization procedure terminates, the initiator node
NA has all the posts known by node NB .

5. Security considerations for
communication in the Aldeon protocol

In the Aldeon protocol, some of the participating nodes
are assumed to behave incorrectly. In most cases security
concerns for peer-to-peer computing (Sit and Morris,
2002; Damiani et al., 2004) tend to focus on the attacks
on routing and lookup protocols that use distributed
hash tables or on attacks related to the storage and
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Algorithm 2. Synchronization procedure.

Procedure Synchronize (Ib : ID, f : bool)
1: if Ib /∈WA then
2: rsp ← send GetBranch{Ib}
3: if rsp is BranchFound{posts} then
4: WA ←WA ∪ {posts}
5: end if
6: // No more posts to download
7: return
8: end if
9: rsp ← send CompareBranch{Ib, SA(Ib), f}

10: if rsp is Suggest{Ig, P (Ig)} then
11: if Ig /∈ WA and P (Ig) ∈ DeA(Ib) then
12: Synchronize(Ig, false)
13: Synchronize(Ib, false)
14: else
15: Synchronize(Ib, true)
16: end if
17: else if rsp is Children[{I1, SB(I1)}, ...] then
18: for all {Ic, SB(Ic)} ∈ rsp do
19: if SA(Ic)

⊗
SB(Ic) = 0 then

20: Synchronize(Ic, false)
21: end if
22: end for
23: else
24: // BranchInSync or BranchNotFound
25: end if

Algorithm 3. CompareBranch request handler.

Handle CompareBranch(Ib, SA(Ib) : ID, f : bool)
1: if Ib /∈WB then
2: return BranchNotFound
3: end if
4: diff ← SA(Ib)

⊗
SB(Ib)

5: if ¬ f and ∃Ig : SB(Ig) = diff then
6: return Suggest{Ig, P (Ig)}
7: else if diff = 0 then
8: return BranchInSync
9: else

10: return Children[{{Ic, SB(Ic)} : Ic ∈ Ch(Ib)}]
11: end if

Algorithm 4. GetBranch request handler.

Handle GetBranch(Ip : ID)
1: if ∃post ∈ WB : post.id = Ip then
2: return BranchFound{{post} ∪De(Ip)}
3: else
4: return BranchNotFound
5: end if

retrieval of resources. In this section, the most common
attacks associated with the exchanging of messages are
presented. In particular, the problems occurring when
unsolicited messages are sent or when some messages are
purposely omitted while communicating with other nodes
are discussed. Examples of how these attacks can occur
in the context of the Aldeon protocol will be shown, along
with some methods for detecting and preventing these
problems.

5.1. Unsolicited posts. Due to the equal rights of
all participants of the conversation, which is particularly
evident in the case of communication in a P2P network,
each participant is able to send a message to all other
nodes participating in the conversation.

Preventing unsolicited messages in P2P systems
differs from traditional solutions used in distributed
systems. Blocking messages issued by a given author
is not effective, because the message sender can easily
change his/her identity. Given the impossibility of
determining who is the owner of the identity, it is difficult
to resist such an attack. One of the methods to counter
the unsolicited messages used in distributed systems is to
block the specific IP address from which the unsolicited
message was received. In the context of P2P systems such
a solution would not bring the desired effect, because there
is no way of determining whether the sender node is the
author of the message, or if it has received the message
from another node and simply passed it on. Blocking
certain nodes is also not viable as unsolicited messages
can still propagate to other nodes and reach them through
a different network path.

The problem with receiving unsolicited messages
must be resolved in the context of the Aldeon protocol. In
the protocol, nodes are not required to know the name of a
post recipient in order to publish a post. Given the public
availability of conversation identifiers, and the possibility
of obtaining such an identifier from a request issued by
another node, it can be assumed that the prevalence of
such unsolicited messages is a real threat, affecting the
accuracy and decreasing the effectiveness of the proposed
protocol. Below, a number of potential methods of
dissemination of unsolicited posts in the Aldeon protocol
is presented, and the threat they present for network
communication is discussed.

Let us assume that the attacker node sends k
unsolicited posts. Three general methods of sending them
can be distinguished:

• The post sender can create a new conversation
branch, and afterwards build more branches
extending from it, thus creating a single branch of
the conversation containing k unsolicited posts.

• The post sender can create unsolicited posts, which
constitute responses to a single post, thus creating k
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branches containing unsolicited posts located on one
conversation level.

• The post sender can create unsolicited posts, which
constitute responses to the following posts in a given
branch of the conversation. In this case, assuming
that the branch contains k posts, the post sender
creates k unsolicited post located on different levels
of the conversation tree.

At present, Aldeon allows the removal of unsolicited
posts that constitute a single branch. This nullifies the first
of the above mentioned attacks by simply cutting a given
branch. However, the struggle with the other methods
of attacks raises more problems. Both-the second and
third of the above mentioned methods require deletion of
k posts.

It is to be noted that, to some extent, nodes are
able to control the quality of the conversation themselves.
If a node deletes a branch of the conversation, it will
not be included in the synchronization process. As a
result, nodes will not spread posts that they consider to
be worthless. However, doing so requires storing the
identifiers of the unsolicited posts, which results in slowly
accumulating tombstones (deleted messages identifiers).

In order to improve handling unsolicited posts, the
following solutions are suggested:

• a lexical filter blocking unsolicited posts based on
automatic rules,

• a system of trusted identities, similar to a Web of
Trust (this way only the posts signed by trusted
authors will make it to the public),

• a closed system of trusted nodes, each employing a
well-known spam policy.

5.2. Purposely omitted posts. As shown in
Section 3.3, the equality of branch hash function values
does not imply the equality of the branches. As a result,
two distinct nodes may falsely believe their knowledge
on the conversation to be the same. This may also lead
to intentional hiding of certain posts, resulting in their
omission in the synchronization process.

The post is skipped during the process of
synchronization if the value of its branch hash function
equals 0. Therefore, it is sufficient to prepare a set of
responses to the post in a way that satisfies this condition
to enable an attack through deliberately omitting posts.
Generating such a set of responses is feasible in the
context of Aldeon. However, the threat due to such a form
of attack is not as effective as it may seem.

As is known (Dikranjan, 1998), n linearly
independent vectors are required to describe an
n-dimensional space. This means that, for every vector k

in this space, there is a linear combination of vectors that
produces k. This property also applies to the collection of
vectors summed using ⊗ (XOR)—this function is in fact
equivalent to adding modulo 2. Additionally, a vector of
coefficients for each of the linearly independent vectors is
also a member of this n-dimensional space.

In accordance with the above, a set of n posts
with linearly independent identifiers allows generating a
branch with any desired value of branch hash function.
For this purpose, the hash value k of a chosen branch
with post that is to be hidden should be written as a linear
combination of the input identifiers.

The condition for the feasibility of an attack is
therefore the possibility of generation of a set of posts with
linearly independent identifiers. It is possible to generate
sets of linearly independent identifiers effectively.

Let us assume that there is a space Fn
2 . In addition, let

there be a non-empty set of linearly independent vectors
W , belonging to this space. The set W of these vectors
forms a subspace Q of co-dimension k. The probability
of selecting randomly an element that does not belong to
subspace Q (and is therefore linearly independent of W
vectors) is

P (x ∈ Q) = 1− 2−k. (27)

This means that the mean number of trials required
to randomize such an element equals

1

1− 2−k
=

2k

2k − 1
. (28)

Thus the mean number of trials necessary to obtain a
set of n linearly independent vectors equals

n∑

k=1

2k

2k − 1
=

n∑

k=1

1 +
1

2k − 1

= n+
1

3
+

1

7
+ · · ·+ 1

2n − 1

< n+ 2.

(29)

It is then possible to use this method to make any
post in the topic hidden (make the post have a branch hash
function value of 0).

An example of hiding a branch is shown in Fig. 6. In
the figure, from a set of 6 linearly independent vectors
a subset with any selected sum can be chosen, for
example, 58.

Despite the apparent ease of performing an attack
associated with hiding the message, it can be shown
that its effect is not stable in the context of the Aldeon
protocol. The hidden branch will stay undetected as long
as the branch structure does not change—for example,
by removing any of the added (possibly spam) posts, or
by answering any post in the branch. So, the effect of
hiding a post will disappear as soon as any node in the
network changes the branch structure. Additionally, a
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56,56

58,00

40,4005,0512,1218,1834,3417,17

S(58) = 58⊗ 18⊗ 40 = 0

Fig. 6. Example of attack associated with hiding a message.

hidden branch identifier will still be visible as a child in
a Children response in the protocol. Therefore, it can be
concluded that this attack method has a negligible effect.

6. Performance evaluation

The Aldeon protocol stores messages exchanged between
users during their conversations in the form of a tree
structure. In this section, we present the results
of simulation tests which show how synthetic input
data represented by different conversation tree shapes
influence protocol optimization. With this end in view,
we chose and examined representative tree types that
illustrate various possible forms of conversations. Next,
we used a real conversation tree structure of a Reddit
thread to evaluate the proposed solution in a real-case
scenario. The presented simulation experiments were
conducted using the PeerSim Java simulation environment
(Montresor and Jelasity, 2009).

In the simulations performed and discussed in the
paper, two network nodes (called A and B) were used.
The scenario of simulations was as follows: first, a tree
of a desired type was generated; then, it was copied to
both nodes; subsequently, node B added new messages
to its tree, thus generating differences between its tree and
tree possessed by node A; finally, the Aldeon protocol was
launched and node A tried to synchronize with B, which
had new posts. The efficiency of synchronization was
measured by the number of network messages between A
and B (for each request sent by A, B sends one response).

In the performed simulations, four different types
of conversation trees were used to represent the initial
structures of posts:

• balanced tree (where every post has two children),

• one-level tree (where all posts are on level one and
descend directly from the root of the tree),

• list (where every post is related to previous one, from
the root to the only leaf),

• furry list (which is a list with additional leafs on
every other level).

The chosen conversation trees reflect the structure
of real conversations. For example, posts issued in a
debate of two users, where each of them has to answer
the question, may form a balanced tree. A one-level
tree may be constructed when many users comment on
selected event. In turn, a list is established when users
carry a conversation on a given topic. Finally, a furry list
could be an archive of conversations between two users
where additional nodes on every level pertain to a specific
conversation tree while the main branch represents a list
of conversations ordered by their start date.

Once the tree conversation structure was established,
it was copied to each node participating in the simulation.
Then, by using one of two approaches: leaf-based or
uniform distribution, a set number of differences resulting
from the addition of new messages was introduced in a
conversation tree of one of the nodes. The leaf-based
approach allows new messages to be added only to the
leafs of a given conversation tree. In turn, in the uniform
distribution approach, the probability of adding a new
message is equal for each existing node.

All the tests were performed for two sizes of the
conversation tree stored in each node (10000 and 100000)
to check their influence on the number of network
requests. The number of generated differences increases
exponentially from one difference to the last value smaller
than the tree size (8192 and 65536 for 10 000 and 100 000
nodes, respectively).
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Fig. 7. Number of requests sent during synchronization as a
function of the number of differences for the leaf-based
difference generation method with 10 000 nodes.
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Fig. 8. Number of requests sent during synchronization as a
function of the number of differences for the leaf-based
difference generation method with 100 000 nodes.

As can be observed in the presented results (Figs. 7
and 8), Aldeon performs best for a conversation arranged
as a list — a stream of replies, one after another, without
a single branching path.

In this case, the algorithm requires only four
messages for any number of differences. More precisely,
one query and response to determine the difference and
another pair to confirm that synchronization has ended.
Therefore, the function describing performance for the list
is y = 4. In Figs. 7 and 8 this line is very close to the X
axis and thus is barely visible.
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Fig. 9. Number of requests sent during synchronization as a
function of the number of differences for the uniform
distribution difference generation method with 10 000
nodes.

Of the remaining ones, the furry list fares by far
the worst because differences are spread out among

0

50000

100000

150000

200000

250000

300000

350000

1 10 100 1000 10000 100000

T
ot

al
 n

um
be

r 
of

 s
en

t m
es

sa
ge

s

Number of differences

Balanced tree
Furry list

List
One level tree

Fig. 10. Number of requests sent during synchronization as a
function of the number of differences for the uniform
distribution difference generation method with 100 000
nodes.

multiple levels of the tree and therefore require many
synchronization steps to achieve a consistent state. Both
the balanced tree and a single node with n children fare on
the average, with the number of messages sent increasing
proportionally to that of differences found in each tree.

The results obtained using the method of generating
differences where each node has the same probability of
obtaining new children (Figs. 9 and 10) are similar except
for the case of a single list. Here a list conversation
structure requires the greatest number of messages in
order to synchronize the nodes states, as the messages
are no longer contained to a single new subtree, and it is
necessary to traverse the entire list.

According to the results presented above, it is hard
to indicate the messages structure whose application
would result in always optimizing the synchronization
process. For example, a list structure, which is adopted
as the default message structure by many peer-to-peer
group communication and instant messaging solutions
available on the market (described in Section 7), gives
good results when the new posts are added at the end
of the list, and the number of conversation participants
is relatively small. Meanwhile, in real applications,
conversations may take many forms (for example, Reddit
conversations take the tree form), and posts may be
added by conversation participants in random locations
in the conversation structure (which implies that with a
large number of users the conversation structure could be
chaotic).

Consequently, in subsequent simulations we used the
parsed tree structure of a real Reddit thread (2251 posts)
as input data for the Aldeon protocol. The obtained
information consisted of the posts tree structure and post
creation timestamps.
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In order to measure the performance gains resulting
from the usage of the branch hash function, in the
following simulations we compared two approaches. The
first was the proposed BHF-based algorithm, and the
second was the same algorithm with disabled Suggest
messages. Thus, the second algorithm is identical to the
naive DFS-based approach (i.e., the approach in which all
messages are sent one by one while visiting tree nodes,
with deterministic hashes for all branches). We compared
the number of request/response pairs sent during the
synchronization process between two nodes. It must be
stressed that most requests were sent in parallel—there
will be at most as many causally related requests as the
height of the tree.
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Fig. 11. Performance improvement obtained using the Suggest
messages.

The post trees stored on the nodes before the
synchronization consist of all posts published prior to a
chosen timestamp. The difference at chosen timestamps
(interval) affects the similarity of the tree structures—the
shorter the interval, the fewer the differences in trees.
Performance improvement was expected for uneven
distribution of differences as the BHF facilitates finding
those changes. We measured the number of requests sent
as a function of the interval. We divided the entire thread
timespan (ca. 18 hrs) into time intervals, ranging from 30
to 3600 seconds. In order to compute performance for a
given interval length we average the number of requests
sent in synchronization procedures in all intervals of that
length.

We can see in Fig. 11 that the algorithm incurs
no penalty in terms of network traffic—as long as the
identifiers are long enough to prevent hash collisions,
the Suggest messages always correctly point to a tree
difference, skipping multiple tree levels.

As expected, the algorithm benefits from uneven
distribution of differences in the trees (as is the case when
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Fig. 12. Ratio of an average number of requests sent with the
Suggest messages and with the DFS-based approach.

the trees are similar), and gradually approaches the normal
method performance as the differences become more and
more evenly distributed, which is shown in Fig. 12. Using
the BHF, we achieved up to a 30% reduction in the number
of sent messages.

7. Related work

Recently, a few ideas for creating group communication
and instant messaging tools using peer-to-peer systems
have appeared (Mannan and van Oorschot, 2006;
Serjantov, 2002; Berthold et al., 2001; Rowstron et al.,
2001). The proposed solutions aim to help small, medium
and corporate offices by enhancing business productivity
and internal communication. Common functionalities
include taking notes, setting reminders, remote desktop
sharing, file transfer, instant messaging, broadcasts,
private and group communication. Below, we present the
advantages and disadvantages of a representative subset
of solutions, which emerged from both academic and
business backgrounds. The analysis of chosen solutions
takes into account a number of criteria. It is discussed
whether message integrity is ensured, and whether its
content is encrypted. Another criterion is protecting the
identity of message senders and receivers. Furthermore, it
is checked if the solutions are able to handle conversations
between multiple users. In addition, the time in which the
recipient is required to receive the message is taken into
account. Moreover, data structures used by the solutions
considered to store conversations are presented. The data
structures include a list, a tree, and a partially ordered set.
In Table 1, the latter is referred to as a P-O set. Finally,
we discuss whether a solution supports migrating to other
devices or not.

Bitmessage (Warren, 2012) is meant to be an
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alternative to insecure email. While well-known secure
alternatives exist (PGP/GPG), they are not easy to
use. Bitmessage is a decentralized, trustless peer-to-peer
communication protocol. Each user has a pair of
cryptographic keys, and the public key serves as the
user identifier. Each message is signed by the senders’
private key (making the message content non-repudiable)
and encrypted by the receivers’ public key (thus only
the receiver having a matching private key is able to
decrypt it). The message dissemination mechanism in
this P2P system is based on Bitcoin’s transaction and
block transfer system (Nakamoto, 2008; Sompolinsky and
Zohar, 2013; Mooser et al., 2014). There are several
important consequences of following the Bitcoin way.

To send one message, a proof of work (a concept
from Bitcoin) with average computation time of four
minutes has to be completed. A message with a proof
of work is propagated by other nodes on a best effort
basis, in order to be received by each node in the
network. The authors of Bitmessage suggest that, since
every message is sent to each node anyway, it would
be natural to have a broadcast mechanism, although
they do not say how exactly it would work (how the
message would be encrypted or how it would work
with the concept of streams—explained later). From
the above it can be concluded that Bitmessage provides
the following benefits: decentralization, encryption
of messages, masking sender and receiver identities,
an unspoofable sender. An additional advantage of
Bitmessage is an active community around it.

Several extensions/tools enhancing Bitmessage have
been proposed (for example, Mailchuck—a bridge
enabling communication with other people using email).
Despite the relatively high popularity, Bitmessage has also
a few disadvantages. Each node which received a message
has to try to decrypt it with its private key, because there
is no faster way to determine whether this node was
the intended recipient. Furthermore, it is possible for a
node not to receive a message if it is absent from the
network for more then 48 hours. The scalability of this
solution is questionable, since each node has to store all
messages in the system. The Bitmessage authors propose
to alleviate this problem by keeping each message for only
48 hours and by introducing streams. The basic idea is to
divide the network into separate subparts and disseminate
messages only in these smaller subparts. Streams form
a hierarchy—each stream may have up to two child
streams. Each node in the parent stream maintains a list
of few peers in the child streams. Another solution to
the problem of securely sending and receiving messages
in a peer-to-peer environment is ShadowCoin Secure
Messaging (also known as ShadowChat) (SDCDev,
2014). It is a peer-to-peer encrypted instant messaging
system, designed to protect user privacy, which was
developed as a supplementary tool for ShadowCoin, an

anonymous cryptocurrency.
In principle, ShadowChat is similar to Bitmessage (it

is close to being called a clone). Still, there are some
differences; for example, messages are not encrypted
with the recipient’s public key but with a symmetric
AES-256-CBC algorithm (Frankel et al., 2003). The
secret key in ShadowChat is shared with the use of the
elliptic curve Diffie–Hellman method (ENISA, 2012), and
the messages are signed with the elliptic curve digital
signature algorithm (ECDSA). Messages in ShadowChat
are distributed over the existing ShadowCoin peer-to-peer
network. A copy of each encrypted message is stored
on a ShadowChat node for 48 hours, and then deleted
(as in Bitmessage), but there is no mention of streams.
Messages are stored in the system in the form of a partially
ordered set. The stored messages are grouped, so the
system operates on groups of messages, thus saving the
bandwidth. Among the benefits offered by ShadowChat
are faster message dissemination and less CPU intensive
operation (no proof of work needed for messages),
optimizations for bandwidth use. Unfortunately, it shares
most of Bitmessage drawbacks.

Another solution worth mentioning is Bleep—a
secure P2P-based instant messaging application. Bleep
uses a public key instead of a login name, which makes
it possible to protect the privacy of communication by
hiding the identity of its participants. Each Bleep user
has a keypair that he/she may register on a central server,
associating it with his/her email or phone number, making
it easier for other users to find him/her. Messages
are encrypted using the private key of the sender and
the public key of the receiver. Bleep supports forward
secrecy, which means that even if a private key were to
be compromised it would not affect any future traffic.
For each conversation, a new keypair is generated, which
is then transformed using a one-way function for each
message in the conversation, so every subsequent message
is encrypted using different key, with the previous one
being deleted. The main advantage it has over other
P2P-based chats is that it does not need a central server
for message routing. Lookup on the server is done only
once per added contact to find the public key associated
with the account. After that, users only apply the DHT
to find each other’s IP address and establish an encrypted
tunnel over UDP between them. An additional interesting
feature of Bleep is that it allows its users to make voice
calls in addition to instant messaging.

Finally, CryptoCat (Berthold et al., 2001) has to
be mentioned. This solution consists of two primary
elements: a web-based chat application (typically loaded
via a browser extension) and the CryptoCat protocol for
an encrypted group chat. It is a client-server solution,
added here for comparison. The future plan for CryptoCat
is to switch from a custom protocol to using mpOTR
(multi-party off-the-record) (Payne and Edwards, 2008).
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Table 1. Summary of related solutions.
Bitmessage ShadowChat Aldeon Bleep CryptoCat

Protects sender’s identity Y Y Y Y Y
Ensures message integrity Y Y Y Y Y
Protects receiver’s identity Y Y N Y Y
Encrypts message content Y Y N Y Y

Many recipients Y N Y N Y
Msg has to be received in 48 hours 48 hours unbound instantly instantly
User can switch devices N N Y Y N
Structure of messages list P-O set tree P-O set P-O set

Logical conversation order N N Y N N

CryptoCat currently uses OTR for a chat involving only
two users. The advantage of this application is a very
low barrier to entry—it is enough just to open the web
page or install the browser extension. The two frequently
mentioned CryptoCat disadvantages are no support for
offline messages and limited security, resulting from
public key authentication and unstable user identities.

Table 1 compares selected features of the solutions
presented above. All solutions protect the sender
identity by using public/private keys. The sender cannot
be spoofed, because messages are signed with private
key (which is difficult to forge). Obviously, it a
has to be protected from being stolen. Furthermore,
a public key of the sender is not registered at any
central repository, nor is it connected to other contact
information such as email or telephone number. Bleep
is an exception—a user may provide this information
(but it is not required). Message integrity is protected
as well in all solutions, by cryptographic signatures.
Every solution, except for Aldeon, protects the receiver
identity and encrypts messages. It is the first major
difference between Aldeon and the other solutions, which
aim to help people have discussions in a closed, private
environment. Aldeon, on the other hand, focuses on
open, anonymous conversations similar to Internet forums
or imageboards, which may have many participants.
That is why there is no need to protect the identity of
the receiver or to encrypt messages. Aldeon naturally
enables multiple recipients, since every interested party
is free to read a conversation. There is a mention of
broadcast functionality in the Bitmessage whitepaper, but
it is not properly explained. CryptoCat supports group
conversations. There is no mention of this type of
feature in data about ShadowChat or Bleep. Bitmessage
and its clone—ShadowChat introduce the limitation of
48 hours to receive a message. Bleep and CryptoCat
require that both parties be online during conversation.
Aldeon requires only that at least one person interested
in the conversation (not necessarily writing messages
in it) be online. Another feature, distinctive for the
proposed solution, is the structure in which messages
exchanged between conversation participants are stored.

Only Aldeon uses a tree to represent conversations. Each
message in a conversation is sent in response to another
one. That relationship is represented by a directed edge in
the tree. Therefore, using this structure gives the benefit
of preserving the logical order of messages. Out of all
solutions, only Bleep supports migrating to other devices.
In Aldeon, on a new device it is enough to copy the private
key to be able to issue new messages. The old messages
can be easily retrieved if the user provides identifiers of
the topics.

8. Conclusions

This paper introduced the Aldeon protocol for group
conversations in peer-to-peer systems. Fast propagation
of messages among all interested peers is achieved in
the proposed solution by combining the DHT and a
novel branch hash function synchronization algorithm,
which significantly reduces synchronization time even
for very large trees. Moreover, the system model
we adopted in Aldeon and the decentralized identity
management scheme significantly improve the overall
safety of users. The obtained experimental results showed
that the proposed solution is efficient in the case of real
discussions between multiple conversation participants.

Our future work encompasses the introduction of a
user defined list of trusted nodes. Consequently, during
the bootstrap phase, the information would be obtained
only from such nodes. Additionally, it would be possible
to opt into exchanging posts exclusively with nodes on
that list.

An important direction of future protocol extension
is designing an anti-spam mechanism. Introduction of
a lexical filter would enable nodes to detect unwanted
messages before they are stored locally.

Another plan for development is extending, currently
one-sided, the synchronization mechanism with bilateral
synchronization. If it were implemented, node A
downloading posts from node B would be able to
simultaneously offer posts in its (A’s) possession which
B lacks.
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Poznań University of Technology in 2014 and
2015, respectively. His research interests include
distributed algorithms, P2P systems and procedu-
ral content generation.

Received: 12 January 2015
Revised: 26 July 2015
Re-revised: 7 December 2015
Accepted: 12 January 2016

www.bitmessage.org

