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We introduce a new n-ary λ similarity classifier that is based on a new n-ary λ-averaging operator in the aggregation of
similarities. This work is a natural extension of earlier research on similarity based classification in which aggregation is
commonly performed by using the OWA-operator. So far λ-averaging has been used only in binary aggregation. Here the
λ-averaging operator is extended to the n-ary aggregation case by using t-norms and t-conorms. We examine four different
n-ary norms and test the new similarity classifier with five medical data sets. The new method seems to perform well when
compared with the similarity classifier.
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1. Introduction

In this paper we present a new extension of the
similarity based classifier, presented by Luukka et al.
(2001) and Luukka (2005). The core idea of the
similarity based classifier is to build ideal vectors of
class representatives and use similarity in making the
classification decision for the class of the sample.
Similarity based classification was previously studied in
several papers: different similarity measures in similarity
classifiers were examined by Luukka (2007; 2008), while
aggregation with OWA operators within the similarity
classifier was studied by Luukka and Kurama (2013).
Similarity based classification was also found to be useful
in combination with using various principal component
analysis (PCA) methods (Luukka, 2009; Luukka and
Leppalampi, 2006) and with feature selection (Luukka,
2011). Similarity based classification was applied in
a variety of classification problems, e.g., in classifying
chromosomes (Sivaramakrishnan and Arun, 2014), in 3D
face recognition (Ezghari et al., 2015), and in freeway
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incident duration modeling (Vlahogianni and Karlaftis,
2013).

In this paper we examine how λ-averaging (Klir and
Yuan, 1995) can be applied in place of other aggregation
methods, such as the ordered weighted averaging operator
(OWA), in aggregation of similarities in the similarity
classifier. Note that λ-averaging (Klir and Yuan, 1995) has
earlier been introduced only for binary aggregation due to
the fact that it uses t-norms and t-conorms. Since we are
dealing with associative functions, these can be extended
to the n-ary case and in this way also λ-averaging can be
used to aggregate vectors of n elements.

Originally, t-norms first appeared in Menger’s work
to generalize the classical triangle inequality in metric
spaces (Menger, 1942). However, the current axioms
of the t-norm and its dual t-conorm were modified in
the context of probabilistic metric spaces for a binary
case by Schweizer and Sklar (1960; 1983). Later,
Hohle (1978), Alsina et al. (1983) and others introduced
the t-norm and the t-conorm into fuzzy set theory and
suggested that they could be used for the intersection
and union of fuzzy sets, respectively. Due to their
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associativity, t-norms and t-conorms were easily extended
to the n-ary case, as suggested by Klement et al.
(2003a; 2003b; 2000). These extensions were applied
in several cases including the design and construction of
kernels (Fengqiu and Xiaoping, 2012a; 2012b), and in
neuro-fuzzy systems (Gabryel et al., 2010; Korytkowski
and Scherer, 2010). Other application areas are found
in the framework of aggregation operators and in the
resolution and optimization of fuzzy relational equations
(Saminger et al., 2007; Li and Fang, 2008).

Aggregation of information is very useful in
classification, and it is often one of the required steps
before reaching the decision making stage in data analysis.
The concept of aggregation existed in the literature for
some time (Dubois and Prade, 1985; 2004), with a
variety of applications in knowledge based systems, such
as decision making, pattern recognition, and machine
learning, among others (Detyniecki, 2000). Basically,
when faced with several values from different sources, an
aggregation function fuses the separate values into a single
outcome that can be used in the system or in supporting
decision making. The simplest and most common way to
aggregate (numerical) information is to use the arithmetic
mean. However, there are also several other operations
that have been used in aggregation, such as geometric,
quadratic, or harmonic means. Experts have developed
more specialized operators that guide aggregation, such as
the use of the minimum t-norm, the maximum t-conorm,
Łukasiewicz, product t-norms and t-conorms, averaging
operators, and others (Calvo et al., 2002; Yager, 1988;
O’Hagan, 1988; Xu, 2008; Schweizer and Sklar, 1960;
1983). For all these methods, aggregation is easier for
the binary case, but higher dimensional cases have also
been considered. Generally, we make the observation that
aggregation operators have recently gained interest (Calvo
et al., 2002).

Classification of objects is a well studied issue
within artificial intelligence and it has many application
opportunities in other fields, too. In classification, one is
interested in partitioning the feature space into regions.
Ideally, partitioning is done so that none of the decisions
are ever wrong (Duda et al., 1973). The aggregation
method that is used in the classification stage affects
the accuracy of the classifier in one way or another. It
is therefore important to design classifiers that utilize
aggregation methods that are as accurate as possible,
since even a small change in the classification accuracy
may produce very meaningful effects in the application
space (Klir and Folger, 1988). In this paper, aggregation
is done using the n-ary lambda averaging operator that
was previously defined for the binary case by Klir and
Yuan (1995). As a new contribution, here we extend it
to the n-ary case and use it in aggregation within the
similarity classifier, thus presenting and proposing a new
classification method.

This paper is organized as follows. In Section 2,
we provide the mathematical background with the notions
and definitions used in the paper. We start with presenting
aggregation operators and then we introduce the new
n-ary extension to λ-averaging. The mathematical
background of similarity measures is also introduced.
In Section 3, we start with a short introduction to
the similarity classifier and present the proposed new
λ-averaging based similarity classifier. In Section 4,
the new similarity classifier is benchmarked with five
different medical data sets and the results compared
with those obtained with a standard similarity classifier.
Finally, the paper is complemented with a discussion.

2. Mathematical background

In this section we first start with a short introduction
of aggregation operators in general. Then we move
into presenting t-norms and t-conorms and introduce also
some new n-ary extensions to them. After this we present
averaging operators, within which we focus especially on
λ-averaging and start from the binary case. Then we
introduce how the λ-average can be extended to the n-ary
case with n-ary t-norms and t-conorms. We close this
section with the introduction of the similarity measures
that are used in the similarity classifier presented here.

2.1. Aggregation operators. Aggregation of fuzzy
inputs is the process of combining several numerical
values into a single value that is a representation of all the
included values. In this case, an aggregation function, or
an operator, is used to perform this operation. Definitions
are presented, following the works of Klir and Yuan
(1995), Detyniecki (2000), as well as Dubois and Prade
(1985).

An n-ary aggregation operator is defined by Klir and
Yuan (1995) as follows: An n-ary aggregation operator
(n ≥ 2) is a mapping f : [0, 1]n → [0, 1].

For n = 2, we obtain the usual binary case f :
[0, 1]2 → [0, 1]. For example, if the aggregation operator
f is applied to two fuzzy sets, say A1, A2, via their
membership grades A1(x), A2(x) to produce a single
aggregated fuzzy set A, with a membership grade A(x),
where

A(x) = f(A1(x), A2(x)) (1)

for all x ∈ X , we get the universe where all
fuzzy sets are defined. We can extended this to an
n-ary case. Suppose n fuzzy sets A1, A2, . . . , An

defined on X are to be aggregated so that we get
A = f(A1, A2, . . . , An). This can be done, since
f(A1, A2, . . . , An)(x) = f(A1(x), A2(x), . . . , An(x))
means that a single membership grade A(x) can be
obtained from

A(x) = f(A1(x), A2(x), . . . , An(x)). (2)
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The concept of aggregation requires the operator
used to satisfy a number of properties. The “strength” of
an aggregation operator may depend on which properties
it satisfies but, basically, any aggregation operator should
satisfy the following three properties (Klir and Yuan,
1995):

1. Boundary conditions
An aggregation operator f on an interval [0, 1]
satisfies f(0, 0, . . . , 0) = 0 and f(1, 1, . . . , 1) = 1.
This means that aggregation of small values returns
a small value, and aggregation of large values returns
a large value (Detyniecki, 2000).

2. Monotonicity
Assume that (x1, x2, x3, . . . , xn) ∈ [0, 1] and let
(y1, y2, y3, . . . , yn) ∈ [0, 1] be any pair of n-tuples,
such that xi ≤ yi ∀i ∈ N; then we are guaranteed
that f(x1, x2, . . . , xn) ≤ f(y1, y2, . . . , yn). This
property ensures that the aggregated values are
always increasing for any increasing set of objects.

3. Continuity
The aggregation operator f is continuous on [0, 1].

Continuity ensures that certain operations which
would rather be complex are made possible.

Certain aggregation operators also satisfy symmetry
and idempotency conditions. Notice that the symmetry
property implies that interchanging arguments does not
affect the aggregated value, and thus the aggregated fuzzy
sets are treated with equal importance (Klir and Yuan,
1995).

In view of the above properties, it can be noted that
there are several operators that satisfy the main conditions
required from “true” aggregation operators. It needs to
be said that for some operators that can generally be
called aggregation operators the above properties are not
fulfilled, especially when an extension of the operators is
made from the binary case. Here, we focus on intersection
(t-norm), union (t-conorm), and averaging operators. In
the next subsections we review the basic idea behind the
three above mentioned aggregation operators.

2.2. Intersection operator (t-norm). In crisp set
theory, the intersection operation ∩ between two sets
A and B is understood as the set represented by the
region shared by both sets. Its fuzzy counterpart is a
binary operation that takes in two membership grades
A(x), B(x) ∈ [0, 1] of A and B, respectively, yielding
a single membership grade in [0, 1]. Thus, for intersection
i on the two sets, i : [0, 1]2 → [0, 1], we have

(A ∩B)(x) = i[A(x), B(x)] (3)

for all x ∈ X (Klir and Yuan, 1995). This can be
generalized to any number of fuzzy sets without any loss

of general properties. Following the work of Klir and
Yuan (1995), we can define the t-norm as follows.

Definition 1. An aggregation operator T : [0, 1]2 →
[0, 1] is called a t-norm if it is commutative, associative,
monotonic, and satisfies the boundary conditions. That is,
for all x, y, z ∈ [0, 1] we have that
A1 : T (x, y) = T (y, x) (commutativity),
A2 : T (x, T (y, z)) = T (T (x, y), z) (associativity),
A3 : T (x, y) ≤ T (x, z), whenever y ≤ z (monotonicity),
A4 : T (x, 1) = x (boundary condition).

This works as a skeleton for a norm operator. We
can also introduce further axioms to have even stricter
forms. For example, for the Archimedean t-norm we can
also require sub-idempotency and continuity (Klement
et al., 2003a).

Definition 2. A triangular norm, T , is said to be an
Archimedean norm if it is continuous and T (x, x) <
x, ∀x ∈ [0, 1].

There are several examples of t-norms used in
applications; take, for example, any x, y ∈ [0, 1]. The
most commonly used t-norms include the following.

1. Standard intersection, TM : TM (x, y) = min(x, y).
This takes in arguments x and y and returns
min(x, y) as an output. This is the largest of the
t-norm family that is considered in this article.

2. Algebraic product, TP : TP (x, y) = xy. Clearly, for
all x, y ∈ [0, 1], the algebraic product xy is in [0, 1].

3. Łukasiewicz t-norm, TL: TL(x, y) = max(0, x+y−
1). This is also called the bounded difference.

4. Drastic intersection, TD:

TD(x, y) =

⎧
⎪⎨

⎪⎩

x, if y = 1,

y, if x = 1,

0, otherwise.

The drastic t-norm is the smallest or is at the extreme
end in the family of four t-norms mentioned here. Clearly,
the value obtained by using an intersection aggregation
operator depends on which type of t-norm is used.

Due to the associativity of t-norms, it is possible to
extend the operation to the n-ary case, n ≥ 2. For n = 3,
the t-norm T can be computed from T (x1, x2, x3) =
T (T (x1, x2), x3). This was shown by Klement et al.
(2003b, p. 415), who gave the following definition.

Definition 3. Let T be a t-norm and (x1, x2, . . . , xn) ∈
[0, 1]n be any n-ary tuple. We define T (x1, x2, . . . , xn)
as

T (x1, x2, . . . , xn) = T (T (x1, x2, . . . , xn−1), xn). (4)
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Equation (4) provides a recursive procedure that is very
useful for any n-ary case. We can use this to derive a direct
formula in some cases (see, e.g., Definitions 4–6), but in
some cases these need to be computed using recursion, as
given in Definition 3. Next we go through some n-ary
t-norms that we arrive at in this way and that are applied
later in the aggregation.

Definition 4. The standard intersection, TM , can be
obtained for all (x1, x2, . . . , xn) ∈ [0, 1]n by

TM (x1, x2, x3, . . . , xn) = min(x1, x2, x3, . . . , xn) (5)

Note. In our application, input vectors are the ideal
vectors obtained from a data matrix. Each ideal vector
is taken one at a time by the algorithm and aggregated to
obtain a value that is compared with the λ value. Also,
the following definitions, which we are applying later in
λ-averaging are given by Klement et al. (2003b).

Definition 5. Let TP be the algebraic product, also
called the probabilistic t-norm. For any n-ary input vector
(x1, x2, x3, . . . , xn) we define TP as

TP (x1, x2, x3, . . . , xn) =

n∏

k=1

(xk). (6)

Definition 6. Let TL be the Łukasiewicz t-norm. For any
n-ary vector (x1, x2, x3, . . . , xn), TL is extended by

TL(x1, x2, x3, . . . , xn) = max[0, (1−
n∑

k=1

(1−xk))]. (7)

Definition 7. Let TD be the drastic product t-norm. The
n-ary extension for all xi, xi+1, i = 1, 2, 3, . . . , n− 1, is
computed from

TD(x1, x2, x3, . . . , xn) =

⎧
⎪⎨

⎪⎩

xi, if xi+1 = 1,

xi+1, if xi = 1,

0, otherwise.

(8)

The above process of implementing
TD(x1, x2, x3, . . . , xn) goes forward so that first
two arguments are considered; if one of them is 1, then
the other one is picked. If none of them is 1, a zero is
selected instead and compared with the next argument.
The process is repeated until all the xi’s are considered.

Next, we present a simple example that demonstrates
the implementation of the 8-ary argument using the four
different t-norm aggregation operators.

Example 1. Consider an 8-ary vector,

h = (0.4, 0.2, 0.5, 0.1, 0.3, 1.0, 0.4, 0.8).

We compute the standard intersection TM , the algebraic
product TP , Łukasiewicz t-norm TL and the drastic

product TD as

TM (h) = min (0.4, 0.2, 0.5, 0.1, 0.3, 1.0, 0.4, 0.8) = 0.1,

TP (h) =
∏

(0.4, 0.2, 0.5, 0.1, 0.3, 1.0, 0.4, 0.8)

= 0.000384,

TL(h) = max[1−
∑

((1, 1, 1, 1, 1, 1, 1, 1)

− (0.4, 0.2, 0.5, 0.1, 0.3, 1.0, 0.4, 0.8)), 0]

= max[1−
∑

(0.6, 0.8, 0.5, 0.9,

0.7, 0.0, 0.6, 0.2), 0]

= max[1− (4.3), 0] = 0,

TD(h) = 0.

This is because

TD(0.4, 0.2) = 0, TD(TD(0.4, 0.2), 0.5) = 0,

TD(TD(0.4, 0.2, 0.5), 0.1) = 0,

TD(TD(0.4, 0.2, 0.5, 0.1), 0.3) = 0,

TD(TD(0.4, 0.2, 0.5, 0.1, 0.3), 1.0) = 1,

TD(TD(0.4, 0.2, 0.5, 0.1, 0.3, 1.0), 0.4) = 0,

TD(TD(0.4, 0.2, 0.5, 0.1, 0.3, 1.0, 0.4), 0.8) = 0.

�

2.3. Union operator (t-conorm). Another key part
of the λ-averaging operator is a union operator, which
is referred to as the t-conorm. The t-co norm is an
aggregation operator that can be considered to be dual to
the t-norm. Given two sets A and B, the fuzzy union u is
a function u : [0, 1]2 → [0, 1] such that

(A ∪B)(x) = u[A(x), B(x)]. (9)

Inputs are the two membership grades, one from A and
another from B, which gives one output from A∪B (Klir
and Yuan, 1995). Given any t-norm, T , a t-co norm, S,
can be obtained using the fact that (Klement et al., 2003b)

S(x, y) = 1− T (1− x, 1− y) (10)

for all x, y ∈ [0, 1].

Definition 8. An aggregation operator S : [0, 1]2 →
[0, 1] is called a triangular conorm (t-conorm) if it is
commutative, associative, monotone, and has 0 as its
neutral element (Klir and Yuan, 1995). That is, for all
x, y, z ∈ [0, 1], we have the following axioms satisfied:
A1 : S(x, y) = S(y, x) (commutativity),
A2 : S(x, S(y, z)) = S(S(x, y), z) (associativity),
A3 : S(x, y) ≤ S(x, z), whenever y ≤ z (monotonicity),
A4 : S(x, 0) = x (boundary condition).
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These axioms are general and quite basic, more strict
axioms have been defined for triangular conorms (Klir
and Yuan, 1995), making them applicable in a number of
areas.

The following are common examples of t-conorms
implemented in this paper. For all x, y ∈ [0, 1], we have

1. standard union, SM : SM (x, y) = max(x, y),

2. algebraic sum, SP : SP (x, y) = x+ y − xy,

3. Łukasiewicz t-conorm, SL: SL(x, y) = min(1, x +
y),

4. drastic union, SD:

SD(x, y) =

⎧
⎪⎨

⎪⎩

x, if y = 0,

y, if x = 0,

1, otherwise.

Triangular conorms can be extended to n-ary
arguments (Klement et al., 2003b; 2003a) due to their
associativity. In the work of Klement et al. (2003b),
general constructions of n-ary t-norms and t-conorms
were presented. The following definitions are given, based
on extensions proposed by Klement et al. (2003b; 2000).

Definition 9. Let S be a t-conorm and (x1, x2, . . . , xn) ∈
[0, 1]n be any n-ary tuple. Then S(x1, x2, . . . , xn) is
given by

S(x1, x2, . . . , xn) = S(S(x1, x2, . . . , xn−1), xn) (11)

Definition 10. Let (x1, x2, . . . , xn) ∈ [0, 1]n be an n-ary
vector. Then the standard union can be extended using

SM (x1, x2, . . . , xn) = max(x1, x2, . . . , xn). (12)

The standard union aggregation operator is the
smallest of the t-conorm family mentioned above. Thus
it is the only one that is idempotent (Klir and Yuan, 1995).
Due to the commutative property, any order of pairwise
groupings can be computed for an n-ary vector. Next we
shortly go through three other n-ary t-conorms.

Definition 11. The extended probabilistic t-conorm is
given by

SP (x1, x2, x3, . . . , xn) = 1−
n∏

k=1

(1− xk). (13)

This operation is clearly giving higher values than the
standard union operation, so we have

SM (x1, x2, x3, . . . , xn) ≤ SP (x1, x2, x3, . . . , xn)

for all x1, x2, x3, . . . , xn ∈ [0, 1].

Definition 12. The n-ary Łukasiewicz t-conorm is given
by

SL(x1, x2, . . . , xn) = min[1,

n∑

i=1

xi]. (14)

This operation is again giving higher values than
previously and we have SP (x1, x2, x3, . . . , xn) ≤
SL(x1, x2, x3, . . . , xn).

Lastly, the largest of the t-conorms is the drastic
union.

Definition 13. Let SD be the drastic sum. For all
xi, xi+1 ∈ [0, 1], i = 1, 2, 3, . . . , n− 1, we have

SD(x1, x2, x3, . . . , xn) =

⎧
⎪⎨

⎪⎩

xi, if xi+1 = 0,

xi+1, if xi = 0,

1, otherwise.

(15)

It can be shown that for any vector t =
(x1, x2, x3, . . . , xn) ∈ [0, 1]n we have SM (t) ≤ SP (t) ≤
SL(t) ≤ SD(t).

Next, a simple example is used to show the
implementation of the union aggregation operators for an
n-ary vector.

Example 2. Consider a 5-ary vector

t = (0.6, 0.1, 0.5, 0.0, 0.8) ∈ [0, 1]5.

To aggregate the vector using the union operator, we
obtain standard union,

SM (t) = max(t) = 0.8,

algebraic sum,

SP (t) = 1−
(∏

[(1, 1, 1, 1, 1)

− (0.6, 0.1, 0.5, 0.0, 0.8)]
)

= 0.964,

Łukasiewicz t-conorm,

SL(t) = min[1,
∑

(0.6, 0.1, 0.5, 0.0, 0.8)] = 1,

and the drastic union,

SD(t) = 1

�

2.4. Averaging operators. Apart from the intersection
and the union operators, another class of aggregating
operators that are monotonic and idempotent are what
is called averaging operators. The following axiomatic
properties are required for an operator to be an averaging
one.
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Definition 14. Let a, b ∈ [0, 1]n be column vectors
such that a = [a1, . . . , an]

T , b = [b1, . . . , bn]
T and a =

[a, . . . , a]T . An aggregation operator h : [0, 1]n → [0, 1]
is an averaging one if

1. h(a) = a, ∀ a ∈ [0, 1] (idempotency);

2. h(a) = h(aπ), where π means any permutation on
{1, . . . , n} and aπ = [aπ(1), . . . , aπ(n)]

T (symmetry
on all its arguments);

3. h(0) = 0, h(1) = 1 (boundary conditions);

4. for any pair a, b ∈ [0, 1]n, if ai ≤ bi for all
i ∈ {1, . . . , n}, h(a) ≤ h(b) (monotonic in all its
arguments);

5. h is continuous.

Averaging operators usually “occupy” the interval
between the intersection and the union. Due to
the monotonicity condition, an averaging operator h,
normally satisfies

min(x1, x2, . . . , xn) ≤ h(x1, x2, . . . , xn)

≤ max(x1, x2, . . . , xn) (16)

for all xi ∈ [0, 1], i = 1, . . . , n.

In general, there are several kinds of averaging
operators that can be used in aggregation. One of
the most commonly employed averaging operators is
the generalized mean. The generalized mean operator
“covers” the whole interval between the minimum
(intersection) and the maximum (union).

Definition 15. Let x1, x2, . . . , xn be an n-ary vector. The
generalized mean aggregation operator h is given by

hp(x1, x2, . . . , xn) =

(
1

n

n∑

i=1

(xi)
p

)1/p

, (17)

where p 	= 0 ∈ R is a parameter by which several means
are differentiated.

For example, if p = 1, we obtain the arithmetic mean
given by

h1(x1, x2, . . . , xn) =
1

n

n∑

i=1

xi, (18)

and if p = −1, we obtain the harmonic mean given by

h−1(x1, x2, . . . , xn) =
n

n∑

i=1

1

xi

. (19)

Another averaging operator that is often used in the
literature is the ordered weighted averaging (OWA) one,

introduced by Yager (1988). This averaging operator
was used for classification purposes with(in) the similarity
classifier by Luukka and Kurama (2013). The OWA
operator is characterized by an adjustable weighting
vector. The adjustment of the weights in the vector allows
the averaging operator to “move” between the minimum
and the maximum.

Definition 16. A mapping g : R
n → R, with an

associated vector w = (w1, w2, w3, . . . , wn)
T , wi ∈

[0, 1], i = 1, 2, . . . , n is an ordered weighted averaging
operator if for

∑n
i=1 wi = 1 and (a1, a2, . . . , an) ∈ R

n

we have

g(a1, a2, a3, . . . , an) =
n∑

i=1

wibi, (20)

where bi is the i-th largest of the elements a1, a2, . . . , an
arranged in descending order, (Yager, 1988).

2.5. λ-averaging operator and its extension to the
n-ary case. Here we first introduce the λ-averaging
operator as given by Klir and Yuan (1995, p. 93), and after
this we are going to present the new n-ary generalization
of the operator.

Definition 17. A lambda averaging operator (λ-average)
is a parameterized class of norm operations defined for a
binary case by

hλ(x, y) =

⎧
⎪⎨

⎪⎩

min(λ, S(x, y)), if x, y ∈ [0, λ],

max(λ, T (x, y)), if x, y ∈ [λ, 1],

λ, otherwise,

(21)

for all x, y ∈ [0, 1] and λ ∈ (0, 1), where T is a t-norm
and S is a t-conorm.

The value of λ is essential in the averaging process,
since the intervals [0, λ] and [λ, 1] are central to the
resulting aggregated value. T (x, y) and S(x, y) can
basically be any t-norm or t-conorm. The λ-averaging
operator satisfies all of the above discussed properties of
aggregation operators, but the boundary conditions are
“weaker”. The usual boundary conditions are replaced by
h(0, 0) = 0 and h(1, 1) = 1. The properties of continuity
and idempotency are satisfied. Accordingly, this class of
operators can reduce to t-norms if h(x, 1) = x and to
t-conorm if h(x, 0) = x; thus the whole range from drastic
intersection TD to drastic union SD is covered by the λ
averaging operator.

Since the λ-averaging operator is an associative
operator, it can be extended to the n-ary case in the same
way as can be done for general t-norms and t-conorms.

Definition 18. For any n-tuple, t = (x1, x2, . . . , xn) ∈
[0, 1]n, we define the n-ary lambda averaging operator,
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hλ(t), by

hλ(t) =

⎧
⎪⎨

⎪⎩

min(λ, S(t)), if t ∈ [0, λ]n,

max(λ, T (t)), if t ∈ [λ, 1]n,

λ, otherwise,

(22)

where the t-norm T (t) and t-conorm S(t) can be
recursively computed from any n-ary t-norm/t-conorm.

Implementation of the n-ary λ- averaging operator is
done via Eqn. (22). The next example briefly illustrates
how the new extension can be applied when generalized
versions of the standard t-norm and t-conorm are chosen
for the n-ary t-norms and t-conorms.

Example 3. Suppose that a 4-ary vector

t = (0.2, 0.5, 0.4, 0.3) ∈ [0, 1]4

is to be aggregated using the lambda averaging operator
for λ = 0.6 ∈ [0, 1]. Since

t = (0.2, 0.5, 0.4, 0.3) ∈ [0, λ]4,

we obtain
hλ(t) = min(λ, S(t)).

For
S(t) = SM (t) = max(t) = 0.5

we get
hλ(t) = min(0.6, 0.5) = 0.5.

�
Different values of hλ(t) are obtained if we use

the t-conorms SP (t), SL(t) and SD(t) in the lambda
averaging operator.

2.6. Similarity measures. The similarity measure
based on the Łukasiewicz structure (Łukasiewicz, 1970) is
the one that we use in our similarity classifier. One reason
for this selection is that it is the most used similarity
measure in examining similarity classifiers, and hence it
is well studied in the literature (Luukka, 2007; 2005).
One of the advantages of using a similarity measure
in the Łukasiewicz structure is that the mean of many
similarities is still a similarity, as shown by Turunen
(2002). This similarity measure also works well in
comparing objects. Next, we shortly go through the most
important definitions of similarity and finally present the
similarity measure which we are using. In the work of
Mattila (2002), the following definition was given.

Definition 19. Let μS(x, y) be the degree of membership
of the ordered pair (x, y). A fuzzy relation S on a set X
is called a similarity relation if it is reflexive, symmetric,
and transitive, i.e.,

1. for all x ∈ X, μS(x, x) = 1 (reflexive),

2. for all x, y ∈ X, μS(x, y) = μS(y, x) (symmetric),

3. for all x, y, z ∈ X, μS(x, z) ≥ μS(x, y) ∗ μS(y, z),
where ∗ is a binary operation (transitive).

Definition 20. A fuzzy binary relation that is reflexive,
symmetric, and transitive is known as a fuzzy equivalence
relation, or as a similarity relation.

Definition 21. In the Łukasiewicz structure, we define
the Łukasiewicz norm as

x� y = max[x+ y − 1, 0] (23)

with an implication x → y = min[1, 1− x+ y].

This norm, together with the implication, provides a
basis for the definition of the Łukasiewicz structure.

Definition 22. In the Łukasiewicz structure, we define
the similarity relation x ⇔ y as

x ⇔ y = 1− |x− y|. (24)

Definition 23. The generalized Łukasiewicz structure
takes the form

x� y = p
√
max{xp + yp − 1, 0}, p ∈ [1,∞], (25)

with the implication x → y = min{1, p
√
1− xp + yp},

where p, a fixed integer, is a parameter in the Łukasiewicz
structure.

3. New similarity based n-ary lambda
classifier

The new similarity measure based classifier that uses the
n-ary lambda extension of the lambda averaging operator
is introduced here. To be precise, the new classification
method is based on the extension of the lambda averaging
operator presented by Klir and Yuan (1995) and on the
similarity classifier proposed by Luukka and Leppalampi
(2006). The new n-ary lambda operator is used in
the aggregation stage of the classification, after a vector
of similarities has been calculated. First we give a
brief description of how the similarity classifier based on
Łukasiewicz structure works.

3.1. Similarity based classifier. In this context, a
similarity is viewed as a numerical measure of how
similar data sets, or vectors, are in a matrix. Thus, the
higher the similarity value, the closer (the more similar)
the objects in terms of characteristics. The major task
of classification is to partition attributes (features) into
regions that categorize the date with the best accuracy.
Ideally, one would like to arrange the partitions so that
none of the decisions is ever wrong (Duda et al., 1973).

Suppose that we want to classify a set Y of
objects into M different classes C1, C2, . . . , CM by their
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attributes. Let n be the number of different features
f1, . . . , fn that can be measured for the given objects.
To preserve the fuzzy domain [0, 1], the values of each
attribute are normalized, so that the objects to be classified
are vectors in the interval [0, 1]n. Each of the classes
C1, C2, . . . , CM is represented by an ideal vector vi =
(vi(f1), . . . , vi(fn)).

First, we must determine an ideal vector for
each class vi = (vi(f1), . . . , vi(fn)) that acts as a
representation of the class i. This vector can be user
defined, or calculated from a sample set Xi of vectors
x = (x(f1), . . . , x(fn)) which are known to belong to a
given class Ci. The method requires the user to have some
knowledge about what kind of classes exist; the better one
knows the better the results will be. We can, e.g., use the
generalized mean as aggregation operator for calculating
vi, which is

vi(r) =

(
1

�Xi

∑

x∈Xi

x(fr)
m

) 1
m

, ∀r = 1, . . . , n,

(26)
where power m (coming from the generalized mean) is
fixed for all i, r and �Xi simply denotes the number of
samples in the class i.

After the ideal vectors have been determined, the
decision to which class an arbitrarily chosen x ∈ X
belongs is made by comparing it with each ideal vector.
The comparison can be done, e.g., by using a similarity
measure in the generalized Łukasiewicz structure:

S〈x,v〉

=

(
1

n

n∑

r=1

wr (1− |x(fr)p − v(fr)
p|)m/p

)1/m

, (27)

for x,v ∈ [0, 1]n. Here p is a parameter coming from the
generalized Łukasiewicz structure (Luukka et al., 2001).

3.2. λ-averaging based similarity classifier. The
idea with the λ-averaging based similarity classifier is to
“replace” any previously used aggregation operator with
the λ-averaging operator. If we assume wr = 1, ∀r and
we remove the averaging operator

hm(s1, s2, . . . , sn) =

(
1

n

n∑

i=1

(si)
m

)1/m

from (27), we are left with a vector of similarities
(s1, s2, . . . , sn), where

si = (1− |x(fi)p − v(fi)
p|)1/p .

This similarity vector is now applied to our λ-averaging
presented in Eqn. (22). This leads to gaining overall

similarity as, for i = 1, 2, 3, . . . , n, we have

Sλ(si, λ) =

⎧
⎪⎨

⎪⎩

min(λ, S(si)), if si ∈ [0, λ]n,

max(λ, T (si)), if si ∈ [λ, 1]n,

λ, otherwise,

(28)

where S(si) and T (si) are a t-conorm and a t-norm,
respectively. From this operation, a single similarity value
is obtained for each class.

The decision to which class an arbitrarily chosen
object y ∈ Y belongs is made by comparing it to the
aggregated value Sλ(s1, s2, s3, . . . , sn, λ). The object
belongs to class with the highest similarity value as
computed from maxi=1,2,...,M Sλ(x,vi)

The λ-averaging based similarity classifier is
described using the pseudo-code in Algorithm 1 below. In
a (t–norm, t-conorm) pair one can apply any of the four
different t–norms, TM , TL, TP , TD, in aggregation, and
their corresponding t-conorms, SM , SL, SP , SD , each at
a time depending on the choice.

Algorithm 1. Pseudo code for the similarity classifier
with an n-ary lambda averaging operator.

Require: data[1, . . . , N ], ideals , λ, p
1: for i = 1 to N do
2: for j = 1 to M do
3: for k = 1 to L do
4: S(i, j, k) = [1 − |(data(i, j))p −

(ideal (k, j))p|] 1p
5: end for
6: end for
7: end for
8: for i = 1 to N do
9: for k = 1 to L do

10: if max(S(i, :, k)) ≤ λ then
11: Sλ(i, k) = min(tnorm(S(i, :, k)), λ)
12: else if min(S(i, :, k)) ≥ λ then
13: Sλ(i, k) = max(tconorm(S(i, :, k)), λ)
14: else
15: Sλ(i, k) = λ
16: end if
17: end for
18: end for
19: for i = 1 to n do
20: class(:, i) = find(Sλ(i, :) == max(Sλ(i, :)))
21: end for

4. Testing the new method: Data sets used
and classification results

To test the new classification method, we run tests on five
data sets of medical data. First, we shortly present the
data sets that are used for the tests, and then we move on
to present the classification results.
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Table 1. Data sets used and their properties.
Data set Number of Number of Number of

classes attributes instances

Fertility 2 10 100
Liver disorder 2 7 345
Sick 2 29 3772
Hypothyroid1 2 25 3772
Pima Indians 2 8 768

4.1. Data sets used. Five different data sets were
used to check the performance of our new classifier. The
chosen data sets have different numbers of attributes and
instances as shown in Table 1. The data sets used were
obtained from the UCI machine learning data repository
(Newman et al., 2012), which contains free databases
meant for research.

4.1.1. Data set 1: The fertility data set. The set
is a newly donated database by David Gil, who has
previously utilized it (Gil et al., 2012). The main focus
of study in this data set is on sperm concentration, which
consequently influences fertility. In its collection, 100
volunteers provided semen samples that were analyzed
according to the WHO 2010 criteria. It is believed that
sperm concentrations are related to socio-demographic
data, environmental factors, health status, and life habits.
These factors were studied based on (i) the season in
which the analysis was performed, (ii) the age of the
donor at the time of analysis, (iii) Child-age diseases
experienced–chicken pox, measles, mumps, and polio,
(iv) accident or serious traumas incurred, (v) the surgical
intervention done, (vi) the high fevers experience, (vii) the
frequency of alcohol consumption, (viii) smoking and (ix)
the number of hours spent sitting per day. The data set has
2 classes, 10 attributes including the class attribute, and
100 observations.

4.1.2. Data set 2: The liver disorder data set.
The data set is provided by R.S. Forsyth (Newman
et al., 2012). The problem implied by the set is to
predict whether a male patient has a liver disorder or
not, based on blood test results and information about
alcohol consumption. The attributes included are (i) mean
corpuscular volume (ii) alkaline phosphotase, (iii) alamine
aminotransferase, (iv) aspartate aminotransferase, (v)
gamma-glutamyl transpeptidase, and (vi) the number of
half-pint equivalents of alcoholic beverages drunk per day.
The first five variables are results from blood tests, which
are thought to be sensitive to liver disorders that might
arise from excessive alcohol consumption. Each line in
the liver disorder data file constitutes a record of a single
male individual. The data set has 2 classes, 7 attributes
including the class attribute, and 345 observations.

4.1.3. Data sets 3 and 4: The thyroid data sets.
Two of the 6 thyroid data sets in the UCI (Newman
et al., 2012) were used, both including 3772 observations:
(1) the sick data set that consists of 29 attributes and two
classes and (2) hypothyroid1 that also has 29 attributes of
which 25, including the class attribute, were used in the
classification. The problem to be solved based on these
two data sets is to discover, whether or not the patient has
a thyroid related disease.

4.1.4. Data set 5: Pima Indians diabetes. The aim
of the data set is to test the prevalence of diabetes among
Indians of the Pima heritage. In particular, all patients
were females of at least 21 years of age. The data set
was donated by Vincent Sigillito from Johns Hopkins
University, and it has 8 attributes with 768 observations.
The attributes considered are (I) the number of times
pregnant, (II) plasma glucose concentration—a 2 hour
in an oral glucose tolerance test, (III) diastolic blood
pressure (mm Hg), (IV) triceps skin fold thickness (mm),
(V) 2-hour serum insulin (mu U/ml), (VI) body mass
index (weight in kg/(height in m)2), (VII) the diabetes
pedigree function, (VIII) the age (years), and the class
variable.

4.2. Classification results. We computed the results
using the new n-ary λ similarity classifier. Since we
are using four different types of n-ary norm in our
λ-averaging, we refer to them simply by using the
names of the norms. We benchmark the obtained
results by comparing them not only to one another, but
also to a similarity classifier that uses the generalized
mean for aggregation (we call this the “standard
similarity classifier”). Besides classification accuracy
and classification variance, we also computed the area
under receiving operator characteristic (AUROC) values.
Also the receiving operator characteristic (ROC) curve
is computed. In all experiments, the data sets were
split into two parts; one half was used for training and
the other for testing. This procedure was repeated by
using random cut-points for 30 times, and the mean
classification accuracies, variances, and AUROC values
were computed. Corresponding figures are made to
allow graphical inspection of how changing parameter
values affects the classification results. In Figs. 1–4,
the parameters which are varied are p, the value from
the generalized Łukasiewicz structure, and λ from the
λ-averaging operator.

4.2.1. Classification results with the fertility data
set. Results obtained with the fertility data set for four
different norms are recorded in Table 2. The best
classification accuracy of 88.07% was obtained with
the standard t-norm and the t-conorm. This represents
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Table 2. Classification results with the fertility data set.

Method Mean Variance AUROC
accuracy (%)

λ-average classifier
with:

standard norms 88.07 1.3333 × 10−5 0.5000
Łukasiewicz norms 87.71 1.5314 × 10−4 0.5000
probabilistic norms 87.63 2.0709 × 10−4 0.5000

drastic norms 88.00 5.1004 × 10−32 0.5000
standard similarity 68.20 0.0094 0.7088

classifier

Table 3. Classification results with the sick data set.

Method Mean Variance AUROC
accuracy (%)

λ-average classifier
with:

standard norms 94.04 7.0887 × 10−7 0.8523
Łukasiewicz norms 94.16 1.2473 × 10−6 0.5065
probabilistic norms 94.06 4.3401 × 10−6 0.6997

drastic norms 93.85 5.1004 × 10−32 0.5000
standard similarity 72.61 0.0025 0.8212

classifier

an improvement of 19.87% over the standard similarity
classifier (68.20% accuracy). Generally, using the other
studied norms produced results that are “close to each
other”, but better than the results obtained with the
standard similarity classifier. On the other hand, it can
be noted that the standard similarity classifier produced
the highest AUROC value of 70.88%. Variances obtained
are very small, which indicates that true classification
accuracies are close to the mean classification accuracy
obtained.

Figure 1 shows mean classification accuracies and
their corresponding variances. A combined plot of
receiving operator characteristics for all the five data sets
is presented in Fig. 6.

4.2.2. Classification results with the sick data set.
With this data set the performance of Łukasiewicz norms
was the best, with a mean classification accuracy of
94.16%. This can bee seen in Table 3. The accuracy
obtained is very close to that produced using probabilistic
norms, and is not very different from the mean accuracies
obtained with standard n-ary norms and with drastic n-ary
norms. The standard similarity measure has a lower mean
classification accuracy of 72.61%. The improvement in
performance is 21.55% for this particular data set. We also
observe that the standard norms have the highest AUROC
value.

In Fig. 2 the best mean classification accuracy (one

Table 4. Classification results with the hypothyroid data set.

Method Mean Variance AUROC
accuracy (%)

λ-average classifier
with:

standard norms 99.51 2.1880 × 10−6 0.7088
Łukasiewicz norms 86.13 2.3502 × 10−4 0.5000
probabilistic norms 99.27 2.0281 × 10−6 0.5000

drastic norms 08.22 1.7931 × 10−33 0.5000
standard similarity 99.61 1.3613 × 10−6 0.9747

classifier

obtained with Łukasiewicz norms) for the sick data
set and its corresponding variance is shown. A plot
that corresponds with the highest AUROC value is also
presented in Fig. 6. It can be seen that the largest AUROC
value was 85.23%, obtained by using standard norms.

4.2.3. Classification results with the hypothyroid
data set. The standard similarity classifier achieved the
highest mean classification accuracy of 99.61%, but the
proposed methods also produced good results with this
data set. In Table 4, mean classification accuracies of
99.51% and 99.27% were achieved by using the standard
and probabilistic norms, respectively. There is no large
difference in the general mean performance of the three
methods, apart from the drastic norms, which performed
poorly with this data set.

In Fig. 3 we also present plots with respect
to parameter changes for the best mean classification
accuracy and the variances.

4.2.4. Classification results with the liver disorder
data set. In Table 5, results obtained with the liver
disorder data set are presented. The standard n-ary norms
produced the highest mean classification accuracy value
of 60.29%, and the drastic norms produced the lowest
accuracy of 42.20%. The standard similarity measure
this time outperformed the Łukasiewicz, probabilistic and
drastic n-ary norms for this data set. The standard
similarity classifier performance was close to the best
n-ary lambda classifier results with a classification
accuracy of 59.92%.

In Fig. 4 the best mean classification accuracies
and corresponding variances are presented with varying
parameter values.

4.2.5. Classification results with the Pima Indi-
ans data set. With this data set, the probabilistic
and Łukasiewicz norms have the mean classification
accuracies of 74.18% and 74.13%, and clearly outperform
the standard and the drastic norms. The standard
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Fig. 1. Mean classification accuracies (a) and variances (b) obtained from the fertility data set with the use of the standard t-norm and
t-conorm.
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Fig. 2. Mean classification accuracies (a) and variances (b) obtained from the sick data set with the use of the Łukasiewicz t-norm and
t-conorm.
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Fig. 3. Mean classification accuracies (a) and variances (b) obtained from the hypothyroid data set using the standard t-norm and
t-conorm.

similarity classifier returns the best mean classification
accuracy of 74.70%. In Table 6 the results are presented
in detail.

In Fig. 5 one can again see the mean accuracies and

variance changes with respect to the parameter values.

The highest AUROC values for all the five data sets
are plotted in Fig. 6.



418 O. Kurama et al.

0
0.2

0.4
0.6

0.8
1

0

2

4

6
0.4

0.45

0.5

0.55

0.6

0.65

λ−values

Mean classification accuracies

p−values

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

0
0.2

0.4
0.6

0.8
1

0

2

4

6
0

1

2

3

4

x 10−3

λ−values

Variances

p−values

V
ar

ia
nc

e

(a) (b)

Fig. 4. Mean classification accuracies (a) and variances (b) obtained from the liver disorder data set using the standard t-norm and
t-conorm.
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Fig. 6. AUROC curves for fertility with the standard similarity classifier (a), sick with the standard norms (b), hypothyroid with the
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standard similarity classifier (e).
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Table 5. Classification results with the liver disorder data set.

Method Mean Variance AUROC
accuracy (%)

λ-average classifier
with:

standard norms 60.29 6.7320 × 10−4 0.6270
Łukasiewicz norms 57.36 0.0011 0.5399
probabilistic norms 58.69 0.0019 0.6482

drastic norms 42.20 7.9694 × 10−32 0.5000
standard similarity 59.92 7.0358 × 10−4 0.6688

classifier

5. Discussion

In this paper we presented a new similarity based
classification method that uses the λ-averaging operator
in aggregation. To the best of our knowledge, λ-averaging
has not been previously extended (generalized) to the
n-ary case, and/or applied in real world applications.
The new n-ary λ-averaging similarity classifier was
tested with four n-ary norms namely standard norm
(maximum and minimum), the Łukasiewicz norm, and
with probabilistic and drastic t-norms and t-conorms. In
numerical classification tests the obtained results were
compared with those gained with a standard similarity
classifier that uses the generalized mean for aggregation.

Five different real world data sets were used in
testing the new method. The obtained results compared
with the benchmark standard similarity classifier were
mixed, but overall the new method’s performance was
in line with the standard similarity classifier or better.
Furthermore, there is no evidence to suggest that using
a specific norm would outperform using the other norms;
however, weaker results were obtained when the drastic
norms were used. The difference in results from
our benchmark data sets is attributed to the varying
properties of the respective aggregators used; that is, in the
intersection case the standard n-ary t-norm is the weakest,
or the most allowing norm, whereas the drastic n-ary
t-norm creates the strongest requirement. The other two

Table 6. Classification results with the Pima Indians data set.

Method Mean Variance AUROC
accuracy (%)

λ-average classifier
with:

standard norms 69.97 5.1595 × 10−4 0.5000
Łukasiewicz norms 74.13 1.6806 × 10−4 0.5000
probabilistic norms 74.18 1.4456 × 10−4 0.5000

drastic norms 65.10 0.0000 0.5000
standard similarity 74.70 2.0379 × 10−4 0.7192

classifier

n-ary norms fall within this interval. Similarly, on the
union side, the standard n-ary t-conorm is the strongest
union and the drastic n-ary t-conorm the weakest.

By changing n-ary norms in the λ-averaging
operator, we are “moving” towards the union side
from the intersection side, or vice versa. This causes
the differences in classification accuracies between the
four different cases. Basically, what we have is a
“hybrid” aggregation operator that can vary between
intersection/averaging/union operators by selecting from
between the four n-ary norms. Since changing the n-ary
norm used affects the classification accuracy, there is a
reason to believe that some data sets have a better fit
with union like aggregation operators, while others have
a better fit with intersection type operators.

Further research on this topic will include studying
the optimization of parameter values for classification as
well as determinants of optimal selection of the norms
used.
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