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This paper considers a discrete-time queueing system in which an arriving customer can decide to follow a last come first
served (LCFS) service discipline or to become a negative customer that eliminates the one at service, if any. After service
completion, the server can opt for a vacation time or it can remain on duty. Changes in the vacation times as well as their
associated distribution are thoroughly studied. An extensive analysis of the system is carried out and, using a probability
generating function approach, steady-state performance measures such as the first moments of the busy period of the queue
content and of customers delay are obtained. Finally, some numerical examples to show the influence of the parameters on
several performance characteristics are given.
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1. Introduction

The development of queueing theory dates back more
than a century to the work of A.K. Erlang from the
early 1900s, who derived important formulae for teletra-
ffic engineering. Nowadays the range of applications has
grown and queueing theory provides models, structural
insights, problem solutions and algorithms to many
areas, and due to its practical applicability to production,
manufacturing, communications technology, etc., more
and more complex systems require more elaborated
models, techniques, algorithms, etc.

Focusing on computer communications, a
communication channel can be viewed as a server
and the messages as customers; the random times
at which messages request the use of the channel
would be the arrival process, and the random lengths
of service time that the messages hold the channel
while being transmitted would constitute the service
process. Referred to biological cells, the queueing
analogy for a single ClpXP (protease) molecule is then
a server (catalytic core) that selects customers (protein
substrate) at random from a finite capacity waiting line
(SspB-substrate complex associated with ClpX binding
sites) and processes (degrades) the customers (substrate).

For a good review on queueing theory the reader is

referred to the books by Kleinrock (1976), Cooper (1981),
Takagi (1993), Bocharov et al. (2004) or Lakatos et al.
(2013), and for applications on biological systems to the
works of Hochendoner et al. (2014) as well as Wieczorek
(2010).

Discrete-time models are very suitable in many
situations. A feature that makes the analysis of
discrete time systems technically more involved than its
continuous time counterparts is the fact that the basic unit
is a binary code and the occurrence of simultaneous events
does not happen in continuous time. The regulation of
these simultaneous events in queueing systems (arrivals
and departures) was already studied in depth with respect
to steady-state behavior by Hunter (1983). A detailed
discussion and applications of discrete-time queues can
be found in the books by Hunter (1983), Bruneel and Kim
(1993), Woodward (1994), Alfa (2010) and the references
therein.

In classical queueing models, the server is always
available but this assumption is practically unrealistic.
In queueing parlance, the period when the server is not
attending a certain task is called vacation. In this paper,
possible changes in the vacation times are contemplated,
which is a quite realistic consideration. The vacation
period can be, in some cases, shortened or enlarged,
according to the necessities of the company. A staff
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shortage, due to illnesses or any other causes, may make
it advisable to call back to the firm employees on vacation
and, on the contrary, a decrease in the activity of the
firm may make it advisable to extend the vacation period.
To the author’s knowledge, the changes in the vacation
times have never been considered before. In the literature,
there has been a number of contributions with respect
to vacation models (e.g., Tian and Zhang, 2002; Xeung
et al., 2007; Oliver and Olubukola, 2014); the book of
Tian and Zhang (2006) offers a great survey on vacation
models with examples.

Another feature that is usually found when a message
is being processed in computers, in communications
switching queues, etc., is that sometimes the information
coming to the server is more actual than the one on
service. In that case, the message is moved to another
place if the contained information can be used later on, or
if the information is not any more valuable it is deleted:
in both cases the server is interrupted and upgraded. For
a general survey on queues with service interruptions we
refer to the papers by Fiems et al. (2002), Walraevens
et al. (2006), Krishnamoorthy et al. (2012; 2013) or
Atencia (2015), and for a detailed review on queues with
service interruptions to the work of Krishnamoorthy et al.
(2014).

The mechanism of moving messages by the arrival
of one of them is called synchronized or triggered motion.
There are several mechanisms on how and where the
messages are moved; for a survey on those we refer to
Artalejo (2000), Gelenbe and Labed (1998) and Atencia
(2014). In the remainder of this paper the term “customer”
will be used, which can be understood as messages,
proteins, etc, depending on the context in which the model
is applied.

A certain type of movement can be also considered
when customers are deleted. The process of deleting
customers or killing them is defined in queueing theory
as negative customers. This type of movement can be
related to the arrival of viruses at the system. The
pioneering work on discrete-time considering negative
arrivals without retrials was done by Atencia and Moreno
(2004; 2005), who considered several killing strategies
for negative customers. For a survey on this topics we
refer to Gelenbe and Labed (1998) or Artalejo (2000),
for applications in engineering to Chao et al. (1999), and
for application in communication networks and packet
transmission systems to Harrison et al. (2000), Park et al.
(2009), or Piórkowski and Werewka (2010).

The strategy used in this paper for moving customers
is the one that displaces them from the server to the
first place of the queue, and it seems a realistic one
because the displaced customer can begin its service after
service completion for the customer that has caused its
displacement. The arrival of negative customers has
the effect, in this model, of eliminating the job that is

currently being served, and has no influence on the system
if the server is idle.

The question on how the triggered customers will
resume their service after being interrupted depends on
a pre-agreed policy. In this paper a preemptive repeat
policy is considered, that is, it does not take into account
the duration of the last service. For other pre-agreed
policies, refer to Fiems et al. (2002), Moreno (2006),
or Fiems and Bruneel (2013), and for an inverse order
discipline to Pechinkin and Svischeva (2004), Cascone
et al. (2011), or Milovanova and Pechinkin (2013) as well
as Meykhanadzhyan et al. (2014).

Smart homes with sensing, actuation, and networked
devices have been anticipated for a long time, although
the term “home automation” has caught the attention
of the media and researchers not long ago (see Lucero
and Burden, 2010). For exploring on how households
are configured and manage access control, etc., one
can refer to Kim et al. (2010), Brush et al. (2011), or
Guzmán-Navarro and Merino-Córdoba (2015).

The system proposed in this paper has applications
to home automation, where the priority customers can be
regarded as telegrams that have information of a technical
alert. Those types of telegrams are distinguished from the
rest of them by the information in their priority bits, that is,
00-system functions, 01-alert functions, 10-high priority
commands.

It is usual that in a domotic system collisions occur
between telegrams, for example, in decentralized systems
that connect and manage dispositive and remote control
processes. In order to avoid these collisions the term
“negative telegram” has been introduced, which is used
in systems without collisions such as CSMA/CA of the
international KNX or in the MODBUS standard.

In any wireless technology there always exists the
problem of energy saving, and therefore it would be
interesting to have a certain control saving mechanism.
This control is given in the paper through the concept of
vacation service control, which can be found in the Zigbee
technology, that leaves the server in standby, which is
precise when the server is not operative.

Therefore, the system introduced in the paper can
be considered a management system in home automation
under the standards of MODBUS or Zigbee.

The rest of this paper is organized as follows. The
next section gives a description of the queueing model.
In Section 3 the Markov chain is studied. The queue
and system size distributions are obtained together with
several performance measures of the model. In Section 4
the generating function of the vacation times taking into
account possible changes in the remaining vacation times
is obtained. Section 5 is devoted to the study of the
busy period. In Section 6 the generating functions of the
sojourn time of a customer in the server, the queue and the
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system, as well as some associated performance measures,
are provided. Finally, numerical results and conclusions
are discussed.

2. Markov chain

At time m+ (the instant immediately after time slot m)
the system can be described by the process

Xm = (Cm, ξm, Nm),

where Cm denotes the state of the server 0, 1, or 2
according to whether the server is free, busy, or on
vacation, respectively, andNm is the number of customers
in the queue. If Cm = 1, then ξm represents the remaining
service time of the customer being served. If Cm = 2,
then ξm represents the remaining vacation time. When
N(t) = 0, neither Cm nor ξm is needed in the state
description.

The input stream of customers into the system is
described by means of a Bernoulli process with a as
the probability that an arrival occurs in a slot. An
arriving customer that finds the server busy, displaces with
probability θ the customer that is currently being served
to the first place in the queue and starts immediately its
service, and with complementary probability θ̄ = 1 − θ
it becomes a negative customer, that is, expels out of the
system the customer that is in the server without any other
additional effect on the system. The negative customers
have no effect on the system if the server is free. Once
a service has been completed, the server can choose to
initiate, with probability p, a period of vacation, or with
complementary probability p = 1− p to remain on duty.

During a vacation period, changes in the remaining
vacation times can take place. Specifically, in each slot,
with probability ν a change in the remaining vacation
times occurs, and with complementary probability ν no
change takes place. The one-step transition probabilities
fully describe how these changes work. It has been
supposed that, if in a slot a vacation period begins, no
change in the vacation times will happen, which seems
a reasonable assumption.

The service and vacation times are independent
and distributed with arbitrary distributions {si}∞i=1 and
{vi}∞i=1, respectively. Hence si and vi are the
probabilities that a service or a vacation time lasts i slots.
Their generating functions (GFs), will be denoted by

S(x) =

∞∑

i=1

six
i

and

V (x) =

∞∑

i=1

vix
i,

respectively. Furthermore,

Sk =

∞∑

j=k

sj

and

Vk =

∞∑

j=k

vj

will signify the probabilities that the service and vacation
times last no less than k slots, respectively.

3. Steady state probabilities

Let π0 be the stationary probability that, at the moment
noted by m+, that is, after a potential arrival, there are
no customers in the system, π1,i,k, i ≥ 1, k ≥ 0, the
stationary probability that there are k customers in the
queue and that the customer just being served needs i
more slots to finish its service, and π2,i,k, i ≥ 1, k ≥ 0,
the stationary probability that there are k customers in
the queue and the server is on vacation with a remaining
vacation time of i slots.

The one-step transition probabilities are given by

p(0)(0) = a+ a θ̄,

p(1,1,0)(0) = a+ a θ̄,

p(1,j,0)(0) = a θ̄, j ≥ 2,

p(2,1,0)(0) = a+ a θ̄.

If i ≥ 1, k ≥ 0 then

p(0)(1,i,0) = a θsi,

p(1,1,k)(1,i,k) = a θ p si,

p(1,1,k+1)(1,i,k) = (a+ a θ̄) p si,

p(1,i+1,k)(1,i,k) = a,

p(1,j,k−1)(1,i,k) = a θ si, j ≥ 2, k ≥ 1,

p(1,j,k+1)(1,i,k) = a θ̄ si, j ≥ 2,

p(2,1,k)(1,i,k) = a θsi,

p(2,1,k+1)(1,i,k) = (a+ a θ̄) si,

p(1,1,k−1)(2,i,k) = a p vi, k ≥ 1,

p(1,1,k)(2,i,k) = a p vi,

p(2,i+1,k−1)(2,i,k) = a ν, k ≥ 1,

p(2,i+1,k)(2,i,k) = a ν,

p(2,j,k−1)(2,i,k) = a ν vi, j ≥ 2, k ≥ 1,

p(2,j,k)(2,i,k) = a ν vi, j ≥ 2.

The system of equilibrium equations (SEE) for the statio-
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nary distribution is given by

π0 = (a+ aθ̄)π0 + (a+ aθ̄)p π1,1,0

+ aθ̄

∞∑

j=2

π1,j,0 + (a+ aθ̄)π2,1,0, (1)

π1,i,k = δ0,kaθsi π0 + aθpsi π1,1,k

+ (a+ aθ̄)psi π1,1,k+1 + a π1,i+1,k

+ (1− δ0,k)aθsi

∞∑

j=2

π1,j,k−1

+ aθ̄si

∞∑

j=2

π1,j,k+1 + aθsi π2,1,k

+ (a+ aθ̄)si π2,1,k+1, i ≥ 1, k ≥ 0, (2)

π2,i,k = (1− δ0,k)apvi π1,1,k−1 + apvi π1,1,k

+ (1− δ0,k)aν π2,i+1,k−1 + a ν π2,i+1,k

+ (1− δ0,k)aνvi

∞∑

j=2

π2,j,k−1

+ aνvi

∞∑

j=2

π2,j,k, i ≥ 1, k ≥ 0, (3)

where a = 1− a and δi,j denotes Kronecker’s delta.

The normalization condition is

π0 +

∞∑

i=1

∞∑

k=0

π1,i,k +

∞∑

i=1

∞∑

k=0

π2,i,k = 1.

In order to solve Eqns. (1)–(3), the following generating
functions are introduced:

ϕ1(x, z) =

∞∑

i=1

∞∑

k=0

π1,i,kx
izk,

ϕ2(x, z) =

∞∑

i=1

∞∑

k=0

π2,i,kx
izk,

along with the auxiliary generating functions

ϕ1,i(z) =

∞∑

k=0

π1,i,kz
k, i ≥ 1,

ϕ2,i(z) =

∞∑

k=0

π2,i,kz
k, i ≥ 1.

With the aim of finding the GFs ϕl(x, z), l = 1, 2,
the auxiliary generating functions ϕl,i(z), l = 1, 2, will
be firstly obtained, which is accomplished by multiplying
Eqns. (2) and (3) by zk, summing over k and taking into

account Eqn. (1):

ϕ1,i(z) = aϕ1,i+1(z) +
A(z)

z
si ϕ1,1(z)

+
1− aθ(1 − z)

z
si ϕ2,1(z)

+
θz2 + θ̄

z
asi ϕ1(1, z)

− aθ
1− z

z
si π0, i ≥ 1, (4)

ϕ2,i(z) = (a+ az)νϕ2,i+1(z) + (a+ az)

× [
pviϕ1,1(z) + νviϕ2(1, z)

− νviϕ2,1(z)
]
, i ≥ 1, (5)

where A(z) = a p+ aθz(p− z)− aθ̄p.

Since

ϕl(x, z) =
∞∑

i=1

ϕl,i(z)x
i, l = 1, 2,

it is readily obtained that

z
x− a

x
ϕ1(x, z)

= [A(z)S(x)− az]ϕ1,1(z)

+ [1− aθ(1 − z)]S(x)ϕ2,1(z)

+ [θz2 + θ̄]aS(x)ϕ1(1, z)

− aθ(1 − z)S(x)π0, (6)

x− (a+ az)ν

x
ϕ2(x, z)

= (a+ az)
[
pV (x)ϕ1,1(z)

+ νV (x)ϕ2(1, z)− [νV (x) + ν]ϕ2,1(z)
]
. (7)

The unknown GFs ϕl(1, z), l = 1, 2, that are
inserted in Eqns. (6) and (7), respectively, can be found
by choosing x = 1 in both the equations, getting

a(1− z)[θz − θ̄]ϕ1(1, z) = [A(z)− az]ϕ1,1(z)

+ [1− aθ(1 − z)]ϕ2,1(z)

− aθ(1 − z)π0, (8)

a(1− z)ϕ2(1, z) = (a+ az)[pϕ1,1(z)

− ϕ2,1(z)]. (9)

Now, substituting the above equations into (6) and (7)
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yields

(1− z)(θz − θ̄)
x− a

x
ϕ1(x, z)

=
[
[A(z)− a(θz2 + θ̄)]S(x)

− a(1− z)(θz − θ̄)]
]
ϕ1,1(z)

+ [1− aθ(1 − z)]S(x)ϕ2,1(z)

− aθ1(1 − z)S(x)π0, (10)

a(1− z)
x− (a+ az)ν

x
ϕ2(x, z)

= (a+ az)
[
[1− (a+ az)ν]pV (x)ϕ1,1(z)

− [νV (x) + a(1− z)ν]ϕ2,1(z)
]
. (11)

By letting x = a and x = (a+az)ν in Eqns. (10) and (11),
respectively, a system of equations is obtained in which
only the auxiliary GFs ϕl,1(z), l = 1, 2, and the unknown
constant π0 are present:

aθ(1− z)S(a)π0

=
[
[A(z)− a(θz2 + θ̄)]S(a)

− a(1− z)(θz − θ̄)
]
ϕ1,1(z)

+ [1− aθ(1 − z)](a)ϕ2,1(z), (12)

pV ((a+ az)ν)ϕ1,1(z)

=
1(

1− (a+ az)ν
)
[
νV ((a+ az)ν)

+ a(1− z)ν
]
ϕ2,1(z). (13)

Solving the above system gives

ϕ1,1(z) =
aθ(1− z)S(a)

D(z)

×
[
νV ((a+ az)ν) + a(1− z)ν

]
π0, (14)

ϕ2,1(z) =
aθ(1− z)S(a)

D(z)

× [1− (a+ az)ν]V ((a+ az)ν) pπ0, (15)

where

D(z) =
[
νV ((a+ az)ν) + a(1− z)ν

]

×
[
[A(z)− a(θz2 + θ̄)]S(a)

− a(1− z)(θz − θ̄)
]
+ [1− aθ(1 − z)]

× [1− (a+ az)ν]V ((a+ az)ν)pS(a).

Inserting (14) and (15) into (10) and (11), the final

expressions for ϕl(x, z), l = 1, 2 are obtained:

ϕ1(x, z) =
S(x)− S(a)

(x− a)D(z)

×
[
xaθ(1 − z)

[
[νV ((a+ az)ν)

+ a(1− z)ν
]]

aπ0, (16)

ϕ2(x, z) =
V (x)− V ((a+ az)ν)

(x− (a+ az)ν)D(z)

×
[
xaθ(1 − z)[1− (a+ az)ν]S(a)

× ν(a+ az)
]
pπ0. (17)

The normalization condition, which can be written as π0+
ϕ1(1, 1) + ϕ2(1, 1) = 1, allows us to find the unknown
constant π0:

π0 =
−D′(1)

νV (ν)[aθ̄ + θS(a)]− aνθ̄pS(a)(1− V (ν))
,

where

D′(1) = aνpS(a)[1− V (ν)]

+ νV (ν)
[
aθ[1− S(a)] + θ[a− S(a)]− a]

]
.

Since π0 > 0, the inequality D′(1) < 0 is a necessary
condition for the system’s stability. Applying Foster’s
theorem, it can be shown that this condition is also
sufficient for the stability of the system.

The above results are summarized in the following
theorem.

Theorem 1. If D′(1) < 0, the stationary distribution
of the Markov chain {Xm , m ∈ N} has the following
generating functions:

ϕ1(x, z) =
S(x)− S(a)

(x− a)D(z)

×
[
xaθ(1 − z)

[
[νV ((a+ az)ν)

+ a(1− z)ν
]]

aπ0,

ϕ2(x, z) =
V (x)− V ((a+ az)ν)

(x− (a+ az)ν)D(z)

×
[
xaθ(1 − z)[1− (a+ az)ν]S(a)

× ν(a+ az)
]
pπ0,

where

D(z) =
[
νV ((a+ az)ν) + a(1− z)ν

]

×
[
[A(z)− a(θz2 + θ̄)]S(a)

− a(1− z)(θz − θ̄)
]
+ [1− aθ(1− z)]

× [1− (a+ az)ν]V ((a+ az)ν)pS(a)
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and

π0 =
−D′(1)

νV (ν)[aθ̄ + θS(a)]− aνθ̄pS(a)(1 − V (ν))
.

Corollary 1.

1. The probability generating function of the number of
customers in the queue (i.e., of the variable N ) is
given by

Ψ(z) = π0 + ϕ1(1, z) + ϕ2(1, z)

=
[
1 +

θ(1 − z)

D(z)

[
a[1− S(a)]

× [νV ((a+ az)ν) + a(1− z)ν]

+ [1− V ((a+ az)ν)](a+ az)νpS(a)
]]

π0.

2. The probability generating function of the number of
customers in the system (i.e., of the variable L) is
given by

Φ(z) = π0 + z ϕ1(1, z) + ϕ2(1, z)

=
[
1 +

θ(1− z)

D(z)

[
az[1− S(a)]

× [νV ((a+ az)ν) + a(1− z)ν]

+ [1− V ((a+ az)ν)](a+ az)νpS(a)
]]

π0.

Corollary 2.

1. The mean number of customers in the queue is given
by

E[N ] = Ψ′(1)

− θ

2D′(1)νS(ν)[aθ̄ + θS(a)]

×
[[
[1− S(a)]aνV (ν)

+ S(a)[1− V (ν)]aνp]D′′(1)

− 2aνD′(1)
[
[1− S(a)][νV ′(ν)− 1]a

+ S(a)[1− V (ν)− νV ′(ν)]ap
]]
,

where

D′′(1) = 2aν
[
[νV ′(ν)− 1][aθ[1− S(a)]

+ θ[a− S(a)]− a]

+ apS(a)
[
θ[1− V (ν)]− νV ′(ν)

]]
.

2. The mean number of customers in the system is given
by

E[L] = Φ′(1) = E[N ] +
aθ[1 − S(a)]

aθ̄ + θS(a)
.

4. Generating function of the vacation times
subjected to possible changes

In this section we study the distribution of the remaining
vacation times taking into account possible changes in the
remaining vacation times.

Let v∗k be the probability that the remaining vacation
times subjected to possible changes lasts exactly k
slots. The probabilities v∗k satisfy the following recursive
formulas:

v∗0 = 0,

v∗k = νk−1vk +

k∑

i=1

νi−1Viν v
∗
k−i, k ≥ 1.

The GF V ∗(x) =
∞∑

k=0

v∗kx
k is given by

V ∗(x) =
(1− νx)V (νx)

1− x[1− νV (νx)]
, (18)

and its corresponding mean is

(V ∗)′(1) =
1− V (ν)

νV (ν)
ν. (19)

Let us note that for ν = 0 the above formulas coincide
with V (x) and V ′(1), respectively.

It is easy to check that, if the distribution of the
vacation times is of geometrical type with mean b, then
we have (V ∗)′(1) = b. In fact, the converse is also true,
which provides a characterization of the vacation times
distributions such that the vacation mean times subjected
to possible changes are constant. This remark will be of
interest in Section 7 with numerical results.

5. Busy period

A busy period is defined to begin with the arrival of a
customer to an empty system and to end when the system
next becomes empty. In this section we discuss the busy
period of an auxiliary system, which will be useful in
order to find the customer delay in the original system.

This auxiliary system differs from the original one
by the fact that the customer that enters the system goes
directly to the server, interrupting the service of the
customer that is currently being served, if any. Therefore,
the possibility that any customer enters the system during
the vacation times is not considered. The probability that
the busy period lasts k ≥ 0 slots is denoted by hk .
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Then

h0 = 0,

hk = ak−1(a+ aθ̄)psk + aθ̄ak−1Sk+1

+ aθp

k∑

i=1

ak−1sihk−i

+ aθp

k∑

i=1

ai−1si

k−i∑

j=1

v∗j hk−i−j

+ (a+ aθ̄)p

k∑

i=1

ai−1siv
∗
k−i

+ aθ

k∑

i=1

ai−1Si+1

k−i∑

j=1

hjhk−i−j , k ≥ 1.

The GF

h(x) =

∞∑

k=0

hkx
k

of the busy period has the following form:

h(x) =
(a+ aθ̄)p

a
S(ax) +

aθ̄

a

ax− S(ax)

1− ax

+
aθp

a
S(ax)h(x) +

aθp

a
S(ax)V ∗(x)h(x)

+
(a+ aθ̄)p

a
S(ax)V ∗(x) +

aθ

a

ax− S(ax)

1− ax
.

The above expression shows that the GF h = h(x)
satisfies the quadratic equation

f(h) = 0, (20)

where

f(h) = aθ(ax− S(ax))h2

+ (1− ax)
[
aθS(ax)[p+ pV ∗(x)] − a

]
h

+ (1− ax)(a+ aθ̄)S(ax)[p+ pV ∗(x)]
+ aθ̄(ax− S(ax)).

Let us note that for any x ∈ (0, 1) we have

aθ
[
ax− S(ax)

]
> 0,

f(0) = (1− ax)(a+ aθ̄)S(ax)[p+ pV ∗(x)]
+ aθ̄[ax− S(ax)] > 0,

f(1) = (1− ax)p[V ∗(x)− 1] < 0.

The above relations show that, for any x ∈ (0, 1),
Eqn. (20) has two solutions, h(x) and h∗(x), satisfying
the inequalities 0 < h(x) < 1 < h∗(x) and given by

h(x) =
(1− ax)

[
a− aθS(a)[p+ pV ∗(x)]]
2aθ[ax− S(ax)

] − u(x),

h∗(x) =
(1− ax)

[
a− aθS(a)[p+ pV ∗(x)]]
2aθ[ax− S(ax)

] + u(x),

where

u(x) =
[
(1 − ax)2

[
a− aθS(ax)[p+ pV ∗(x)]

]2

− 4aθ(ax− S(ax))
[(
1− ax)(a+ aθ̄)

× S(ax)(p+ pV ∗(x)) + aθ̄(ax− S(ax))
]] 1

2

×
[
2aθ(ax− S(ax))

]−1

.

For x = 1 we have f(1) = 0, which implies that at least
one of the two solutions takes the value 1 for x = 1.

The GF of the busy period is defined by the first
(minimal) solution h(x). It only remains to check that
h(1) = 1; with this aim it will be shown that h∗(1) > 1:

[
a2[aθS(a)− a]2 − 4aθ[a− S(a)]

×[a(a+ aθ̄)S(a) + aθ̄(a− S(a))]
] 1

2

> 2aθ(a− S(a)) + a[aθS(a)− a]

= a
(
a(θ − θ̄)− θS(a)(1 + a)

)
,

but the right-hand side of the above inequality is negative
if the stability condition (21), as will be seen in the next
paragraph, is fulfilled. Therefore, h∗(1) > 1 and h(1) =
1. In consequence, the GF of the busy period is h(x).

The mean length of the busy period is given by

h = h′(1) =
a[1− S(a)] + apS(a)(V ∗)′(1)
a
(
a(θ̄ − θ) + θS(a)(1 + a)

) .

Observe that the denominator of the expression of h is
positive if the condition (20) is fulfilled.

6. Sojourn times

6.1. Sojourn time of a customer in the server. In
this paragraph the distribution of the time that a customer
spends in the server is found. The probability that the
sojourn time of a customer in the server lasts exactly k
slots is denoted by bk. The distribution {bk : k ≥ 0} is
given by

b0 = 0,

bk = ak−1sk + akSk+1aθ̄

+
k∑

i=1

ai−1Si+1aθbk−i, k ≥ 1.

The corresponding GF is

b(x) =

∞∑

k=0

bkx
k =

(1− ax)S(ax) + aθ̄(ax− S(ax))

a(1− ax) − aθ(ax− S(ax))
.



386 I. Atencia

The mean sojourn time of a customer in the server is given
by

b̄ = b′(1) =
a[1− S(a)]

a[aθ̄ + θS(a)]
.

Let us note that the load of the auxiliary system
considered in Section 5 is expressed by

ρ = aθb̄,

and the stability condition for this model is ρ < 1, which
can be written as

a(θ − θ̄)− θS(a)(1 + a) < 0. (21)

6.2. Sojourn time of a customer in the system. In
this section the distribution of the period of time that a
customer spends in the system from the beginning of its
service till the moment of its departure is found. Let gk
be the probability that this period of time lasts exactly k
slots. Therefore,

g0 = 0,

gk = ak−1sk + aθ̄ak−1Sk+1

+

k∑

i=1

ai−1Si+1aθ

k−i∑

j=1

hjgk−i−j , k ≥ 0.

The corresponding GF is

g(x) =
∞∑

k=0

gkx
k =

(1 − ax)S(ax) + aθ̄(ax− S(ax))

a(1 − ax) − aθ[ax− S(ax)]h(x)
,

and the mean time of the analysed period of time is
expressed by

ḡ = g′(1) =
a[1− S(a)] + aθ[a− S(a)]h

a[aθ̄ + aθS(a)]
.

The stationary distribution of the waiting time that
a customer spends in the queue till the beginning of its
service has the following GF:

w(x) = π0 + ϕ1(1, 1) +
[
a+ aθ̄ + aθh(x)

]

× V ∗(x)
∞∑

j=1

∞∑

k=0

π2,j,kh
k(x)

= π0 + ϕ1(1, 1) +
[
a+ aθ̄ + aθh(x)

]

× V ∗(x)ϕ2(1, h(x)),

where

ϕ2(1, h(x)) =
[
1− V

(
(a+ ah(x)ν)

)]
pπ0

× (1 − h(x))(a+ ah(x))aθνS(a)

D(h(x))
.

The mean waiting time is given by

w̄ = w′(1)

=

[
[aθhνv(ν) + 1− v(ν)]

1− v(ν)

νv(ν)

− h

2D′(1)

(
2D′(1)[aνv(ν)− [1− v(ν)a]

+ [1− v(ν)]D′′(1)]
) aS(a)θνp

νv(ν)[aθ̄ + θS(a)]

]
.

The GF u(x) of the sojourn time of a customer in the
system is expressed by

u(x) = g(x)w(x).

The mean sojourn time of a customer in the system is
given by

ū = u′(x) = ḡ + w̄.

7. Numerical results

In this section some numerical examples of the
performance measures obtained in Section 3 are
presented. The following plots corroborate what the
analytical results and intuition say. Of course, the
value of the parameters is chosen under the stability
condition. Two important performance descriptors will
be considered: the probability that the system is empty
and the mean queue size. It is assumed that the service
time distribution is geometrical with mean 10/9 and the
generating function of the vacation times is given by
V (x) = x2.

From the stability condition, we find the value

θ∗(a, p, ν) =
aνV (ν)− aνpS(a)[1− V (ν)]

[a(1 − S(a)) + a− S(a)]νV (ν)
, (22)

such that the system is stable if and only if θ < θ∗. Hence,
the domain of the functions whose plots are represented
against θ will be [0, θ∗). From the stability condition we
also find the value

p∗(a, θ, ν) =

[
a− θ[a(1− S(a)) + a− S(a)]

]
νV (ν)

aνS(a)[1− V (ν)]
,

such that the system is stable if and only, if p < p∗ and,
consequently, the domain of the functions, whose plots are
represented against p will be [0, p∗).

In Fig. 1 the probability that the system is empty is
plotted against the parameter θ. As is to be expected,
π0 decreases with increasing values of θ and, when
the variable θ approaches the stability’s abscissa, that
is, as θ → θ∗, the system becomes unstable and
hence the probability that the system is empty tends to



A discrete-time queueing system with changes in the vacation times 387

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ

T
he

pr
ob

ab
ili

ty
th

at
th

e
sy

st
em

is
em

pt
y

ν = 0.7

ν = 0.2

ν = 0.5

Fig. 1. a = 0.7, p = 0.2, θ∗ν=0.2 = 0.8915, θ∗ν=0.5 =
0.7688, θ∗ν=0.7 = 0.5506.

zero. Besides, let us observe that, if θ = 0, only
negative customers enter in the system, and, therefore, the
probability that the system is empty is one. The three
curves presented in Fig. 1 correspond to three values of
the parameter ν, specifically to ν = 0.2, 0.5, 0.7, and, as
expected, π0 decreases for increasing values of ν.

Figure 2 illustrates how the parameters θ and ν affect
the mean queue size. As expected, the curves show that
E[N ] is increasing as a function of θ. In addition, the
mean number of customers in the queue diverges when the
parameter θ approximates θ∗. Let us observe that, when
θ = 0, no customers enter in the queue and, consequently,
E[N ] = 0. With respect to the parameter ν, the curves
show that E[N ] increases when ν increases.

The behaviour of E[N ] plotted against the parameter
p has been omitted since it is similar to the drawing in
Fig. 2.

In Fig. 3, the probability that the system is empty
is plotted against the parameter p. It can be observed
that π0 is a decreasing function of p, which is evident
because, when the probability that the server takes a
vacation increases, the probability that the system is
empty decreases. Again, when the variable p approaches
the stability’s abscissa p∗, the system becomes unstable
and the probability that the system is empty tends to zero.

If the vacation times are governed by a geometric
distribution with mean 1/s, and θ∗ is plotted as a function
of s, s = 1−s, the graphics shown in Fig. 4 are obtained.
It can be observed that θ∗ is decreasing as a function
of s, which is not surprising since when s increases the
vacation mean time also increases. In Fig. 4 three curves
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Fig. 2. a = 0.7, p = 0.2, θ∗ν=0.2 = 0.8915, θ∗ν=0.5 =
0.7688, θ∗ν=0.7 = 0.5506.

are presented corresponding to p = 0.2 and three values
of the arrival rate a = 0.5, 0.7, 0.9, and, as intuition tells
us, θ∗ decreases for increasing values of a. With respect
to the curve obtained for a = 0.5, it can be noted that
for s < 0.775 and arbitrary θ the system is stable, for
s ∈ [0.775, 0.9052) and θ < θ∗(s) the system is stable,
and for s ≥ 0.9052 the system becomes unstable for any
value of θ. A similar analysis can be carried out with
respect to the other two curves.

Let us note that the function θ∗(a, p, ν) in (22) can
be written in the form

θ∗(a, p, ν) =
a− apS(a)(V ∗)′(1)

a(1− S(a)) + a− S(a)

and, if the distribution of the vacation times is geometric,
it turns out, as noted in Section 4, that the stability’s
abscissa θ∗ is independent of the parameter ν. The same
can be said of p∗ and of all the descriptors of the system
that only depend on ν thorough (V ∗)′(1), which is the
case of some characteristics of the model as important as
π0 and the stability condition.

8. Conclusions and research results

In this paper a Geo/G/1/∞ queueing system with
changes in the vacation times was studied. A customer
that arrives to the system may opt to follow an LCFS
discipline or to become a negative customer. Once
a service is finished the server can decide, with a
certain probability, to take a vacation period, or with
complementary probability to be ready for new services.
A novel aspect of the paper is the consideration of changes
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Fig. 3. a = 0.7, θ = 0.2, p∗ν=0.2 = 0.5756, p∗ν=0.5 =
0.4317, p∗ν=0.7 = 0.2989.

in the vacation times, which gives the model a more
realistic approach to real life problems. A thorough study
of the system was carried out, which made it possible to
obtain the generating function of the vacation times taking
into account possible changes in the remaining vacation
times, and also the generating functions for the number of
customers in the queue and in the system.

For the study of the sojourn time of a customer in the
system it was necessary to consider a busy period of an
auxiliary system in which the customer that enters in the
system goes directly to the server, interrupting the service
of the customer that is in the server obtaining service,
which means that no customer enters the system during
a vacation period. Making use of this busy period, the
generating function of the sojourn time of a customer in
the queue and in the system is given.

An important topic that was studied in the paper is
the special character of the geometric distributions with
respect to changes in the remaining vacation times, as
shown in the numerical results. The characterization
of distributions with vacation mean times subjected to
possible changes was analyzed, which yields that the only
distributions with such a property are the geometric ones.
In the section with numerical examples we analyzed the
reasons why some important characteristics of the system,
if the vacation times are geometric, are independent of the
parameter ν.

Another important aspect of the paper is the presence
of negative and triggered customers, which, as said in
Introduction, enlarges the field of applications of the
model.
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Fig. 4. p = 0.2, θ∗a=0.5(0.9052) = 0, θ∗a=0.7(0.8701) =
0, θ∗a=0.9(0.8363) = 0.

It is worth remarking that the widely used method
based on generating functions was the basic tool
that allowed a treatable analytical development of this
complex model.
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