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The main objective of this article is to present the state of the art concerning approximate controllability of dynamic sys-
tems in infinite-dimensional spaces. The presented investigation focuses on obtaining sufficient conditions for approximate
controllability of various types of dynamic systems using Schauder’s fixed-point theorem. We describe the results of ap-
proximate controllability for nonlinear impulsive neutral fuzzy stochastic differential equations with nonlocal conditions,
impulsive neutral functional evolution integro-differential systems, stochastic impulsive systems with control-dependent
coefficients, nonlinear impulsive differential systems, and evolution systems with nonlocal conditions and semilinear evo-
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1. Introduction

Controllability is one of the most important notions in
modern mathematical control theory (see the works of
Bashirov and Kerimov (1997), Bashirov and Mahmudov
(1999), Benchohra and Ouahab (2005), Gorniewicz et al.
(2005) and the references therein). Using the assumption
that the system considered is controllable, we are able
to solve many problems of control theory such as
stabilizability, optimal control and pole assignment. The
notion of controllability means that it is possible to steer
a dynamic system from an arbitrary initial state to an
arbitrary final state using a set of admissible controls.
There exist many criteria and definitions of controllability.
They depend both on the constraints on the control signal
and the state equation. It should be noticed that in
infinite-dimensional spaces there exist linear subspaces
which are not closed. We can distinguish two concepts of
controllability in the case of infinite-dimensional systems.
Exact controllability means that the system can be steered
to an arbitrary final state. Approximate controllability
enables us to steer the system to an arbitrary small
neighborhood of the final state. It is self-evident that
approximate controllability is essentially a weaker notion
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than exact controllability. As a result, the latter always
implies the former, but the converse statement is not true
in general. In the finite-dimensional case, the notions of
approximate and exact controllability coincide. Sikora
and Klamka (2012) focused on the controllability problem
of linear stochastic systems. The research presented by
Czornik and Świerniak (2001; 2004; 2005) considered
controllability of jump systems. Moreover, controllability
of switched linear systems was investigated by Babiarz et
al. (2015a; 2015b; 2016).

In the work of Klamka (2000) constrained
approximate controllability problems for linear abstract
dynamic systems with a linear unbounded control
operator and piecewise polynomial controls were
investigated. Approximate controllability results for first
order linear and nonlinear systems can be found in the
work of Henrı́quez (2008). The research fundamental of
the controllability problem of nonlinear systems is the
fixed-point theorem (Gorniewicz et al., 1991; Kryszewski
and Zezza, 1994; Bader and Kryszewski, 1994; Bader
et al., 1996; Przeradzki, 2012).

Some problems of controllability of
infinite-dimensional nonlinear systems were studied
by Zhou (1983), Naito (1989), Bian (1999), as well
as Balachandran and Dauer (2002). Schauder’s fixed
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point theorem was used by Dauer and Mahmudov
(2002) in relation to approximate controllability of first
order functional differential equations with finite delay.
Approximate controllability of backward stochastic
evolution equations in Hilbert space is considered by
Dauer et al. (2006).

The notions of approximate controllability of
nonlinear impulsive differential systems and stochastic
systems with unbounded delay were investigated by
Sakthivel et al. (2007; 2010). The work of
Zang and Li (2013) is devoted to the concept of
approximate controllability of fractional impulsive neutral
stochastic differential equations with nonlocal conditions.
Controllability considerations of stochastic systems
can be found in the works of Arapostathis et al.
(2001), Mahmudov (2001a; 2001b) or Mahmudov and
Zorlu (2003). Controllability of impulsive differential
inclusions by using a fixed point theorem was discussed
by Benchohra et al. (2004). Schaefer’s fixed point
theorem was used to establish sufficient conditions for
controllability of impulsive functional differential systems
(Li et al., 2006). Controllability of impulsive functional
systems with infinite delay were investigated by Chang
(2007). Approximate controllability for various classes
of evolution stochastic differential equations was studied
by Dubov and Mordukhovich (1978) as well as Sırbu and
Tessitore (2001).

Jeong and Roh (2006) studied approximate
controllability for a semilinear retarded control
system. A discussion of approximate controllability
and approximate null controllability of control
systems governed by a class of abstract semilinear
integro-differential equations can be found in the work of
Wang (2006). Approximate controllability for semilinear
control systems is discussed by Do (1989), George
(1995) and Mahmudov (2003). Controllability of
semilinear integrodifferential systems in Banach spaces
was investigated by Lasiecka and Triggiani (1991) as well
as Balachandran and Sakthivel (2001).

2. Background

2.1. Fundamental notation. Let us introduce the
following necessary notation:

– H, K and U are Hilbert spaces and K , U are
separable;

– L (K,H) is the space of all bounded operators from
K to H ;

– ψ∗ ∈ L (H,K) is the adjoint operator for ψ ∈
L (K,H);

– (e(n))n∈N
is a complete orthonormal basis in K;

– A is a closed densely defined operator generating an
analytic semigroup {S (t) ; t > 0} on H with inner
product 〈·, ·〉 and norm ‖·‖;

– Aα : Hα ⊂ H → H is a fractional power operator
with domain Hα;

– in Hα we define the norm, ‖x‖α := ‖Aαx‖ for x ∈
Hα (with this norm Hα is a Banach space (cf. Pazy,
2012);

– Cα = C ([−r, 0] , Hα) is the space of all continuous
functions from [−r, 0] into Hα, 0 < r <∞;

– B is a bounded linear operator from U into H ;

– (Ω,F , P ) is a probability space with a probability
measure P on Ω;

– E signifies the expected value;

– Lp (Ω, H) is the space of all functions V : Ω → H
such that E ‖V ‖p <∞;

– {Ft : t ≥ 0} is an increasing and right continuous
family of complete sub-σ-algebras of F ;

– φ is an F0-measurable stochastic process;

– if T > 0, X -metric space and F : Ω → X , then
F is called Ft-adapted if F is Ft-measurable for
almost all t ∈ [0, T ] , and is called F0-adapted if it is
F0-measurable for almost all t ∈ [−r, 0];

– X (t) : Ω → Hα, t ≥ −r, stands for a continuous
Ft-adapted, Hα-valued stochastic process;

– Xt : Ω → Cα, t ≤ 0 is defined by

Xt (ω) = {X (t+ s) (ω) : s ∈ [−r, 0]}

and it is called a Cα-valued stochastic process;

– (βn (t))n∈N
is the sequence of real-valued

one-dimensional standard Brownian motions
mutually independent over (Ω,F , P ) ;

– for a sequence (λn)n∈N
, λn ≥ 0, we define

W (t) =
∞∑

n=1

√
λnβn (t) en, t ≥ 0

thenW (t) is aK-valued Wiener process with a finite
trace nuclear covariance operatorQ ≥ 0, where Q ∈
L (K,K) is the operator with the property Qen =
λnen and a finite trace

trQ =

∞∑

n=1

λn <∞;
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– Ft = σ (W (s) : 0 ≤ s ≤ t) signifies the σ-algebra
generated by W and Ft = F ;

– let ψ ∈ L (K,H) and define

‖ψ‖2Q = tr [ψQψ∗] =
∞∑

n=1

‖
√
λnψen‖2;

– ψ is a Q-Hilbert–Schmidt operator if ‖ψ‖Q <∞;

– L0
2 (K,H) is the space of all Q-Hilbert–Schmidt

operators from K into H ;

– here and subsequently,

f : [0,∞)× Cα ×H → H ,

σ : [0,∞)× Cα ×H → L0
2 (K,H)

and
g : [0,∞)× [0,∞)× Cα → H

are measurable mappings such that f (t, 0, 0),
σ (t, 0, 0) and g (t, s, 0) are locally bounded
in H-norm, L0

2 (K,H)-norm and H-norm,
respectively;

– MCα (0, p) , p > 2, is the space of all F0-measurable
Cα-valued functions ς : Ω → Cα with the norm

E ‖ς‖pCα
= E

{
sup

−r≤s≤0
‖Aας (s)‖p

}
<∞;

– LF
p ([0, T ], H) is the closed subspace of

Lp ([0, T ]× Ω× Ω, H)

consisting of all Ft−adapted processes;

– C ([−r, T ] , Lp (Ω, H)) is the Banach space of
all continuous maps from [−r, T ] into Lp (Ω, H)
satisfying the condition

sup
t∈[−r,T ]

E ‖X (t)‖p <∞;

– Hp is the closed subspace of all continuous processes
X with trajectories in C ([−r, T ] , Lp (Ω, H)) with

‖X‖Hp

=
(

sup
t∈[0,T ]

E‖Xt‖pC
) 1

p

=
(

sup
t∈[0,T ]

E sup
−r≤s≤0

‖Xt (ω)‖pC
) 1

p

<∞;

– PC((∞, b], X) is a Banach space with the norm

‖x‖PC = sup
t∈[0,b]

‖x(t)‖

and

PC((−∞, b], X)

=
{
x : x is function from (−∞, b] into X such that

x(t) is continuous at t �= tk and left continuous

at t = tk and the right limit x(t+k ) exists

for k = 1, 2, . . . ,m
}
.

– Bh is the abstract phase space defined in Section 3.2.

2.2. Schauder’s fixed-point theorem. Below we
present Schauder’s fixed-point theorem.

Theorem 1. (Schauder’s theorem) (Kulmin, 2004). Every
continuous operator that maps a closed convex subset of
a Banach space into a compact subset of itself has at least
one fixed point.

Theorem 2. (Kulmin, 2004). Let X be a locally convex
topological vector space, and let K ⊂ X be a nonempty,
compact, and convex set. Then, given any continuous
mapping f : K → K, there exists x ∈ K such that
f(x) = x.

3. Approximate controllability of
semilinear systems

This section presents results concerning approximate
controllability of various kinds of dynamic systems
described by semilinear state equations.

3.1. Nonlinear impulsive neutral fuzzy stochas-
tic differential equations with nonlocal conditions.
Narayanamoorthy and Sowmiya (2015) consider the
approximate controllability for nonlinear impulsive
neutral fuzzy stochastic differential equations with
nonlocal conditions given by

d [x (t)− h (t, x (t))]

= A [x (t)− h (t, x (t))] dt+Bu (t) dt

+ f (t, x (t)) dt+ g (t, x (t)) dW (t) , (1a)

Δx (ti) = x
(
t+i

)− x
(
t−i

)
, i = 1, 2, . . . ,m, (1b)

x (0) + μ (x) = x0, x ∈ X , (1c)

t ∈ J = [0, a] , t �= ti, (1d)

where

– the state variable x (·) takes values in a real separable
Hilbert space X with an inner product (·, ·) and the
induced norm ‖·‖;
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– the control function u (·) takes values in L2 (J, U),
a Banach space of admissible control functions for
a separable Hilbert space U and J = [0, b] , Ω =
{(t, s) : 0 ≤ s ≤ t ≤ b} ;

– A = A (t, x)constitutes the infinitesimal generator
of a C0-semigroup in X ;

– B is a bounded linear operator from U into X ;

– f and g are continuous and compact functions, and
f : J → X and g : Ω → X are measurable
mappings in X-norm

– a neutral variable h is continuous and compact;

– h : X → X is a measurable mapping;

– the function μ : PC(J,X) → X is continuous;

– the impulsive function Ii : X → X is compact;

– the fixed time ti satisfies 0 = t0 < t1 < t2 < . . . <
tm < a;

– x
(
t+i

)
and x

(
t−i

)
denote respectively the right and

left limits of x(t) at t = ti;

– Δx (ti) = x
(
t+i

)−x (t−i
)

represents the jump in the
state X at time ti;

– Ii determines the size of the jump.

Here, we introduce some essential definitions.

Definition 1. (Narayanamoorthy and Sowmiya, 2015)
A (t) : 0 ≤ t ≤ b generates a unique linear evolution
system U (t, s) : 0 ≤ s ≤ t ≤ b satisfying the following
properties:

1. U(t, s)U(s, τ) = U(t, τ) and U(t, t)x = x for every
s ≤ τ ≤ t and all x ∈ X ;

2. for every x ∈ X , the function for (t, s) → U(t, s)x
is continuous and U(t, s) ∈ L(X) for every t ≥ s;

3. for 0 ≤ s ≤ t ≤ b, the function t → U(t, s), (s, t] ∈
L(X) is differentiable with

∂U (t, s)

∂t
= A (t)U (t, s)

.

Definition 2. (Narayanamoorthy and Sowmiya, 2015) A
stochastic process x is said to be a mild solution of (1) if
the following conditions are satisfied:

1. X(t, ω) is a measurable function from J × Ω to X
and x(t) is Ft-adapted;

2. E ‖x (t)‖2 <∞ for all t ∈ J ;

3. Δx (τi) = x
(
τ+i

) − x
(
τ−i

)
= Ii (x (τi)), x ∈ X

and 1 ≤ i ≤ m;

4. for each u ∈ LF
2 (J, U), the process x satisfies the

following integral equation:

x (t) = U (t, 0) [x′ − μ (x)]

+

∫ t

0

U (t, s)Bu (s) ds

+

∫ t

0

U (t, s) f (s, x (s)) ds

+

∫ t

0

U (t, s) g (s, x (s)) dW (s)

+
∑

0≤ti≤t

U (t, ti) I
(
x
(
t−i

))
, t ∈ J.

(2)

Definition 3. (Narayanamoorthy and Sowmiya, 2015)
Let xb(x0;u) be the state value of the system (1) at a
terminal time b corresponding to the control u and the
initial value x0 = φ ∈ Bh. Then the set R(b, x0) =
{xb(x0;u)(0) : u(·) ∈ L2(J, U)} is called the reachable
set at the terminal time b and its closure in X is denoted
by R(b, x0).

Definition 4. (Narayanamoorthy and Sowmiya, 2015) If
R (b, x0) = X , then the system (1) is approximately con-
trollable on the interval J .

It is convenient at this point to define operators

Γa
0 =

∫ a

0

U (a, s)BB∗U∗ (a, s) ds,

R (α,Γa
0) = (αI + Γa

0)
−1 .

In order to present results of approximate
controllability for nonlinear impulsive neutral fuzzy
stochastic differential equations under nonlocal conditions
by using Schauder’s fixed point theorem, the following
assumptions should be introduced (Narayanamoorthy and
Sowmiya, 2015).

Assumption 1. αR (α,Γa
0) → 0 as α→ 0+ in the strong

operator topology.

Assumption 2. When t > s > 0, the strongly continuous
semigroup of bounded linear operators U(t, s) generated
by A(t) is compact and there exist constants M1 > 0,
M2 > 0 such that

‖[U (t, s)]
α‖ ≤Mα

1 , ‖[U (t, s)]
α‖ ≤Mα

2 .

Assumption 3. The nonlinear function g : J×Bh×X →
X is continuous, strongly measurable and there exists
Lg > 0 such that

‖[g (t, φ, x)]α‖ ≤ Lα
g for all (t, φ, x) ∈ J ×Bh ×X ,

where Bh is a Banach space.



Schauder’s fixed-point theorem in approximate controllability problems 267

Assumption 4. Ik ∈ C(X,X) and there exists a constant
dαk such that

|[Ik (x)]α| ≤ dαk (|x|) , k = 1, 2, . . . ,m,

for each x ∈ X , and

lim inf
dk (ρ)

ρ
= λk ≤ ∞, k = 1, 2, . . . ,m.

Theorem 3. (Narayanamoorthy and Sowmiya, 2015). If
Assumptions 1–4 are satisfied, then the system (1) is ap-
proximately controllable on J.

3.2. Impulsive neutral functional evolution integro-
differential system. A special case of the semilinear
system is an impulsive neutral functional evolution
integro-differential system given by (Radhakrishnan and
Balachandran, 2011)

d

dt
[x(t) + g(t, xt)]

= A(t)x(t) +

∫ t

0

G(t, s)x(s) ds + (Bu)(t)

+ f

(
t, xt,

∫ t

0

h(t, s, xs) ds

)
, (3a)

t ∈ J, t �= tk, k = 1, 2, . . . ,m, (3b)

Ik(x(t
−
k )) = x(t+k )− x(t−k ), x0 = φ ∈ Bh, (3c)

where Bh is the abstract phase space defined as follows:

Bh =
{
ψ : (−∞, 0] → X, such that for any c > 0,

ψ |[−c,0]∈ B and
∫ 0

∞
h(s)‖ψ‖[c,0]ds <∞

}

and for any b > 0, we can define

B =
{
ψ : [−b, 0] → X such that ψ(t)

is bounded and measurable
}

and equip the space B with the norm

‖ψ‖[−b,0] = sup
s∈[−b,0]

|ψ (s) | for all ψ ∈ B.

Moreover,

– the state x(·) takes values in the Hilbert spaceX with
a norm ‖ · ‖;

– xt represents the function xt : (−∞, 0] → X defined
by xt(θ) = x(t + θ), ∞ < θ < 0, which belongs to
Bh;

– the control u(·) is given in L2(J, V ), a Hilbert space
of admissible control functions with V as a Hilbert
space and thereby J = [0, b];

– D = {(t, s) : 0 ≤ s ≤ t ≤ b};

– A(t) and G(t) are closed operators on X with a
dense domain D(A) which is independent of t;

– B is a bounded linear operator from V to X ;

– the nonlinear operators g : J × Bh → X, h : D ×
Bh → X and f : J×Bh×X → X are continuous;

– Ik : X → X, 0 = t0 < t1 < · · · < tk < tk+1 = b.

Below, we introduce the definitions both of a mild
solution and a reachable set of the impulsive neutral
functional evolution integro-differential system.

Definition 5. (Radhakrishnan and Balachandran, 2011)
A function x(·) ∈ PC((−∞, b], X) is called a mild solu-
tion of the dynamic system (3) if

x0 = φ ∈ Bh on (−∞, 0],

Δx |t=tk , k = 1, 2, . . . ,m;

the restriction of x(·) to the interval Jk(k = 0, 1, . . . ,m)
is continuous; for each t ∈ [0, b), the function
U(t, s)A(s)g(s, xs), s ∈ [0, t) is integrable and the
impulsive integral equation

x(t)

= U(t, 0)[φ(0) + g(0, φ)]− g(t, xt)

−
∫ t

0

U(t, s)A(s)g(s, xs) ds

+

∫ t

0

U(t, s)

∫ s

0

G(s, τ)x(τ) dτ ds

+

∫ t

0

U(t, s)

[
Bu(s) + f

(
s, xs,

∫ s

0

h(s, τ, xτ
)]

ds

+
∑

0<tk<t

U(t, tk)Ik(x(t
−
k )), t ∈ J,

(4)

is satisfied.

Definition 6. (Radhakrishnan and Balachandran, 2011)
The reachable set for the system (3) is described by the
following formula:

R(b, x0) =
{
xb(x0;u)(0) : u(·) ∈ L2(J, V )

}

with an initial value x0 = φ ∈ Bh and a state value
xb(x0;u) at terminal time b corresponding to control u.

Definition 7. (Radhakrishnan and Balachandran, 2011)
The system (3) is said to be approximately controllable
on the interval J if R(b, x0) = X , where R(b, x0) is the
closure of the set R(b, x0) in X .
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In order to examine approximate controllability of
(3), the following assumptions should be introduced
(Radhakrishnan and Balachandran, 2011).

Assumption 5. The strongly continuous semigroup
of bounded linear operators U(t, s) generated by A(t)
is compact when t > s > 0 and there exist constants
M1 > 0, M2 > 0 such that

‖U (t, s)‖ ≤M1, ‖G (t, s)‖ ≤M2.

Assumption 6. The function g : J × Bh → X is
continuous and there exist constants Lg > 0, Ng > 0
such that

‖g(t, φ1)− g (s, φ2) ‖ ≤ Lg [| t− s | +‖φ1 − φ2‖Bh
]

for every t, s ∈ J and φ1, φ2 ∈ Bh, and

‖A(t)g(s1, φ)− A(t)(s2, ψ)‖
≤ Ng [| s1 − s2 | +‖φ− ψ‖Bh

] ,

s1, s2 ∈ J, φ, ψ ∈ Bh.

Assumption 7. The function f : J × Bh ×X → X is
continuous and uniformly bounded and there exists Lf >
0 such that

‖f (t, φ, x)‖ ≤ Lf for all (t, φ, x) ∈ J × Bh ×X .

Theorem 4. (Radhakrishnan and Balachandran, 2011) If
Assumptions 1 and 5–7 are satisfied, then the system (3) is
approximately controllable on J .

The proof of the above theorem is based on
Schauder’s fixed-point theorem and presented by
Radhakrishnan and Balachandran (2011).

4. Approximate controllability of stochastic
impulsive systems

In this section, at first we present approximate
controllability of stochastic impulsive systems with
control-dependent coefficients. Secondly, we describe
approximate controllability of nonlinear impulsive
differential systems.

4.1. Approximate controllability of stochastic impul-
sive systems with control-dependent coefficients. The
dynamic systems described by the following formula was
investigated by Shen and Sun (2011):

dx (t) = [A (t, x (t) , u (t))x (t)

+B (t, x (t) , u (t)) u (t)

+ f (t, x (t) , u (t))] dt

+ g (t, x (t) , u (t)) dW , t ∈ J, t �= τk, (5a)

Δx (t) = Ik(x(t)), t = τk, k = 1, 2, . . . ,m,
(5b)

with the initial value x (0) = x0. Here f : J×R
n×R

n →
R

n, g : J × R
n × R

n → R
n×l, Δx (t) denotes the jump

of x at t, i.e.,

Δx (t) = x
(
t+

)− x
(
t−

)
= x

(
t+

)− x (t) ,

and Ik ∈ C (Rn,Rn) . The initial value x0 constitutes an
F0-measurable random variable with E ‖x0‖2 < ∞. Ft

is the filtration generated by w (s), 0 ≤ s ≤ t.
Observe that (5) is nonlinear and it is unknown

whether such a control exists. Shen and Sun (2011)
consider the following dynamic system, instead of the
system (5):

dx (t) = [A (t, y (t) , v (t))x (t)

+B (t, y (t) , v (t))u (t)

+ f (t, y (t) , v (t))] dt

+ g (t, y (t) , v (t)) dW , t ∈ [0, T ] , t �= τk,
(6a)

Δx (t) = Ik(x(t)), t = τk, k = 1, 2, . . . ,m,
(6b)

where y, v are continuous functions with appropriate
dimensions. Now the mild solution of (6) is given by

x (t) = Ω (t, y, v)x0

+

∫ t

0

Ω (t− s, y, v)
[
B (s, y, v)u (s)

+ f (s, y, v)
]
ds

+

∫ t

0

Φ (t− s, y, v) g (s, y, v) dW (s)

+
∑

0<τk<t

Φ (t− τk, y, v) Ik (x (τk)) ,

(7)

where Φ (t, y, v) satisfies

dΦ (t, y, v)

dt
= A (t, y, v) Φ (t, y, v)

with Φ (0, y, v) = I .
To investigate the approximate controllability of (5),

the following assumptions are established (Shen and Sun,
2011).

Assumption 8. The linear system (6) is approximately
controllable.

Assumption 9. There exist positive constants M1, dk,
k = 1, 2, . . . ,m, and a function q (t) with a bounded
Lebesgue integral such that

‖Φ (t, y, v)‖ ≤M1, ‖B (t, y, v)‖ ≤ q (t) ,

‖Ik (y (τk))‖ ≤ dk, d =

m∑

k=1

dk.
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Assumption 10. There holds

‖f (t, x, u)‖ ∨ ‖g (t, x, u)‖ ≤ ψ (t, ‖x‖ , ‖u‖) ,
where ψ2 (t, β, γ) is a concave, continuous function in its
argument t and nondecreasing for any β > 0, γ > 0.

Lemma 1. (Mahmudov, 2002) There exists a unique op-
timal control

uα (t)

= B∗Φ∗ (T − t, y, v)E
{R (

α,ΠT
0

)
Q (y, v) |Ft

}
(8)

such that the functional

J (u) = E ‖x (T ;x0, u)− h‖2 + αE

∫ T

0

‖u (t)‖2 dt

takes on its minimum value, where

Q (y, v) = h− Φ (T, y, v)x0

−
∫ T

0

Φ (T − s, y, v) f (s, y, v) ds

−
∫ T

0

Φ (T − s, y, v) g (s, y, v) dW (s)

−
m∑

k=1

Φ (T − τk, y, v) Ik (x (τk)) .

(9)

The control uα defined by Lemma 1 will provide
the solution of (6) approximately to h at T with
h ∈ L(Ω, FT ,R

n). Observe that appropriately selected
vectors y, v agree with x, u. These vectors result from
(7), (8), respectively, and are also solutions of the primary
problem (5). Then approximate controllability is satisfied.
Therefore, approximate controllability of (5) is converted
to an existence problem of the fixed point of (7) and (8).

For all α > 0, the operatorPα on LFt
2 (J × Ω,Rn)×

LFt
2 (J × Ω,Rn) can be defined as

Pα (y, v) = (x, u) .

Theorem 5. (Shen and Sun, 2011) Let Assumptions 8–10
be satisfied. If there exists a closed bounded convex subset
S in LFt

2 (J × Ω,Rn)×LFt
2 (J × Ω,Rn) such that for all

α > 0 the operator Pα is invariant for S, then the system
(5) is approximately controllable.

4.2. Approximate controllability of nonlinear im-
pulsive differential systems. In the work of Sakthivel
et al. (2007), approximate controllability of the following
nonlinear impulsive differential equation is investigated:

d

dt
x (t) = Ax (t) + (Bu) (t) + f (t, x (t)) , (10a)

t ∈ J = [0, b] \D, x (0) = x0, (10b)

Δx (tk) = Ik (x (tk)) , k = 1, . . . ,m, (10c)

where A is the infinitesimal generator of a strongly conti-
nuous semigroup T (t) in a Hilbert space X , B is a
linear bounded operator from a Hilbert space U into X,
f : J × X → X is a nonlinear operator, the control
u (·) ∈ L2 (J, U). Here D = {t1, t2, . . . , tm} ⊂ J , 0 =
t0 < t1 < . . . < tm < tm+1 = b, Ik (k = 1, 2, . . . ,m)
is a nonlinear map and Δx (tk) = x

(
t+k

) − x
(
t−k

)
=

x
(
t+k

)− x (tk). This represents the jump in the state x at
the time tk with Ik determining the size of the jump.

Below, we present the definition of approximate
controllability of a nonlinear impulsive differential
equation.

Definition 8. (Sakthivel et al., 2007) The system (10) is
said to be approximately controllable on the interval J if
R (b, x0) = X .

Now, we introduce the following assumptions
(Sakthivel et al., 2007).

Assumption 11. The semigroup T (t) , t > 0 is compact.

Assumption 12. The function f : J × X → X is
continuous and there exist functions λi (·) ∈ L1 (J,R

+)
and hi (·) ∈ L1 (X,R

+), i = 1, 2, . . . , q, such that

‖f (t, x)‖ ≤
q∑

i=1

λi (t)hi (x) for all (t, x) ∈ J ×X .

Assumption 13. For each α > 0,

lim sup
r→∞

(
r −

q∑

i=1

ci
α
sup {hi (x) : ‖x‖ ≤ r}

)
= ∞,

where

MT = max {‖T (t)‖ : 0 ≤ t ≤ b} , MB = ‖B‖ ,

‖λi‖ =

∫ b

0

|λi (s)| ds, ai = 3kM2
TMB ‖λi‖ ,

bi = 3MT ‖λi‖ , ci = max {ai, bi} ,

k = max
{
1,MTMB,MTMBb

}
.

Assumption 14. Ik ∈ C (X,X) and there exists a
constant dk such that ‖Ik (x)‖ ≤ dk for each x ∈ X, k =
1, . . . ,m.

Assumption 15. The function f : J × X → X is
continuous and uniformly bounded and there exists N >
0 such that ‖f (t, x)‖ ≤ N for all (t, x) ∈ J ×X .

It will be shown that the system (10) is approximately
controllable if for all α > 0 there exists a continuous
function x (·) ∈ C (J,X) such that

u (t) = B∗T ∗ (b− t)R
(
α,Γb

0

)
p (x (·)) , (11)
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x (t) = T (t)x0

+

∫ t

0

T (t− s)
[
Bu (s) + f (s, x (s))

]
ds

+
∑

0<tk<t

T (t− tk) Ik (x (tk)) ,

(12)

where

p (x (·)) = xb − T (b)x0

−
∫ b

0

T (b− s) f (s, x (s)) ds

−
m∑

k=1

T (b− tk) Ik (x (tk)) .

Theorem 6. (Sakthivel et al., 2007) If Assumptions 11–14
are satisfied, then for all 0 < α ≤ 1 the system (10) has a
solution on J , and if the Assumptions 11 and 13–15 hold,
then the system (10) is approximately controllable.

5. Approximate controllability of evolution
systems with nonlocal conditions

Mahmudov (2008) focuses on the following semilinear
equation:

x (t) = S (t)x0

+

∫ t

0

S (t− s) [Bu (s) + f (x (s))] ds, t ≥ 0.

(13)

Let us introduce the following assumptions
(Mahmudov, 2008).

Assumption 16. X and U are separable Hilbert spaces,
S (t) , t > 0 is a compact semigroup on X and B ∈
L (U,X).

Assumption 17. f : X → X is C1 with the Fréchet
derivative f ′(·) such that, for some L > 0,

‖f ′(z)‖L(x) ≤ L for all z ∈ X .

It is clear that under Assumptions 16 and 17, for any
x0 ∈ X and u (·) ∈ L2 (0, T ;X), the system (13) admits
a unique solution x (·) = x (·, x0, u).

Definition 9. (Mahmudov, 2008) Let x0, h ∈ X and
T > 0. We say that the system (13) is approximately
controllable if for any ε > 0 there exists u (·) ∈
L2 (0, T ;X) such that

‖x (T, x0, u)− h‖ < ε.

Mahmudov (2008) defines an operator given by the
following formula:

F (z) =

∫ 1

0

f ′(rz)dr, z ∈ X (14)

to obtain approximate controllability for the system (13).
By Assumption 17 it can be see that there is a constant
L > 0 such that the operator F expressed by (14) has the
following properties:

F : X → L (X) , f (z) = F (z) z + f (0) ,

‖F (z (t))‖ ≤ L, z (·) ∈ C (0, T ;X) , t ∈ [0, T ] ,

F (·) ∈ C (X,L (X)) .

At this point we present approximate controllability
for the system (13). According to Mahmudov (2008), we
assume the following.

Assumption 18. The system

x (t) = S (t)x0

+

∫ t

0

S (t− s) [Bu (s) + F (s)x (s)] ds

is approximately controllable for any function F ∈
L∞ (0, T ;L (X)).

Theorem 7. (Mahmudov, 2008) Let Assumptions 16–18
hold. Then the system (13) is approximately controllable.

The proof of the above-presented theorem is based
on Schauder’s fixed point theorem and the lemma below.

Lemma 2. (Mahmudov, 2002) For any α > 0 the opera-
tor Pα (z) has a fixed point in C (0, T ;X).

6. Semilinear functional equations

In the work of Dauer and Mahmudov (2002), the problem
of approximate controllability of dynamic systems given
by the following semilinear evolution equation is studied:

dx(t) = [Ax(t) +Bu(t) + f(t, xt, u(t))] dt, (15a)

x0(θ) = φ(θ), θ ∈ [−h, 0] , t ∈ (0, T ] , (15b)

where

– the state x (·) takes values in a Hilbert space X ;

– the control u (·) ∈ L2 ([0, T ] , U) takes values in a
Hilbert space U ;

– C([−h, 0], X) is the Banach space of all continuous
functions from an interval [−h, 0] to X with the
supremum norm; it will be shortly denoted by C;

– φ ∈ C.
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If x : [−h, T ] → X is a continuous function, then xt
is an element in C which has a pointwise definition,

xt (θ) = x (t+ θ) for θ ∈ [−h, 0] .
The solution of the dynamic system (15) can be described
as

xt (0) = x (t)

= S (t)φ (0)

+

∫ t

0

S (t− s) [Bu (s) + f (s, xs, u (s))] ds,

(16a)

x0 (θ) = φ (θ) , θ ∈ [−h, 0] , t ∈ (0, T ] , (16b)

where S (t) is a linear semigroup on X, B : U → X is a
bounded linear operator.

Definition 10. (Dauer and Mahmudov, 2002) The system
given by (16) is approximately controllable on the interval
[0, T ] if

R (T, φ) = X ,

where

R (T, φ) =
{
xT (φ;u) (0) : u (·) ∈ L2 ([0, T ] , U)

}

is a reachable set at time T and R (T, φ) denotes the
closure of R (T, φ).

To obtain the results of approximate controllability,
the following notation should be introduced:

K = max {‖S (t)‖ : 0 ≤ t ≤ T } ,

‖λi‖1 =

∫ T

0

|λi (s)| ds, M = ‖B‖ ,

ai = 3kMK2 ‖λi‖1 , bi = 3K ‖λi‖1 ,

ci = max {ai, bi} .

Now we can establish the following assumptions (Dauer
and Mahmudov, 2002).

Assumption 19. The semigroup S (t) , t > 0 is compact.

Assumption 20. The function f : [0, T ]×C×U → X is
continuous and there exist functions λi ∈ L1 (I,R

+) and
gi ∈ L1 (C × U,R+), i = 1, 2, . . . , q, such that

‖f (t, φ, u)‖ ≤
q∑

i=1

λi (t) gi (φ, u)

for all (t, φ, u) ∈ [0, T ]× C × U.

Assumption 21. For each α > 0,

lim sup
r→∞

(
r−

q∑

i=1

ci
α
sup {gi (φ, u) : ‖(φ, u)‖ ≤ r}

)
= ∞.

Assumption 22. The function f : [0, T ]×C×U → X is
continuous and uniformly bounded, i.e., there exists L >
0 such that

‖f (t, φ, u)‖ ≤ L

for all (t, φ, u) ∈ [0, T ]× C × U .

Assumption 23. Let us introduce two crucial operators:

ΓT
0 =

∫ T

0

S(T − s)BB∗S∗(T − s) ds,

R(α,ΓT
0 ) = (αI + ΓT

0 )
−1.

Furthermore, we assume that αR(α,ΓT
0 ) → 0 as α → 0+

in the strong operator topology.

For α > 0, let us define operator Fα on

C ([0, T ] , C)× C ([0, T ] , U)

as follows:
F
α (x, u) = (z, ν) ,

where

ν (t) = B∗S∗ (T − t)R
(
α,ΓT

0

)
p (x, u) ,

z (t) = S (t)φ (θ)

+

∫ t

0

S (t− s) (Bν (s) + f (s, xs, u (s))) ds,

z0 (θ) = φ (θ) , θ ∈ [−h, 0] ,
p (x, u) = xT − S (T )φ (0)

−
∫ T

0

S (T − s) f (s, xs, u (s)) ds.

Finally, the theorem about approximate
controllability of the dynamical system (16) is presented.

Theorem 8. (Dauer and Mahmudov, 2002) Assume that
Assumptions 19, 22 and 23 are satisfied. Then the system
(16) is approximately controllable on [0, T ].

Theorem 9. (Dauer and Mahmudov, 2002) Assume that
Assumptions 19, 20 and 21 are satisfied. Then, for each
0 < α ≤ 1, the operator F

α has a fixed point in
C ([0, T ] , C)× C ([0, T ] , U) .

Similarly as before, the proof is based on Schauder’s
fixed point theorem.

7. Example

In this section, we focus on the heat control system studied
by Hong (1982) and Naito (1987). The heat control
system with delays is given by the following formula
(Naito, 1987):

∂y(t, x)

∂t
=
∂2y(t, x)

∂x2
+ y((t− h), x)

+Bu(t, x) + f(t, y((t− h), x)), (17a)

y(t, 0) = y(t, π) = 0, t ∈ [0, T ], (17b)

y(t, x) = ζ(t, x), −h ≤ t ≤ 0, (17c)
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where ζ(t, x) is continuous, f : [0, T ] × R × R → R is
continuous and uniformly bounded. Now, we introduce
the operator A : L2[0, π] → L2[0, π] given by

Ay =
d2y

dx2

and its domain

D(A) =
{
y ∈ L2[0, π] : y,

dy

dx
are absolutely continuous,

d2y

dx2
∈ L2[0, π], and y(0) = y(π) = 0

}
.

Hence

Ay =

∞∑

n=1

(−n2)(y, φn)φn, y ∈ D(A),

where

φn(x) =

√
2

π
sinnx, n = 1, 2, . . . .

Note that φn is the eigenfunction corresponding to the
eigenvalue λn = −n2 of the operatorA.

Obviously, A generates a compact semigroup
S(t), t > 0, in L2[0, π]. Moreover, the semigroup S(t)
is given by

S(t)y =

∞∑

n=1

e−n2t(y, φn)φn, y ∈ L2[0, π].

Now, let us define an infinite-dimensional space U
denoted by the following formula:

U =
{
u =

∞∑

n=2

unφn(x)|
∞∑

n=2

u2n <∞
}
.

For a given t ∈ [0, T ], the control u(t, x) is taken from the
space U , defined above with the norm given by

‖u‖U =
( ∞∑

n=2

u2n

) 1
2

.

Next, we define a linear continuous mappingB from
U to L2[0, π] in the form

Bu = 2u2φ1(x) +

∞∑

n=2

unφn(x),

and

u =

∞∑

n=2

unφn ∈ U.

Then the linear system given by the following formula:

ẏ(t) = Ay(t) +Bu(t),

y(0) = y0
(18)

corresponding to (17b) is approximately controllable
because of the compactness of the semigroup S(t), t > 0,
generated by A.

To put it in another way, it can be observed that

B∗υ = (2υ1 + υ2)φ2(x) +

∞∑

n=3

υnφn(x)

and
B∗S∗(t)y =

(
2y1e

−t + y2e
−4t

)
φ2(x)

+

∞∑

n=3

yne
−n2tφn(t),

where

υ =

∞∑

n=1

υnφn(x), y =

∞∑

n=1

ynφn(x).

Now we get

‖B∗S∗(t)y‖ = 0 for t ∈ [0, T ].

Hence we obtain

‖2y1e−t + y2e
−4t‖2

+
∞∑

n=3

‖yne−n2t‖2 = 0 for t ∈ [0, T ]

and
yn = 0 for n = 1, 2, . . . .

The above-mentioned two equalities imply that y = 0.
Thus, by Theorem 4.1.7 of Curtain and Zwart

(1995, p. 147) concerning approximate controllability
of linear systems, we conclude that the linear system
(18) corresponding to the system (17b) is approximately
controllable and then, by Theorem 8, the system (17b) is
approximately controllable on interval [0, T ], too.

8. Conclusion

The presented paper focuses on the approximate
controllability problem of different types of dynamical
systems. Moreover, it presents results for selected
works on the investigated approximate controllability
of semilinear dynamical systems. All of the presented
research concerning approximate controllability of
various kinds of dynamic systems in infinite-dimensional
spaces has a common way obtaining the results. Generally
speaking, at the beginning we prove that the semilinear
system is approximately controllable if the associated
linear system is approximately controllable, too. Next, we
formulate some assumptions for the semilinear dynamical
system. The main role is played by the assumption about
the Lipschitz continuity. Then we construct an operator
and assume that it is compact. Therefore, we show that
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the operator has a fixed point. At the end, we claim that
the existence of a fixed point of the operator implies
approximate controllability of the semilinear dynamical
system. The proof of the main theorem of all studies
is based on the application of Schauder’s fixed-point
theorem. By making some appropriate assumptions,
this can establish approximate controllability results for
a wide class of semilinear deterministic and stochastic
dynamical systems.

Controllability problems for dynamical systems
require the application of various mathematical concepts
and methods taken directly from differential geometry,
functional analysis, topology and matrix analysis. It
should be noticed that there are many unresolved
problems for controllability concepts for various types of
dynamic systems.

Acknowledgment

The research presented here was conducted as
part of projects funded by the National Science
Centre in Poland granted according to the decisions
DEC-2014/13/B/ST7/00755, DEC-2012/07/B/ST7/01404
and DEC-2012/07/N/ST7/03236.

References
Arapostathis, A., George, R.K. and Ghosh, M.K. (2001). On the

controllability of a class of nonlinear stochastic systems,
Systems & Control Letters 44(1): 25–34.

Babiarz, A., Czornik, A., Klamka, J. and Niezabitowski, M.
(2015a). Controllability of discrete-time linear switched
systems with constrains on switching signal, in N.T.
Nguyen et al. (Eds.), Intelligent Information and Database
Systems, Lecture Notes in Computer Science, Vol. 9011,
Springer International Publishing, Berlin, pp. 304–312.

Babiarz, A., Czornik, A., Klamka, J. and Niezabitowski, M.
(2015b). The selected problems of controllability of
discrete-time switched linear systems with constrained
switching rule, Bulletin of the Polish Academy of Sciences:
Technical Sciences 63(3): 657–666.

Babiarz, A., Czornik, A. and Niezabitowski, M. (2016). Output
controllability of the discrete-time linear switched systems,
Nonlinear Analysis: Hybrid Systems 21: 1–10.

Bader, R., Gabor, G. and Kryszewski, W. (1996). On the
extension of approximations for set-valued maps and the
repulsive fixed points, Bollettino della Unione Matematica
Italiana B 10(2): 399–416.

Bader, R. and Kryszewski, W. (1994). Fixed-point index
for compositions of set-valued maps with proximally
∞-connected values on arbitrary ANR’s, Set-Valued Anal-
ysis 2(3): 459–480.

Balachandran, K. and Dauer, J. (2002). Controllability of
nonlinear systems in Banach spaces: A survey, Journal of
Optimization Theory and Applications 115(1): 7–28.

Balachandran, K. and Sakthivel, R. (2001). Controllability
of integrodifferential systems in Banach spaces, Applied
Mathematics and Computation 118(1): 63–71.

Bashirov, A.E. and Kerimov, K.R. (1997). On controllability
conception for stochastic systems, SIAM Journal on Con-
trol and Optimization 35(2): 384–398.

Bashirov, A.E. and Mahmudov, N.I. (1999). On concepts
of controllability for deterministic and stochastic
systems, SIAM Journal on Control and Optimization
37(6): 1808–1821.

Benchohra, M., Gorniewicz, L., Ntouyas, S. and Ouahab, A.
(2004). Controllability results for impulsive functional
differential inclusions, Reports on Mathematical Physics
54(2): 211–228.

Benchohra, M. and Ouahab, A. (2005). Controllability results
for functional semilinear differential inclusions in Fréchet
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