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Many handwritten signature verification algorithms have been developed in order to distinguish between genuine signatures
and forgeries. An important group of these methods is based on dynamic time warping (DTW). Traditional use of DTW
for signature verification consists in forming a misalignment score between the verified signature and a set of template
signatures. The right selection of template signatures has a big impact on that verification. In this article, we describe
our proposition for replacing the template signatures with the hidden signature—an artificial signature which is created by
minimizing the mean misalignment between itself and the signatures from the enrollment set. We present a few hidden
signature estimation methods together with their comprehensive comparison. The hidden signature opens a number of new
possibilities for signature analysis. We apply statistical properties of the hidden signature to normalize the error signal of
the verified signature and to use the misalignment on the normalized errors as a verification basis. A result, we achieve
satisfying error rates that allow creating an on-line system, ready for operating in a real-world environment.
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1. Introduction

A handwriting signature understood as a graphical sign
that represents a person seems to be the most powerful
behavioral biometric, because document signing has been
present for decades in everyday live. During the last
few years, the traditional signing on a paper has slowly
been replaced by digitizer tablets that are used to capture
a signature. However, most of them are only put on
documents as images, and no automatic verification is
performed. This has a number of reasons.

The main issue is that verification algorithms’ quality
is lower than for other biometrics. This is caused by
the fact that, in contrast to most of other biometric
characteristics, signature verification has to deal not only
with the signatures belonging to other people (random
forgeries) but also with trained forgeries (skilled forg-
eries). Another is that the genuine realizations of a
person’ signature may differ from instance to instance.
Signature instances can be understood as representations
of the original signature, which is (at some point of life)
not subjected to variations due to fatigue, emotional states,
etc. Signature instances can differ not only in amplitudes
or values at certain points, but also in dynamics. The

issues mentioned have been under research for the last 35
years. The first attempt at handwriting verification was
undertaken by Herbst and Liu (1977). Since then, this
subject has been widely explored by scientists, both at
universities as well as at commercial companies.

In this paper we are dealing with the so-called on-line
signature verification, meaning that the signatures under
analysis are registered with the use of a digitizer tablet
(Fig. 1), and each point of the signature is labeled with
its time moment. Using tablets to collect the signatures
has an additional important effect. Not only can the pen
position be registered, but also additional characteristics,
such as the pen pressures and pen position angles as they
change in time. Consequently, each signature instance is
registered in the form of several sequences (the sequence
of x-pen positions, the sequence of y-pen positions, pen
pressure, etc.). It can be mathematically treated as a
multidimensional time series in (finite) time T. The time
series dimension is determined by the number of signature
characteristics which the device is able to capture, e.g.,
position coordinates x ∈ X, y ∈ Y , pen pressure p ∈ P
and angles: azimuth z ∈ Z and altitude l ∈ L (Fig. 1).
An on-line signature, denoted by g, can be represented as
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Fig. 1. Signature on-line acquisition by Wacom Intuos
(WACOM, 2015).

a parametric curve in X×Y ×P ×Z×L, i.e., a mapping

g : T → X × Y × P × Z × L, (1)

where
g =

[
gx gy gp gz gl

]T
. (2)

The set of all possible signatures will be denoted by G.
If we use only a sub-vector of functions, with

coordinates in a list list, we denote it by glist. For example,
if list = x, y, we have

gx,y =
[
gx gy

]T
. (3)

In our tests, not all the signature data are used.
Each signature is represented by a time sequence
g = {g(t), t = 1, 2, . . . ,Mg} of the length Mg

whose elements
[
gΔx gΔy gp

]T
consist of the pen tip

coordinates
[
gΔx gΔy

]T
and the pen tip pressure gp.

The nonparametric features Δx, Δy are the x and y
coordinate differences between two consecutive points,
and p stands for pen pressure. We use Δx,Δy instead
of x, y, as they are invariant with respect to translation.
Additionally, in conjunction with the DTW algorithm,
they are quite successful (Kholmatov and Yanikoglu,
2005; Putz-Leszczynska and Pacut, 2009) in capturing
similarities and ignoring irrelevant differences. The
literature also suggests that the angle signals are not
useful, so they were removed, too.

An essential issue concerning signature biometrics
is the way the handwritten signature is captured,
together with the comparison methods that depend on
the signature representation. The wide review of both
on-line and off-line verification methods by Impedovo
and Pirlo (2008) shows possible implementations of
signature-based biometric systems together with their
results. All the algorithms can be split into two different
comparison techniques, thus obligating one to choose
from two distinct types of templates represented by the
following:

• Template signature(s): The template is represented
by one template signature (Schmidt and Kraiss,
1997), or a number of template signatures (Sakamoto
et al., 2001; Yoshimura and Yoshimura, 1992)
selected from an enrollment set (signatures captured
during registration).

Two issues are related to this approach: (i) selecting
the number of template signatures and (ii) choosing
the decision making method.

Usually the number of signatures in a template is
defined without any explanation (Sakamoto et al.,
2001; Schmidt and Kraiss, 1997; Yoshimura and
Yoshimura, 1992). The decision making methods
are also arbitrary. One way of choosing a template
signature(s) is to split a set of enrollment signatures
into as many clusters as the number of signatures
in a template and then, for each cluster, to select
the “best” signature with the use of the min-max
method (Yoshimura and Yoshimura, 1992). Another
possibility is to choose the template signatures, as the
ones with the lowest mean distance in comparison
with the rest of enrollment signatures (Sakamoto
et al., 2001). The distance between two signatures
can be computed for example with DTW.

• Model: The template is represented by a statistical
model. During the estimation phase, a model is
estimated with the use of enrollment signatures.
This can be used for both nonparametric and
parametric features. A popular approach when
dealing with nonparametric features is to use a
hidden Markov model (HMM) (Muramatsu and
Matsumoto, 2003; Van et al., 2007), a statistical
model in which the system being modeled is
assumed to be a Markov process with an unobserved
state. Neural networks (NNs) are commonly used
for parametric features (Xiao and Leedham, 1999;
Marinai et al., 2005). Neural networks and support
vector machines (SVMs) can be used to model
nonlinear complex relationships between inputs and
outputs of enrollment signatures (Hong-Wei and
Zhong-Hua, 2005; Fauziyah et al., 2009).

In this paper we propose a method that combines
both the approaches. We still use a signature instance
in the template, but it is not one of the enrollment
signatures. Instead, it is an artificial signature which is
an estimate of the abstract representation of the signature
that is kept (stored) in the signer’s brain—the ideal
signature. Therefore, for every signature there exists an
abstract representation, called the hidden signature, from
which every other instance can be derived. This abstract
representation can be estimated from a collection of
available signature instances (i.e., enrollment signatures)
and this methodology can be regarded as a model creation
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as well.
In the present paper we outline our hidden time

methodology, and also show how this solution works
with DTW methods, including time influence. In the
next section, we present the hidden signature idea,
methodology and its comparison together with the testing
approach. In Section 3, we discuss the usage of
statistical properties of the hidden signature to normalize
the error signal of the verified signature and to use the
misalignment on the normalized errors as a verification
base. Section 4 summarizes the results.

2. Hidden signature

It is obvious that a good template assures successful
verification. Therefore, the template creation stage is
so important. A large number of algorithms like these
based on DTW do not create a model but use original
signatures collected during the enrollment process (enroll-
ment signatures) at the verification stage (template sig-
natures). Here an important question arises—which of
the N enrollment signatures {g1, g2, . . . , gN} should be
selected for the template (template signatures). There are
three possible solutions:

• all the enrollment signatures are used in the template,

• a subset of enrollment signatures forms the template,

• one signature.

The first solution generates two problems. One is the
resulting size of the template which could be too big to
be kept on a smartcard. Secondly, the more signatures
are in the template, the more comparisons are needed and
the more comparison time increases. The second solution
partially addresses the problems mentioned, but generates
others, namely, how many template signatures should be
used in the template and which statistic should be used
to select template signatures from among the enrollment
ones.

The last option can be implemented in two ways.
The simpler way is to select the “best signature” from the
enrollment signatures, the one that minimizes the average
misalignment within the enrollment set (DTW can be used
for that). However, there is a chance that the selected
signature would not represent the whole enrollment set.
An alternative option is to create a ‘model’ signature.
A common solution to sample variability is averaging.
Namely, several samples are combined by an arithmetic
average to produce a new specimen. This solution results
in a small template size (because we have one signature),
and the possibility that it would represent the whole
enrollment set is much bigger than for the ‘best signature’.

Various statistical theorems assume that, under a
wide class of assumptions, the variability of the resulting
sample representations is reduced and, if measured by the

variance, the reduction is proportional to the number of
averaged samples, if they are independent. Unfortunately,
this popular approach cannot be applied to signatures.
Since the signature consists of a series of points, averaging
must be performed on signature points, by passing from
point to point, rather than on the entire series: the points
of two or more signature instances to be compared must
be adequately selected. Indeed, the corresponding points
of the signatures were not necessarily written at the same
time moment, or they do not belong to the same area of the
paper image of the signature. Readily, the duration of the
signing varies from signature to signature, showing again
that the signature points to be averaged cannot be selected
according to identical time labels. The problem here to
average such sequences remains unsolved.

That is why we introduced a more complex solution
that is a hidden signature. By that we understand an
“ideal” signature realization. This ideal signature exists
only in its owner’s mind. During that signing process
this signature is distorted by the writing conditions,
and that is why realizations of one person’s signature
differs. Hence, during the template creation we want
to inverse this process and estimate the ideal signature
with the use of a person’s signatures captured during the
enrollment process—we calculate the hidden signature.
Thus, we introduce the definition that the hidden signa-
ture is an artificial signature that minimizes the average
misalignment between itself and the signatures from the
enrollment set:

ĝ = argmin
g∈G

1

N

N∑

i=1

D(
g, gi), (4)

where G denotes the set of all possible signatures and
D(

g1, g2) stands for the misalignment between g1, g2 (the
definition (13)). An example of a hidden signature is
visualized in Fig. 2.

From the mathematical point of view, the hidden
signature is a solution of a nonlinear minimization
problem. Nonlinear problems are usually solved
by iterative refinement. In each iteration, a single
hidden signature ĝ estimation is computed. The
aim of every successive iteration is to minimize the
average misalignment V between the hidden signature
approximation and the signatures from the enrollment set
{g1, . . . , gN}. We call it the average misalignment:

V = min
j=1,...,H

1

N

∑

i=1,...,N

D̂(ĝj , gi), (5)

where D̂(ĝj , gi) denotes the misalignment score between
two signatures ĝj and gi (the definition (13)).

This general approach can have many versions and
refinements. We considered two methods of hidden
signature estimation: genetic calculations, and iterative
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Fig. 2. Enrollment signatures (top), the hidden signature esti-
mated from the enrollment signatures (bottom). The es-
timated hidden signature is visually similar to the sig-
natures from the enrollment set, having a comparable
global slope and size proportions.

point-by-point averaging. The latter is still preferred
because of its good verification parameters and short
calculation time. This algorithm is constructed as an
iterative procedure that in each step transforms all the
enrollment signatures to a common time scale by a
nonlinear time transformation (warping) and then finds
their average in this scale. In this new (warped) time scale,
the enrollment signatures are averaged, and this average
is called the hidden signature. By probability theory, the
hidden signature is close to the mean value of the real
signature after warping, thus assuring the proper level of
invariance with the training set.

With some additional assumptions, iterative
point-by-point averaging extends the least squares
approach. The method of least squares assumes that
the best fit is realized by minimization of the sum of
the squared deviations (least-squares error). Since our
problem is a conjunction of least-squares modeling and
optimal warping, the hidden signature estimates the
expected values of points of optimally warped enrollment
signatures. Iterative point-by-point averaging can be
regarded as an extension of the least-squares approach
since in each iteration we find least-squares averaging
among warped enrollment signatures.

In this article, we will present the details
of implementations of both methods and their
comprehensive comparison.

2.1. Hidden signature estimation: DTW bases.
Each signature is represented by a time sequence
g = {g(t), t = 1, 2, . . . ,Mg} of the length

Mg whose elements
[
gΔx gΔy gp

]T
consist of the

pen tip coordinates
[
gΔx gΔy

]T
and the pen tip

pressure gp. Direct (point-by-point) comparison of
time sequences(signatures) is not adequate, because two
signatures g1 and g2 may differ in the time dimension.

This problem can be solved with the use of
dynamic time warping (DTW), which also measures the
dissimilarity between the signatures. The sequences are
“warped” nonlinearly in time according to the warping

path w, which is a parametric (discrete) curve that aligns
g1 and g2 (Fig. 3) and “connects” each point of the aligned
sequences g1 and g2:

w(�) = [wt(�) wτ (�)]T , � = 1, . . . , Lw, (6)

where

wt(�) ∈ {1, . . . ,M1}, wτ (�) ∈ {1, . . . ,M2},

Lw denotes the warping path length. Functions wt(�) and
wτ (�) are nondecreasing in � = 1, . . . , Lw. The warping
path defines a dynamic alignment of elements of g1 and
g2, aligning g1(w

t(�)) with g2(w
τ (�)). A warping path

between r and g will be denoted by w(r, g). By w(�; r, g)
we will denote the coordinates of the �-th point of this
warping path. For the visualization purposes, successive
points of the warping path are connected with straight
lines.

Fig. 3. Warping path of two sequences g1 and g2 on a two-
dimensional grid: discrete warped time τ ∈ [0,M2] vs.
discrete reference time t ∈ [0,M1].

Assuming the sequence values belong to some
feature space Φ, a comparison between two sequences
g1, g2 requires a measure of the local cost function:

d : Φ× Φ → R ≥ 0. (7)

The local cost function can be measured using typical
distance metrics, for example, with the L2 distance

d
(
g1(t), g2(τ)

)
= ‖g1(t)− g2(τ)‖ (8)

or the squared L2 distance

d
(
g1(t), g2(τ)

)
= ‖g1(t)− g2(τ)‖2, (9)
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where t ∈ 1, 2, . . . ,M1, τ ∈ 1, 2, . . . ,M2.
The local cost function (9) has been provided for

DTW by Putz-Leszczynska and Pacut (2005). It has
several useful qualities, in particular the advantage of
being differentiable. This local cost function was used in
the research presented in this study.

The first step of the dynamic time warping algorithm
is to build the local cost matrix which is defined as

Δ(g1, g2) =
{
d
(
g1(t), g2(τ)

)
, t = 1, 2, . . . ,M1,

τ = 1, 2, . . . ,M2

}
. (10)

The algorithm finds the alignment path which “runs”
through the local cost matrix (Fig.4).

The misalignment score

D(g1, g2,w) =

Lw∑

�=1

d
(
g1(w

t(�)), g2(w
τ (�))

)
(11)

is based on the sum of local costs d
(
g1w

t(�)), g2(w
τ (�))

)

between elements of sequences r and g at the points
belonging to the warping path. In the set of all
possible warping paths Wg1,g2 associated with given
time sequences, we can define an optimum warping
path ŵ(g1, g2) between g1 and g2, which minimizes its
associated misalignment, namely,

ŵ(g1, g2) = arg min
w∈Wg1,g2

D(g1, g2,w). (12)

According to (12), the minimum misalignment between
sequences r and g is thus equal to

D̂(g1, g2) = min
w∈Wg1,g2

D(g1, g2,w) (13)

= D(g1, g2, ŵ(g1, g2)).

The DTW algorithm finds the optimum alignment path,
which “runs” through the low–cost areas—“valleys” in the
cost matrix (Fig. 4).

2.2. Hidden signature estimation: Iterative point-by-
point averaging (IPPA). The iterative point-by-point
averaging procedure consists of the initialization phase
and the estimation phase. We assume that during each
iteration the hidden signature is estimated only once.

2.2.1. Initialization. The first important decision is to
define the hidden signature length. We considered several
options and the results are discussed Section 3.3. The
simplest way is to calculate the hidden signature length
as the simple average of signatures from the enrollment
set, independently for each user, namely ,

M =
1

N

N∑

n=1

Mn. (14)

Fig. 4. Local cost matrix mesh and the optimal warping path
(black solid line).

Finally, we assume that during the initialization
all the enrollment signatures {g1, . . . , gN} are linearly
resampled into a time length M (Fig. 5){g01, . . . , g0N}.
Therefore, it is possible to average the warped enrollment
signature, thus obtaining the initial approximation of the
hidden signature ĝ[0], namely,

ĝ[0](t) =
1

N

N∑

n=1

g0n(t)

=
1

N

N∑

n=1

(
gn(�τ�) + (τ − �τ�)

× (
gn(�τ + 1�)− gn(�τ�)

))
,

(15)

where t = 1, . . . ,M and τ is a grid value spaced by
1/(1−M):

τ = 1 + (t− 1)
Mg − 1

M − 1
, (16)

�τ� being a floor-type discrete value of τ .

Fig. 5. Linearly resampling into a time length M .

2.2.2. Iteration stage. Next, in each successive
iteration k = 1, 2, . . . , the newly computed hidden
signature approximation ĝ[k−1] is used to calculate
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N optimal warping paths w[k] between ĝ[k−1]and the
enrollment signatures (Fig. 6):

ŵ[k](ĝ[k−1], gn) = arg min
w

D(ĝ[k−1], gn,w), (17)

n = 1, . . . , N. The above warping paths are used to
transform the enrollment signatures into a new hidden
signature approximation ĝ[k] space using DTW:

g′n(t; ŵ(ĝ[k−1], gn)) =
∑

�:wt(�)=t

gn(ŵ
τ (�)), (18)

t = 1, . . . ,M . As a result of this operation, N
warped enrollment signatures are obtained, whose lengths
are equal to the assumed hidden signature length M .
Consequently, a new hidden signature approximation can
be calculated as an average of the warped enrollment
signatures:

ĝ[k](t) =
1

N

N∑

n=1

g′n(t; ŵ
[k](ĝ[k−1], gn)), (19)

t = 1, . . . ,M.
This process is repeated iteratively, because a change

in the warping paths implies changes in the warped
enrollment signatures and then a change in the hidden
signature approximation. In each successive iteration,
the hidden signatures approximations ĝ[k] are created
with the use of the optimal warping paths (17), resulting
from the optimal misalignment between the hidden
signature and the enrollment signatures. As a result,
in each successive iteration, the new hidden signature
approximation minimizes the average misalignment
between itself and the enrollment signatures. The iteration
process is repeated until the difference between successive
hidden signatures is lower than a predefined threshold ε:

| ĝ[k] − ĝ[k−1] | < ε. (20)

A visualization of this modified iterative
point-by-point averaging is presented in Fig. 6. According
to the presented description of the method, our algorithm
works as follows.

2.3. Genetic algorithm (GA). Genetic algorithms are
routinely used to generate useful solutions to nonlinear
optimization problems, thus they fit the nonlinear
minimization problem of finding the hidden signature
(Davis, 1991).

In a genetic algorithm, a population of strings
evolves toward better solutions. Traditionally, solutions
are represented as binary strings (arrays of 0s and 1s).
However, different encodings are also possible; here,
the signatures are represented by arrays of floating point
values.

Algorithm 1. Iterative point-by-point averaging (IPPA).

Step 1. Choose initial signatures OE = {g1, . . . , gN}
Step 2. Calculate the initial hidden signature approxi-
mation ĝ[0] according to (15)

Step 3. Repeat:

(a) Calculate the k-th set of warping paths ŵ[k]

according to (17) with the use of the k-th hidden
signature approximations

(b) Calculate the k-th hidden signature approximation
ĝ[k] according to (19) with use of set of warping paths
ŵ[k]

until a stopping condition is reached.

Fig. 6. Calculation process starts the initial calculation (15), the
iteration process starts for k = 1. Each successive itera-
tion (13) and (15) ends with the stopping condition (20).
If it is not satisfied, the iteration is repeated.

2.3.1. Initialization and selection. We assume that
the evolution starts from an initial signatures population
OE = {g1, . . . , gN}, i.e., enrollment signatures. In
each iteration, the fitness of every signature in the current
population is evaluated according to the fitness function:

f(gj) =
( ∑

k=1,...,N

D̂(gk, gj)
)−1

. (21)

We decide that parent signatures are randomly selected
through a roulette wheel selection. This is a way of
choosing members from the population of signatures in
a way that is proportional to their fitness.

2.3.2. Reproduction. Usually, the next step is to
generate a new population (offspring) of solutions from
those selected through genetic operators: crossover and/or
mutation. Here, we decide to use only the crossover
operation to calculate the new offspring population of
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signatures O = {o1, . . . , oN}. This decision was
motivated by the assumption that the initial population
already contains signatures that are close to the sought
optimum. Therefore, expanding the search space of the
algorithms is not necessary.

We propose a crossover operation that is specially
designed by us for on-line signatures. This crossover
operation deals with the different lengths of signature
instances, which makes direct alignment of points
impossible. Our idea is to “morph” between two “parent”

Fig. 7. Crossover operation depending on a weight p.

signatures, with the use of a random weight p (see
Fig. 7). For signatures of equal lengths, the process is
straightforward. For signatures of unequal lengths, we
use DTW to assign every point in signature gi to one or
more points of signature gj and vice versa. In the case
of a one-to-one assignment, the resulting k-th point of an
offspring signature o is simply a weighted average of the
two input points:

o(k) = p · gi
(
ŵt(�)

)
+ (1− p) · gj

(
ŵτ (�)

)
. (22)

In other cases, i.e., A points of a signature gj are assigned
to one point of a signature gi, we propose that the number
of points C in the “offspring” signature be calculated in
proportion to the weight p:

C = �p · A	. (23)

Then, we calculate each of the resulting C points of the
offspring signature o as a weighted average of one point
of a signature gi and the assigned points of signature gj,
with an additional weighting by a weighting vector bc,�:

o(k + c)

= p gi
(
t) + (1− p)

∑

�:wt(�)=t

(
bc,� gj

(
ŵτ (�)

))
,

c = 0, . . . , C − 1.

(24)

The weighting vector bc,� depends on the number
of the resulting points in the offspring signature and it is
different for each resulting point. The weight p can be
random (without coefficient control), or dependent on the

fitness of the signatures in the population ρ(g) (see (21))
(with coefficient control). We decided that the weights p
should be individually determined for each pair of aligned
points of two morphed parent signatures.

Using the crossover operation, we obtainN offspring
signatures. From the population of N parent and
N offspring signatures, we select N best signatures
according to the fitness function. Therefore, the fitness
function values in the new most recent population (new
hidden signatures approximations) Ĝ = {ĝ1, . . . , ĝN}
can only be equal to or better than the values in
the previous population. Due to the fitness function
being proportional to the average misalignment between
the signature and the signatures from the enrollment
set, the selection of the best offspring signatures is in
fact minimizing the average misalignment (5) in each
successive iteration.

Commonly, the algorithm terminates when either
a maximum number of iterations or a satisfactory
minimization solution has been reached.

According to the presented description of the
method, our genetic algorithm works as follows.

Algorithm 2. Genetic algorithm (GA).

Step 1. Choose initial signatures OE = {g1, . . . , gN }
Step 2. Evaluate the fitness of each individual in the
population f(gj), j = 1, . . . , N

Step 3. Repeat:

(a) Select the individuals to reproduce from using the
roulette wheel selection Pi

(b) Breed new offspring signatures through crossover

O[i] =
{
o
[i]
1 , . . . , o

[i]
N

}

(c) Evaluate the fitness values of the offspring
f(o

[i]
j ) , j = 1, . . . , N

(d) Select the new most recent population Ĝ[i]

containing the best N signatures from the current
offspring O[i] and the previous population Ĝ[i−1],
according to their fitness function f

until stop condition is reached.

In this scheme, two different cases are considered for
the reproducing group:

1. the most recent population: Pi =
{
Ĝ[i−1]

}
,

2. the most recent and the initial population: Pi ={
Ĝ[i−1] ∪OE

}
.

The first one consists exclusively of the offspring; the
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second case additionally includes the enrollment set.

Because the algorithm allows modifications, we may
select four versions (v1–v4) of the presented algorithm
(Table 1).

Table 1. Versions of the genetic algorithm.
Most recent and Most
initial population recent population

Without
GAv1 GAv2

coefficient control
With

GAv3 GAv4
coefficient control

2.4. Testing methodology. Verification errors are
parameters that describe the capabilities of algorithms.
In biometrics, a typical null hypothesis is tested: “the
sample and the template originate from the same biomet-
ric specimen”. If the true null hypothesis is rejected, a
false rejection is registered. The proportion of verification
transactions with false rejections is the false rejection
rate (FRR). In opposite situation, when the false null
hypothesis is accepted, a false acceptance is registered,
giving in a finally the false acceptance rate (FAR).

The presented errors describe an access control
system. Additionally, it is possible to describe an equal
error rate (EER) that indicates that the proportion of false
acceptances is equal to that of false rejections.

We proposed testing the quality of a given biometric
verification system which involves a two-dimensional
division of the data set. For a given user, the biometric
samples used for creating the biometric template are
called the enrollment set. The remaining biometric
samples used for comparison are the comparison set.

Biometric security system parameters are set during
the estimation phase, processed on one part of a biometric
data set (estimation set), containing data for a group of
users. Typically, one of the important method parameters
which is set during the estimation phase is a verification
threshold level. Then, during the testing phase, the whole
system is tested on the remaining part of the data set (test-
ing set). As a result of this phase, the FAR and FRR
errors are obtained. The proposed division of a database
enables us to determine the testing procedure with the
EER induced threshold.

In this method, the threshold is adjusted in the
estimation phase and it is set to the value that corresponds
to the EER (Fig. 8):

θ : FRR(θ) = FAR(θ)
def
= EER (25)

In situations where the verification method depends
on a parameter vector v, the EER is a function of vector v,

Fig. 8. Estimation phase: FAR and FRR curves calculated for
the estimation sets.

Fig. 9. Testing phase: FAR and FRR curves calculated for the
testing sets.

namely,

θv : FRR(θv,v) = FAR(θv,v)
def
= EER(v) (26)

Note that, formally, θv becomes a random variable
but its value is determined on a data set independent of
the set used in testing. In this case the parameter vector
is set to the value corresponding to the minimum value of
the EER and θ is set to the respective value of θv, namely,

v̂ = argmin
v

EER(v), (27)

θ = θv̂.

To check the generalization ability of the verification
method, the threshold calculated in the estimation phase
is used in the testing phase. Thus, as a result of the testing
phase, the FAR and FRR errors are obtained (Fig. 9).

All the on-line verification algorithms presented in
this article were tested on the MCYT on-line database,
which is a part of the MCYT multi-modal database
(Ortega-Garcia et al., 2003). It contains data belonging to
100 persons, with 25 genuine signatures and 25 forgeries
per user. For tests, the original database was divided into
estimation and tasting data. The estimation data used
for the estimation phase included data for 40 persons,
whereas the remaining data for 60 persons were used as
the testing data. Additionally, 1000 of different divisions
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of the database was used. These 1000 randomly chosen
divisions were the same with every experiment. For
each experiment, the ERR, FAR and FRR errors are
stored. The algorithm errors are calculated as average
values and standard deviations of the stored ERR, FAR
and FRR errors. For each user, his/her enrollment set
OE contains the first 10 genuine signatures from the
database. It is a simulation of a real-world situation. As
the database signatures are ordered chronologically, these
signatures were collected before the remaining ones and,
in consequence, this set can be treated as a set collected
during the enrollment process.

2.5. Comparison between the methods for hid-
den signature estimation. In the previous sections, we
presented three methods for hidden signature estimation
(Fig. 2): one based on a genetic algorithm and two
employing iterative point-by-point averaging.

These methods differ in their approach to find the
hidden signature approximation. The genetic algorithm
increases the number of genuine signatures, by creating
artificial signatures only with the use of enrollment
signatures. Then, from the large group of genuine
signatures, the hidden one is selected as that which
minimizes the average misalignment score between itself
and the enrollment signatures.

In contrast to the genetic algorithm approach,
iterative point-by-point averaging narrows the search to
the average signatures obtained from the enrollment set.
The algorithm is designed to find the hidden signature
time space, in which the average signature minimizes
the average misalignment score between itself and the
enrollment signatures.

The comparison between the three methods of hidden
signature estimation touches upon several aspects, like
numerical comparison with the average misalignment
with the use of the verification system or creation time.

2.5.1. Numerical comparison. We used the average
misalignment (5) to compare numerically the four
versions of the genetic algorithm, GAv1, GAv2, GAv3,
GAv4, and the modified iterative point-by-point method,
MIPPA.

First we evaluated four versions of the genetic
algorithm in order to select their best versions. The
differences in the obtained average misalignment were not
significant, yet the GAv4 version achieves the minimum
score in the lowest number of iterations, compared with
the other versions of the genetic algorithm, and for those
reasons we selected GAv4 for further comparison between
the methods.

As seen in Fig. 10, for a user from the MCYT
database the best average misalignment was obtained with
MIPPA. It can be noticed that the biggest difference

Fig. 10. Average misalignment obtained for three methods: the
GA, IPPA and MIPPA, for a user from the MCYT
database.

between the average misalignment in the first and
last iteration was observed for the genetic algorithm.
The differences in the resulting levels of the average
misalignment between the methods depend on a user.

Note that, for different users, the average
misalignment scales are different, because they are
not normalized between the users. What is common
for each of the presented methods is that the average
misalignment converges asymptotically. A visualization
on how the hidden signature approximation changes along
the iteration is presented in Fig. 11 (MIPPA method).

Fig. 11. Hidden signature approximation along the iterations.

The MIPPA method, according to its deterministic
character, always approaches the same value of the
minimum average misalignment. The genetic algorithm,
due to its probabilistic nature, can approach different
values of V for the same enrollment signatures (Fig. 12).
The resulting hidden signatures are visually similar and
have similar average misalignment values (Fig. 13).

It should be noted that the hidden signature, as an
abstract representation of a signature, is unique for a given
person. As each of the methods estimates the hidden
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Fig. 12. Average misalignment obtained for GA4 for the same
enrollment set.

signature according to the hidden signature definition (2),
the resulting hidden signature approximations can be
regarded as the hidden signature in the sense of each
method: the GA and MIPPA.

Fig. 13. Hidden signature approximation obtained with GAv4,
IPPA and MIPPA.

2.5.2. Verification comparison. The basic DTW
verification procedure presented in Section 2.1 was used
to distinguish between the selected methods (GAv4,
MIPPA) for hidden signature estimation. Additionally,
we wanted to compare the verification results obtained
with the template formed from a hidden signature and the
“best” enrollment signature. The basic DTW verification
procedure was used together with the universal forgery
idea which forms the final version of the algorithm. The
universal forgery idea was presented by Putz-Leszczynska
and Pacut (2013).

During the experiment, for each user, three different
templates were created from the same set of the
enrollment signatures:

1. “best” enrollment signature,

2. GAv4 hidden signature,

3. MIPPA hidden signature.

The algorithm was tested on the MCYT on-line database
and only the estimation EER errors were calculated for the
set of 40 users from the MCYT database.

Table 2. ERR for different signatures used as the template for
same algorithm. The results were obtained for the 40
users.

Template EER[%]

1.“best” enrollment signature 3.4
2. hidden signature, GAv4 2.33
3. hidden signature, MIPPA 2.33

The comparison between the calculated errors
suggests that the verification algorithm works better when
the hidden signature is used as a template (cf. Table 2).
It proves that this artificial signature could be very
helpful. The results obtained with the use of iterative
point-by-point averaging are comparable with those of the
genetic algorithm.

2.5.3. Conclusions. It is important to note that
the average misalignment obtained for the best genetic
algorithm GA and the MIPPA methods is similar and
generally depend on the user. However, MIPPA converges
to its minima in a number of iterations which is lower than
for the genetic algorithm. What is more, for the same
enrollment signatures, MIPPA always estimates the same
hidden signature, while the genetic algorithm, due to its
heuristic nature, does not always converge to the same
solution (Fig. 12).

The suggestion that the differences in average
misalignment (for some users) between the methods are
insignificant is confirmed by the fact that EER values are
at the same level (see Table 2) for all the hidden signature
estimation methods.

The modified iterative point-by-point averaging
method, MIPPA, is the fastest, with the iteration time
an order of magnitude shorter than in the case of
the other methods. For a signature with the enrollment
signatures of a length of around Mn = 100, the hidden
signature estimation with MIPPA method took 6 seconds,
while the genetic algorithm GA needed 251 seconds. For
commercial purposes we optimized the MIPPA algorithm
and the acceptable 6 seconds were reduced to 1 second.
Taking into account the computation time, ERRs, and
average misalignment, the modified version of iterative
point-by-point averaging seems to be the best solution for
obtaining the hidden signature because of its good equal
error rate and short calculation time.
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3. Error time series used in DTW

In Section 2.5, we showed that the use of the hidden
signature improves on-line signature verification based
on DTW. Here, we extend our approach to exploit the
properties of the hidden signature by using its sample
standard deviation. In this way the hidden signature
properties were use to standardize the verified signature,
thus obtaining an error time series which can be used for
verification.

3.1. Error time series formation. We proposed
division of the MCYT on-line database (Ortega-Garcia
et al., 2003) into three sets. Namely, for each of the 100
users, we divided the data into the enrollment set OT , and
two testing sets OG OF :

• OT : the enrollment set (1000 genuine
signatures)—contains the first 10 genuine signatures
from the database for each user,

• OG: 1500 genuine signatures—contains the
remaining 15 genuine signatures from the database,

• OF : 2500 skilled forgeries—contains 25 skilled
forgeries.

Additionally, for each user, we store the hidden
signature ĝ, estimated with the use of the enrollment set
OT .

For the purpose of error signal formation, we
will regard the signature instances as realizations of a
stochastic process, and will estimate certain parameters of
this process. In particular, we will calculate the covariance
matrix of the signature time series. This can be typically
done either by sample averaging or by time averaging.
Since we have multiple realizations of each signature, we
do not have to make any stationarity assumptions and can
use sample averaging.

DTW nonlinear transformation of the enrollment
signatures into the hidden signature space can be treated as
multiple realization of the signature process in the hidden
signature time space. Then their sample average

ḡ(t) =
1

N

N∑

n=1

g′n(t; ŵ(ĝ , gn)) = ĝ(t), (28)

t = 1, . . . ,M , is the hidden signature. Additionally, the
sample covariance matrix for, e.g., gΔx,Δy,p (Definition 3),
is defined as

Σg(t) =

⎡

⎣
s2{Δx}(t) s{Δx,Δy}(t) s{Δx,p}(t)
s{Δy,Δx}(t) s2{Δy}(t) s{Δy,p}(t)
s{p,Δx}(t) s{p,Δy}(t) s2{p}(t)

⎤

⎦ ,

(29)

where

s{Δx,Δy}(t)

=
1

N

N∑

n=1

(g
′Δx
n (t)− ĝΔx(t))(g

′Δy
n (t)− ĝΔy(t)). (30)

The sample variances for each coordinate (feature) are the
diagonal elements of Σg(t). For instance, for Δx, we have

s2{Δx}(t) =
1

N − 1

N∑

n=1

(g
′Δx
n (t)− ĝΔx(t))2, (31)

t = 1, . . . ,M, where gΔx(t) is defined according to (3).
By O

′
T , O

′
G, O

′
F we denote the sets containing

signatures from the MCYT database after DTW nonlinear
transformation into the hidden signature time space (18).
Figure 14 presents the signatures Δx time series
belonging to a selected user in a time space of his/her
hidden signature. The grey shade shows the boundary
defined at every point t by ĝΔx(t) ± 2sΔx(t). It is easy
to notice that skilled forgeries exceed the boundary “more
often” than the genuine signatures. According to this
observation, we standardize the warped verified signature

Fig. 14. Signatures in the hidden signature time space, q
′Δx =

{O′
T , O

′
G, O

′
F }.

q
′

(18) for every feature from list. This is done by
point-by-point subtraction of the hidden signature ĝ from
the average values, and division by the sample standard
deviations s, e.g., for Δx,

q
′′Δx(t) =

q
′Δx(t)− ĝΔx(t)

sΔx(t)
, (32)

t = 1, . . . ,M. The resulting standardized sequences
q
′′Δx, q

′′Δy , q
′′p, are called later the error time series,

because they represent normalized errors between the
verified signature and the hidden signature at each point.
O

′′
T , O

′′
G, O

′′
F denote the sets of the error time series (Fig.

15).
A visual inspection reveals that the error time series

for genuine signatures and skilled forgeries differ in the
amplitude. Based on that, we constructed and tested the
error time series approach.

3.2. Signature verification based on error time se-
ries: The error time series approach (ETSA). The
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Fig. 15. Error time series, v
′′Δx = {O′′

T , O
′′
G, O

′′
F }.

error time series q
′′

is standardized with the use of the
hidden signature. Namely, the closer the verified signature
q to the hidden signature ĝ, the closer the values at each
point of the error signal to zero.

The goal of the verification is to identify signatures q
that are not genuine signatures, i.e., to test the following
hypotheses for each verified signature:

Hv: q is not a hidden signature instance.

It is well known (Durrett, 2010) that for an independent
and identically distributed M -element x normal sample,

x− x̄

sx
∼ tM−1, (33)

where by tM−1 we denote the t-Student distribution. The
expected value is equal to

E
(x− x̄

sx

)
= E

∣
∣∣
(x− x̄

sx

)∣∣∣ = 0 for M > 2, (34)

and variance to

Var
(x− x̄

sx

)
=

M − 1

M − 3
for M > 3. (35)

Without the normality assumption the same
properties hold, for a sufficiently large sample.
“Sufficiently large” depends on the actual distribution of
x and is roughly assumed to be more than 10.

We may then assume that (34), (35) hold
approximately for q′′c, where c ∈ list and
list = {Δx,Δy, p}.

Based on (34), we proposed the test statistic of the
form

T list
1 (q′′) =

∑

c∈list

(
q′′c

)2
, (36)

and based on (35) we proposed another test statistic:

T list
2 (q′′) =

∑

c∈list

s2(q′′c), (37)

where q the mean of q and s2(q) denotes the sample
variance of q .

We use the threshold θ for verification. It is
calculated during the estimation phase according to
the testing procedure with the EER induced threshold
(Section 2.4). We may reject Hv if the selected statistic
T1 or T2 is greater than θ, e.g., T1 > θ.

3.2.1. Verification experiments. There are several
cases to consider in algorithm construction:

• Case 1: Selection between the T1 and T2 statistics.

• Case 2: Selection between the raw data XYraw

and data after standardization XY (standardization
before the DTW and error signal formation),

• Case 3: Taking into consideration the relative
signature length difference γ condition. This
is a parametric feature calculated between the
corresponding signature lengths (numbers of
signature points) Mr∗ , Mq:

γ =
|Mr∗ −Mq|

Mr∗
. (38)

• Case 4: Including weights in the final form of the test
statistic.

3.2.2. Cases 1 and 2. We evaluate both test statistics
for verification quality. The results obtained in the
estimation process on the whole MCYT database are
presented in Table 3. The tests show that the proposed
algorithm yields lower verification errors with the use of
the T2 statistic for a majority of cases. It is also clear that
it is better to use normalized signatures before template
creation and comparison.

The best EER value obtained in the experiment was
7.94%, which means that the results calculated only for
{Δx,Δy} produced a lower ERR than the one for a wider
set {Δx,Δy, p}. To improve this result, we decided to
include weights that modify the test statistic.

Table 3. Comparison of the EER (estimating phase) for differ-
ent test statistics and data normalization.

list
EER[%] for T list

1 EER[%] for T list
2

XYraw XY XYraw XY

{Δx} 16.07 20.55 14.27 10.4
{Δy} 19.0 14.93 15.8 8.94
{p} 19.07 11.47 29.72 12.87

{Δx,Δy} 16.07 13.4 13 7.94
{Δx, p} 15.92 10.87 27.67 11.8
{Δy, p} 15.92 10.6 28 11.19

{Δx,Δy, p} 15.07 10.32 27.05 10.32

3.2.3. Cases 3 and 4. In Cases 3 and 4, we modify
the T2 statistic by including the relative signature length
difference γ (38) and the weights

T3(q
′′) = vγγ +

∑

c∈{Δx,Δy,p}
vcs2(q′′c), (39)
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where the weights are the verification parameters v =
[vγ vΔx vΔy vp]. The test was conducted on the
MCYT on-line database. The threshold θ and weights
were estimated during the estimation phase according to
the testing procedure with the EER induced threshold
(Section 2.4). The obtained results,

• estimating phase: EER = 1.72± 0.25%,

• testing phase: FRR = 1.82 ± 0.86% and FAR =
1.74± 0.3%,

are very good in comparison with the basic DTW
approach (see Table 2) and other approaches tested on this
database (see Table 4), which generated errors higher than
2%.

The T3 statistic was selected as the final statistic
in the error time series approach. The results obtained
in tests on the MCYT database are very promising.
Moreover, the overall simplicity allows this method to be
used in mobile or embedded systems.

Table 4. On-line systems comparison.

Authors
FAR FRR ERR

Database
[%] [%] [%]

Quan et al. (2006) 7 MCYT
Miguel-Hurtado et al. (2007) 8 MCYT
Van et al. (2007) 3.37 MCYT
Guru and Prakash (2007) 9.16 5.42 5.3 MCYT
Galbally et al. (2007) 3.5 MCYT 330
Faundez-Zanuy (2007) 5.4 MCYT 330
Nanni and Lumini (2008) 5.2 MCYT
Pascual-Gaspar et al. (2009) 2.16 MCYT
Integrated system 1.74 1.82 1.72 MCYT

3.3. Optimal length of the hidden signature. The
length of a hidden signature estimated by MIPPA method
must be given at the beginning of the procedure. This
decision may have an impact on verification reliability.

In the experiments described in Section 2.5, the
hidden signature length Mu was set to the average length
of N enrollment signatures of a given user u:

Mu = μu =
1

N

N∑

n=1

Mu,n, (40)

where Mu,n denotes the length of the n-th enrollment
signature of a user u. This approach to hidden signature
length estimation will be referred to as user-dependent. In
the MCYT database, values of μu change from 50 to 900.

Apart from the user-dependent approach, another
possibility is to set a single hidden signature length for
all users (user-independent approach):

∧

u∈U

Mu = const. (41)

The user-independent length can be, for example, set to
the average length of enrollment signatures over the whole
database:

μ =
1

U

1

N

U∑

u=1

N∑

n=1

Mu,n. (42)

For the MCYT database, this value equals μ = 350.65.

3.3.1. Experiments. Two groups of experiments were
performed in order to compare the two approaches. Each
case was tested on the same data, and the error time series
approach with the T3 statistic was used for verification
testing, according to the testing procedure with the EER
induced threshold (Section 2.4).

In the user-dependent group, different user signature
lengths were tested. The lengths depended on the average
lengths of the users enrollment signatures μu (Table 5).
The user-independent group of tests was held for the
length set according to the database average length μ
(Table 6).

Table 5. Results obtained for the user-dependent length of hid-
den signatures.

Mu Estimation Testing
EER[%] FRR[%] FAR[%]

1.5μu 1.77 ± 0.26 1.87± 0.9 1.79 ± 0.29

1.1μu 1.75 ± 0.25 1.85± 0.88 1.78 ± 0.29

μu 1.72 ± 0.25 1.82± 0.86 1.74 ± 0.30

0.9μu 1.67 ± 0.28 1.76± 0.85 1.69 ± 0.36

0.8μu 1.64 ± 0.28 1.76± 0.87 1.67 ± 0.36

0.7μu 1.61± 0.3 1.73± 0.76 1.64± 0.39

0.6μu 1.75 ± 0.36 1.83± 0.79 1.77 ± 0.46

0.5μu 1.75 ± 0.38 1.86± 0.79 1.78 ± 0.47

Table 6. Results obtained for the user-independent length of
hidden signatures.

Mu Estimation Testing
EER[%] FRR[%] FAR[%]

0.25μ 1.88± 0.39 1.94 ± 0.66 1.92± 0.55

0.5μ 1.69± 0.33 1.81 ± 0.86 1.73± 0.45

μ 1.64± 0.23 1.76± 0.89 1.66± 0.26

1.5μ 1.69± 0.22 1.81 ± 0.88 1.71± 0.23

2μ 1.73± 0.23 1.82 ± 0.86 1.74± 0.20

Both groups of experiments showed that increasing
the length of the hidden signature does not improve the
verification quality. For the user-independent length, the
best result was achieved for M = μ, while for the
user-dependent length, the lowest errors were obtained
for 0.7μu. In other words, the approximation of the
hidden signature is better if all the enrollment signatures
are transformed into a hidden signature time space of a
length lower than the enrollment signatures Mu ≤ Mu,n

(15). Consequently, some information is lost during
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the transformation. Conversely, for Mu > Mu,n, new
points are created in the enrollment signature during
the transformation. These new points are created based
on the current signature points. Because there is no
new information, the transformation into a wider hidden
signature space (Mu > Mu,n) will always result in an
approximation worse than the original data.

The errors obtained for the user-dependent approach
turned out to be slightly better. This can be easily
explained. In the user-dependent case, the length
differences between the user signatures and the computed
hidden signature will be relatively small, which is not the
case in the user-independent case.

The difference in the resulting errors for both cases
is still not big enough to justify selection of one approach
over the other; however, as the user-dependent approach
is easier to implement and database-independent, it was
chosen for the estimation of hidden signature length.

3.4. Number of signature realizations required
to build the hidden signature. Due to commercial
requirements, we needed to know how many enrollment
signatures are needed to correctly create the hidden
signature. This analysis was done with the use of a POS
(point of sale) low-requirement algorithm implementation
of the algorithm presented in Section 2.1, employing the
hidden signature.

The limitations of the target POS terminal posed
problems in the implementation. The main difficulties
stem from its low computing power, limited internal
memory and the lack of a floating-point arithmetics
support. As a result, a special implementation of the
library functions was needed. Due to this limitation, the
results in Table 7 are a bit worse then the one presented in
the previous sections.

Again the experiments were performed according to
the testing procedure with the EER induced threshold
presented in Section 2.4. The errors presented in Table 7
are the obtained mean values of errors, with related
standard deviations. The obtained results differ by up to

Table 7. Experiments for different number of signature used for
hidden signature estimation.

Number Estimation Testing
of signatures EER[%] FRR[%] FAR[%]

5 4.22± 0.53 4.43 ± 1.42 4.29± 1.21

6 3.56± 0.50 3.70 ± 1.33 3.51± 0.98

7 3.57± 0.49 3.72 ± 1.29 3.56± 0.95

8 2.94± 0.45 3.05 ± 1.21 2.90± 0.92

9 3.03± 0.47 3.14 ± 1.18 2.98± 0.88

10 2.92± 0.49 3.03 ± 1.22 2.87± 0.77

1.4%, however, the difference between 8 and 10 is not
significant. Testing for a higher number of signatures was
not possible with this database due to its size.

4. Summary and conclusions

There is a great demand for automatic signature
verification systems on the commercial market. These
systems have a potential to replace the traditional
signature verification currently done by clerks. Although
the clerks are trained to discriminate between genuine
signatures and forgeries, their qualifications are much
lower than the ones of forensic handwriting experts,
who can identify a forged signature with almost a 100%
accuracy (Kam et al., 2001). At the same time, they
identify almost 7% of genuine signatures as forgeries,
which suggests that their approximated ERR= 3.5%.
Additionally, some weaknesses of human nature, like
tiredness and absent-mindedness, may also have big
influence on the clerks’ verification ability. For these
reasons, automatic signature verification systems can be
applied where there is a need for fast and precise signature
verification. To be commercially applicable, such systems
must satisfy three main conditions:

• the system quality must be better than the one of
clerks,

• the system quality must be similar to the one of
forensic handwriting experts,

• enrollment and verification must be relatively quick.

Over the last 30 years, the problem of handwritten
signature verification has changed a lot. The initial
hardware problems disappeared. Nowadays, the market
offers a plenty of digitizing tablets, which are able to
capture signatures with a high frequency and resolution.
Another problem, namely, the lack of available signature
data, has been addressed by a number of databases,
of which some are publicly available together with
signature verification competitions that are being held at
least biyearly. Due to the dynamic nature of signature
biometrics, the methods employing dynamic information
usually perform better. As a result, the majority of
approaches used today employ nonparametric features.
The two most commonly used solutions are systems based
on DTW and HMM. HMM methods need more complex
computations to be done, while DTW is much simpler,
and after customization it can work really fast.

However, DTW-based methods need a selected set of
template signatures. This entails the following problems:

• How many template signatures should be used in the
template?

• Which kind of statistics should be used for template
signature(s) selection?

The template creation in DTW is seemingly very
easy. However, it is limited to selecting a subset of a
person’s signatures. This is the first problem—we do
not know how many signatures should be selected for the
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template. Secondly, even if we resolve the first problem,
we still do not know which of the signatures should be
selected. It has to be emphasized that this selection will
have an impact on the decision if a verified signature is
accepted or not.

Although signature verification systems based on
DTW have been extensively studied in the past few
decades, template signatures selection for DTW has
remained relatively unexplored. In this work, we proposed
how to solve the issues mentioned. We covered this main
direction of our research in the theorem that for every
signature one can construct an abstract representation,
called the hidden signature, from which every other
instance can be derived. This abstract representation can
be in computed from a collection of available signature
instances.

Our approach to DTW employs the hidden signature
idea. This artificial signature can effectively replace
the template signature in algorithms employing DTW.
We proposed the main directions for hidden signature
estimation: the genetic algorithm (Section 2.3) and
iterative point-by-point averaging (Sec. 2.2). These two
directions differ in their approach to finding the hidden
signature. The genetic algorithm increases the number
of genuine signatures, by creating artificial signatures
only with the use of enrollment signatures. Then,
from the large group of genuine signatures, the hidden
signature is selected as the one that minimizes the average
misalignment score between itself and the enrollment
signatures. For this approach, we proposed a custom
crossover operator, which allows the crossover operation
between two sequences that differ in time.

In contrast to the genetic algorithm approach,
iterative point-by-point averaging narrows the research to
the average signatures obtained from the enrollment set.
The algorithm is designed to find the hidden signature
time space, in which the average signature minimizes
the average misalignment score between itself and the
enrollment signatures.

In Section 2.5, we presented a comparison between
the hidden signatures estimated with the proposed
methods. For that comparison, we used the average
misalignment, together with verification errors (see
Table 2) obtained for a DTW-based verification system
(Section 2.1). During the tests, the hidden signatures
were used as the templates. We showed that the average
misalignment obtained for the best genetic algorithm and
iterative point-by-point averaging methods is similar and
generally depend on the user. Also the verification errors
were at the same level. Because (as previously stated)
the enrollment has to be fast, we selected the modified
iterative point-by-point averaging method, whose iteration
time was an order of magnitude shorter than that for the
genetic algorithm.

In Section 3 we introduced the error time series
approach that exploits the properties of the hidden
signature by using its certain statistics. We performed
experiments to determine the optimal length of a hidden
signature (Section 3.3). It turned out that the best way is
to use the user-dependent lengths, which are a little shorter
that the average length of enrollment signatures.

The errors calculated with this final system are
better than the results of other systems presented in
literature and tested on the same MCYT database
(Table 4). Additionally, systems and hidden signature
quality was also confirmed during the ESRA 2011
competition (BioSecure Signature Evaluation Campaign).
To summarize our work in this area, we gathered the four
successive proposed on-line verification system variants.
We succeeded in achieving a high quality system, which
shows low errors with low deviations during the testing.
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