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Over a century of research has resulted in a set of more than a hundred binary association measures. Many of them
share similar properties. An overview of binary association measures is presented, focused on their order equivalences.
Association measures are grouped according to their relations. Transformations between these measures are shown, both
formally and visually. A generalization coefficient is proposed, based on joint probability and marginal probabilities.
Combining association measures is one of recent trends in computer science. Measures are combined in linear and non-
linear discrimination models, automated feature selection or construction. Knowledge about their relations is particularly
important to avoid problems of meaningless results, zeroed generalized variances, the curse of dimensionality, or simply to
save time.
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1. Introduction

Binary association measures, also known as association
coefficients, have more than a hundred years of history
of modern science. The Jaccard coefficient (Jaccard,
1912) may be listed among the oldest ones. Association
measures have various origins, e.g., biology, taxonomy,
psychology or language engineering. Their primary goal
is to describe relations between pairs of objects sharing
a common feature. During the last century, numerous
new association measures have appeared. Some of
them are well recognized and considered classic, e.g.,
the Dice coefficient (Dice, 1945). Having different
sources of origin and interpretation, they often share
some common properties. Association measures have
been frequently reviewed and analyzed (Cheetham and
Hazel, 1969; Wolda, 1981; Batagelj and Bren, 1995;
Clarke et al., 2006; Nieddu and Rizzi, 2007). Despite
over a century of research, new association coefficients
constantly appear (e.g., Washtell and Markert, 2009;
Consonni and Todeschini, 2012).

Recent research and overview papers tend to
present long lists of available binary similarity measures.
At least a hundred of various measures may be
found. These papers are usually related to computer
science (Choi et al., 2010) or various sub-domains of

machine learning (Pecina, 2005; 2008; 2010; Pecina
and Schlesinger, 2006). The appearance of long lists of
coefficients in these research domains is not accidental.
It is a rather popular but not always valid approach to
automatically select or combine subsets of features out of
large sets of available ones.

Binary association measures are often considered
the basic ones. They can be further extended to n-
gram measures (Petrović et al., 2010) describing direct
relations between n objects simultaneously. Another
related research topic is the detection of indirect
associations (e.g., Kazienko, 2009). Indirect association
takes place if two objects share common features with
other objects, called transitive ones.

Basic concepts. Binary association measures are in a
large majority defined using four basic values (e.g.,
Batagelj and Bren, 1995; Nieddu and Rizzi, 2007; Choi
et al., 2010). These values represent the frequency of
measured objects. Let f(xy) represent a number of
objects sharing both features x and y. Let f(xy) represent
a number of objects sharing feature x, but missing feature
y. Let f(xy) represent a number of objects sharing feature
y, but missing feature x. Finally, let f(xy) be the number
of object not sharing x or y. A widely accepted naming
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convention is the following:

a = f(xy), b = f(xy),

c = f(xy), d = f(xy).
(1)

The above four values are frequently given in the form of a
contingency table (e.g., Consonni and Todeschini, 2012).

Use of association measures. Binary association
measures are an effective tool of measurement if two
features (x and y) coexist in a set of objects. Various
association measures have different interpretations and
can be used in different scenarios. Several overviews
exist in the literature, including formal analysis and
interpretation (e.g., Cheetham and Hazel, 1969; Tan et al.,
2004). Given a problem to solve, prior selection of an
appropriate association measure is not always possible. In
such cases, detailed statistical analysis of achieved results
is required, (e.g., Washtell and Markert, 2009; Consonni
and Todeschini, 2012).

One of prominent applications of association
measures in computer science can be found in natural
language processing. Association measures are used
to detect compound, bi-gram (further generalized into
n-grams) terms called multiple word expressions (e.g.,
phrasal verbs, technical terms) or proper names within
huge text corpora. The key idea is to order generated
bi-grams according to some association measure value.
Most interesting bi-grams are expected to be at the top
of the ranking. The difficulty is that bi-gram components
of various multiple word expressions or proper names
are associated in very diversified ways. Selection of
an appropriate association measure is a very laborious
task. As a consequence, supervised machine learning
methods may be used to automate the process. The
approach is often referred to as learning to rank. An
extensive literature exists on the topic, including the
works of Kekäläinen (2005), Liu (2009) or Chapelle
and Wu (2010). Sets of association measures become
input features of supervised learning methods (Pecina,
2005; 2008; 2010; Pecina and Schlesinger, 2006), such
as linear logistic regression, linear discriminant analy-
sis, support vector machines or neural networks. The
procedure allows choosing a single measure or to produce
a linear or non-linear combination of measures which
model relations in the most accurate way.

It is worth mentioning that the presented binary
association measures can be further extended into n-gram
association measures. This can be done in at least two
different ways. The first one is a direct reformulation of
binary measures into n-gram measures, e.g., the Jaccard
index (Segond and Borgelt, 2011). The second one is
the usage of generic, n-gram measures parametrized by a
binary measure. Such generic measures combine binary
measurements on partial features into a single n-gram
value (e.g., Petrović et al., 2010).

Goal. The goal of this work is to show that a subset
of these association measures may be simplified. The
paper focuses on order equivalence relations between
coefficients and presents them in detail. Lots of them
are monotone or anti-monotone functions of each other.
Some of them are simple linear combinations of others.
Thus, instead of using numerous coefficients to describe
associations, a few of them will be sufficient. Such
knowledge is especially valuable when coefficients are
applied in machine learning methods. Some typical
errors in multivariate statistical machine learning may be
avoided. Usage of typical routines of automatic feature
selection may be simplified.

Motivation. To motivate the presented analysis from a
statistical point of view, a citation of Wichern’s (2007, p.
131) book on multivariate statistics is appropriate: This
common practice of creating new variables that are sums
of the original variables and then including them in the
data set has caused enough lost time that we emphasize
the necessity of being alert to avoid these consequences.

To motivate the presented analysis from a machine
learning point of view, a reference to the curse of di-
mensionality (Friedman, 1997) should be made. In
highly dimensional data, single dimensions become less
significant and less informative. Thus, an unnecessary
increase of data dimensionality can often do more harm
than good.

Yet another reason has purely practical character.
It has been observed many times that less experienced
machine learning students and researchers re-implement
and re-examine various similarity measures with similar
or identical properties. This study may be of help to these
researchers and save a lot of valuable time.

Related work. Studies on the association measure value
or ranking equality may be found in the literature.
Generalized coefficients have been proposed as well.
Cheetham and Hazel (1969) analyzed similarity measure
convergence depending on the values of their components.
They point out several relations between coefficients.
One of the first generalized association coefficients was
proposed by Tversky (1977). The ratio model is defined
as

ST =
a

a+ αb + βc
, α, β > 0. (2)

Hubalek (1982) presented a complete list of 43
coefficients and showed that they are related by
various transformations (linear, squares, logarithmic or
trigonometric). Gower and Legendre (1986) gave two
generalized coefficients:

Sθ =
a+ d

a+ d+ θ(b + c)
,

Tθ =
a

a+ θ(b+ c)
, θ > 0.

(3)
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A detailed study of relations between binary
similarity measures may be found in the work of Batagelj
and Bren (1995). Following earlier works, the authors
identify three groups (named S, T and Q) of coefficients
sharing equal rankings. A comprehensive overview and
a further generalization of association measures are given
by Nieddu and Rizzi (2007). Coefficients Sθ and Tθ are
special cases of their SNR coefficient:

SNR =
a+ αd

a+ βd+ γ(b+ c)
, (4)

α ∈ {0, 1}, β ∈ {0, 1}, γ > 0. (5)

Rifqi et al. (2008) presented an interesting discussion
on relations between 10 coefficients and formed three
groups. Hoang et al. (2009) identified a total of
five groups of coefficients with repeatable rankings, but
they address the issue only very briefly. They do
not differentiate monotone and anti-monotone coefficient
transformations, which results in reversed ranking of
measured objects. Choi et al. (2010) presented an analysis
of association measures according to the similarity
of achieved results on randomly generated datasets.
Association measures are hierarchically grouped and
presented in the form of a dendrogram.

Contribution. There are two contributions in the
paper. The first one is a detailed analysis of order
equivalence relations of association measures. Following
the motivation, the information on linear combinations of
association measures is also given. To the best of our
knowledge, this is the most extensive and detailed study
of the topic up to date.

We also propose a generalized coefficient, named Φ.
This very simple measure has a statistical background.
It combines three probabilities: two marginal probabili-
ties and the joint probability. The key difference between
the proposed generalized association measure and other
generalizations is that the former focuses on modeling
association rankings instead of association values. Using
the parametrized coefficient, we are able to generate an
association order equal and opposite to at least 20 well
known similarity measures. Usage of a single coefficient
may simplify and bring more order to machine learning
research and development. The coefficient may be also
used in machine learning approaches, especially in feature
construction routines. Further relations of the proposed
coefficient with others are still to be discovered.

2. Relations between association measures

In this section we show that many association measures
are related to each other. Some of them lead to identical
association rankings (they are monotone functions) while
others to reversed rankings (they are anti-monotone

functions). Some results are trivial, but worth showing
for the purpose of completeness. For clarity and
completeness of the overview, results shown in earlier
works are also presented. The most important earlier
works are studies done by Cheetham and Hazel (1969),
Hubalek (1982) as well as Batagelj and Bren (1995). We
follow group names given in the latest study. Groups not
defined by these studies are named in a similar way.

2.1. Further symbol definitions. The following
relations may be defined on top of four basic values (see
Eqn. (1)):

a+ b = f(x), a+ c = f(y), a+ b+ c+ d = n. (6)

The above values can also be given a probabilistic
interpretation. Let us assume that joint probability p(xy)
and marginal probabilities p(x) and p(y) are estimated
using relative frequency. Then we may write the following
equations for joint probabilities:

p(xy) =
a

n
, p(xy) =

b

n
, (7)

p(xy) =
c

n
, p(xy) =

d

n
, (8)

and for marginal probabilities:

p(x) =
a+ b

n
, p(y) =

a+ c

n
, (9)

p(x) =
c+ d

n
, p(y) =

b+ d

n
. (10)

2.2. List of coefficients. To get a proper reference
for further discussion, a list of association coefficients
is presented. The discussed coefficients are presented in
Table 1. The list is limited only to these coefficients,
which have rankings equal with other ones or can be
represented by the proposed Φ coefficient (see Section 3).
Short names and group assignments are given together
with each coefficient. The last column contains parameter
values of the proposed coefficient for all measures which
can be formulated using Φ.

A very extensive list of coefficients is given by
Choi et al. (2010). Other lists of coefficients can be
found, among others, in the works of Cheetham and Hazel
(1969), Hubalek (1982) as well as Pecina (2010).

2.3. Group RR. This group consists of the following
coefficients: Russel–Rao (RR), joint probability, gen-
eralized Nieddu SNR(0, 1, 1) and Consonni T3 (CT3).
They all generate an identical order of associated objects.
However, Consonni T3 generates an identical association
order if n is constant for all measurements.
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Table 1. Definitions of the analyzed coefficients. The original article or appropriate coefficient survey is given for reference. Group
assignment is presented (see coefficient transformations in the further part of this section). The superscript n represents group
assignment if all measurements have equal n = a + b + c+ d. The last column of the table shows the generalization using
the proposed coefficient Φ (see Section 3).

Association measure name Short Definition Group Φ generalization

Joint Probability JP p(xy) RR Φ(1, 0, 0)
Russel–Rao (Hubalek, 1982) RR a

a+b+c+d
RR Φ(1, 0, 0)

Consonni T3 (Consonni and Todeschini, 2012) CT3
log (1+a)

log (1+a+b+c+d)
RRn Φ(1, 0, 0)

Nieddu (Nieddu and Rizzi, 2007) SNR
a+αd

a+βd+γ(b+c)
: α = 0, β = 1, γ = 1 RR Φ(1, 0, 0)

Sokal–Michiner (Hubalek, 1982) SM a+d
a+b+c+d

S –
Hamann (Cheetham and Hazel, 1969) Ham a+d−b−c

a+b+c+d
S –

Rogers–Tanimoto (Cheetham and Hazel, 1969) RT a+d
a+2b+2c+d

S –
1st Sokal–Sneath (Hubalek, 1982) SS1

a+d

a+ 1
2
b+ 1

2
c+d

S –

3rd Sokal–Sneath (Hubalek, 1982) SS3
b+c
a+d

S –

Consonni T1 (Consonni and Todeschini, 2012) CT1
log(1+a+d)

log(1+a+b+c+d)
Sn –

Consonni T2 (Consonni and Todeschini, 2012) CT2
log(1+a+b+c+d)−log(1+b+c)

log(1+a+b+c+d)
Sn –

Gower Sθ (Gower and Legendre, 1986) Sθ
a+d

a+d+θ(b+c)
, θ > 0 S –

Nieddu (Nieddu and Rizzi, 2007) SNR
a+αd

a+βd+γ(b+c)
: α = β = 1, γ > 0 S –

Jaccard (Jaccard, 1912) J a
a+b+c

T Φ(1, 0,−1)

Dice (Dice, 1945) D 2a
2a+b+c

T Φ(1, 0,−1)

1st Kulczynski (Cheetham and Hazel, 1969) K1
a

b+c
T Φ(1, 0,−1)

2nd Sokal–Sneath (Hubalek, 1982) SS2
a

a+2b+2c
T Φ(1, 0,−1)

Anderberg (Duarte et al., 1999) And a
a+2b+2c

T Φ(1, 0,−1)

Bray–Curtis (Clarke et al., 2006) BC b+c
2a+b+c

T Φ(−1, 0, 1)

Normalized expectation NE 2f(xy)
f(x)+f(y)

T Φ(1, 0,−1)

Tversky (Tversky, 1977) ST
a

a+αb+βc
: α = β > 0 T Φ(1, 0,−1)

Gower Tθ (Gower and Legendre, 1986) Tθ
a

a+θ(b+c)
, θ > 0 T Φ(1, 0,−1)

Nieddu (Nieddu and Rizzi, 2007) SNR
a+αd

a+βd+γ(b+c)
: α = β = 0, γ > 0 T Φ(1, 0,−1)

Odds ratio OR ad
bc

Q –
Yulle’s Q (Cheetham and Hazel, 1969) Y Q ad−bc

ad+bc
Q –

Yulle’s ω (Hubalek, 1982) Y ω
√

ad−√
bc√

ad+
√

bc
Q –

Driver–Kroeber (Hubalek, 1982) DK a√
(a+b)(a+c)

DK Φ
(
1,− 1

2
, 0
)

Ochiai (Hubalek, 1982) Och a√
(a+b)(a+c)

DK Φ
(
1,− 1

2
, 0
)

Otsuka (Cheetham and Hazel, 1969) Ots a√
(a+b)(a+c)

DK Φ
(
1,− 1

2
, 0
)

Sorgenfrei (Hubalek, 1982) Sorg a2

(a+b)(a+c)
DK Φ (2,−1, 0)

Mutual dependency MD log p(xy)2

p(x)p(y)
DK Φ (2,−1, 0)

Forbes (Hubalek, 1982) F na
(a+b)(a+c)

F Φ(1,−1, 0)

Pairwise mutual information PMI log p(xy)
p(x)p(y)

F Φ(1,−1, 0)

Gilbert–Wells (Hubalek, 1982) GW log a− log n− log a+b
n

− log a+c
n

F Φ(1,−1, 0)

Confidence C max (p(y|x), p(x|y)) C –
Simpson (Cheetham and Hazel, 1969) Simp a

min(a+b,b+c)
C –

Phi (Cheetham and Hazel, 1969) Phi ad−bc√
(a+b)(a+c)(d+b)(d+c)

P –

Pearson (Cheetham and Hazel, 1969) Pear p(xy)−p(x)p(y)√
p(x)p(y)(1−p(x))(1−p(y))

P –

Log freq. biased MD (Pecina, 2010) fbMD log p(xy)2

p(x)p(y)
+ log p(xy) L Φ(3,−1, 0)

FSCP (Buczyński, 2004) FSCP a3

(a+b)(a+c)
L Φ(3,−1, 0)

2nd Kulczynski (Cheetham and Hazel, 1969) K2
1
2

(
a

a+b
+ a

a+c

)
– Φ(1,−1, 1)

Mutual expectation ME 2f(xy)
f(x)+f(y)

p(xy) – Φ(2, 0,−1)

Braun–Blanquet BB 1
2

a
max(a+b,a+c)

– –
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Statement 1. Let p(xy) be estimated using relative fre-
quency. Then the Russel–Rao coefficient is equal to the
joint probability p(xy). It is also equal to the coefficient
Nieddu SNR(0, 1, 1) (see Eqn. (4)).

Proof. It is trivial, as we have

RR =
a

a+ b+ c+ d

= SNR(0, 1, 1) =
a

n
= p(xy).

�

Statement 2. The coefficient Consonni T3 generates the
association ranking equal to the Russel–Rao coefficient.
The rankings are equal if n is constant for all observa-
tions. We show that, if

CT3(a1, b1, c1, d1) > CT3(a2, b2, c2, d2), (11)

then we have

RR(a1, b1, c1, d1) > RR(a2, b2, c2, d2). (12)

Proof. Let n = a1 + b1 + c1 + d1 = a2 + b2 + c2 + d2.
Multiply both the sides of Eqn. (11) by log(1 + n):

log(1 + a1) > log(1 + a2). (13)

Apply ex and subtract 1 from both the sides:

a1 > a2. (14)

Finally, divide both the sides by n:

a1
n

>
a2
n
. (15)

Thus we have

RR(a1, b1, c1, d1) > RR(a2, b2, c2, d2). (16)

The corresponding transformations can be shown
for CT3(a1, b1, c1, d1) = CT3(a2, b2, c2, d2) and
CT3(a1, b1, c1, d1) < CT3(a2, b2, c2, d2). �

2.4. Group S. This group consists of the following
coefficients: Sokal–Michiner (SM ), Hamann (Ham),
Rogers–Tanimoto (RT ), first Sokal–Sneath (SS1), third
Sokal–Sneath (SS3), Consonni T1 (CT1), Consonni T2
(CT2), generalized Gower Sθ and generalized Nieddu
SNR. They all generate an identical order of the
associated objects, except for the third Sokal–Sneath,
which produces a reversed association order. However,
Consonni coefficients generate an identical association
order if and only if n is constant for all measurements.

The original group S (Batagelj and Bren, 1995)
contained fewer coefficients. The following coefficients
are added after a literature study: first Sokal–Sneath (see
Hubalek, 1982), Consonni T1 and Consonni T2.

0

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 1.00

f(SM)

SM

Sokal–Michiner

Hamann
Rogers–Tanimoto

First Sokal–Sneath

Third Sokal–Sneath

Fig. 1. Relations between Sokal–Michiner and other coeffi-
cients of group S.

Statement 3. The Hamann coefficient is an affine trans-
formation of the Sokal–Michiner coefficient. The orders of
the associated objects in both the coefficients are equal.

Proof. We have

2(SM)− 1 = 2
a+ d

a+ b+ c+ d
− 1

=
2a+ 2d− n

a+ b+ c+ d

=
a+ d− b− c

a+ b+ c+ d
= Ham.

(17)

�
Due to an affine transformation between the Hamann
and Sokal–Michiner coefficients, a simultaneous usage
of both the coefficients as machine learning features is
questionable.

Statement 4. The Rogers–Tanimoto coefficient is a
monotone function of the Sokal–Michiner coefficient. The
orders of the associated objects in both the coefficients are
equal.

Proof. We have

2

2− SM
− 1 =

2

2− a+d
a+b+c+d

− 1

=
2

a+2b+2c+d
a+b+c+d

− 1

=
a+ d

a+ 2b+ 2c+ d
= RT.

(18)

�

Statement 5. The first Sokal–Sneath coefficient is a
monotone function of the Sokal–Michiner coefficient. The
orders of the associated objects in both the coefficients are
equal.
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Proof. We have

−2

1 + SM
+ 2 =

−2

1 + a+d
a+b+c+d

+ 2

=
−2

2a+b+c+2d
a+b+c+d

+ 2

=
a+ d

a+ 1
2 b+

1
2c+ d

= SS1.

(19)

�

Statement 6. The third Sokal–Sneath coefficient is an
anti-monotone function of the Sokal–Michiner coefficient.
The orders of the associated objects in both the coeffi-
cients are opposite.

Proof. We have

1

SM
− 1 =

1
a+d

a+b+c+d

− 1

=
a+ b+ c+ d

a+ d
− a+ d

a+ d

=
b+ c

a+ d
= SS3.

(20)

�
Due to the anti-monotone relation between the third

Sokal–Sneath and all the other coefficients of this group,
simultaneous usage of these coefficients as machine
learning features is questionable.

Statement 7. The coefficient Consonni T1 generates the
association ranking equal to the Sokal–Michiner coeffi-
cient. The rankings are equal if n is constant for all ob-
servations. We show that, if

CT1(a1, b1, c1, d1) > CT1(a2, b2, c2, d2), (21)

then we have

SM(a1, b1, c1, d1) > SM(a2, b2, c2, d2). (22)

Proof. Let n = a1 + b1 + c1 + d1 = a2 + b2 + c2 + d2.
Multiply both the sides of Eqn. (21) by log(1 + n):

log(1 + a1 + d1) > log(1 + a2 + d2). (23)

Apply ex and subtract 1 from the both sides:

a1 + d1 > a2 + d2. (24)

Finally, divide both the sides by n:

a1 + d1
n

>
a2 + d2

n
. (25)

Thus we have

SM(a1, b1, c1, d1) > SM(a2, b2, c2, d2). (26)

The corresponding transformations can be shown
for CT1(a1, b1, c1, d1) = CT1(a2, b2, c2, d2) and
CT1(a1, b1, c1, d1) < CT1(a2, b2, c2, d2). �

Statement 8. The coefficient Consonni T2 generates the
association ranking equal to the Sokal–Michiner coeffi-
cient. The rankings are equal if n is constant for all ob-
servations. We show that, if

CT2(a1, b1, c1, d1) > CT2(a2, b2, c2, d2), (27)

then we have

SM(a1, b1, c1, d1) > SM(a2, b2, c2, d2). (28)

Proof. Let n = a1 + b1 + c1 + d1 = a2 + b2 + c2 + d2.
Multiply both the sides of Eqn. (27) by − log(1 + n) and
add log(1 + n):

log(1 + b1 + c1) < log(1 + b2 + c2). (29)

Given a+ b+ c+ d = n, we have

log(1 + n− a1 − d1) < log(1 + n− a2 − d2). (30)

Apply ex and subtract 1 + n from both the sides:

− a1 − d1 < −a2 − d2. (31)

Finally, multiply the result by −n:

a1 + d1
n

>
a2 + d2

n
. (32)

Thus we have

SM(a1, b1, c1, d1) > SM(a2, b2, c2, d2). (33)

The corresponding transformations can be shown
for CT2(a1, b1, c1, d1) = CT2(a2, b2, c2, d2) and
CT2(a1, b1, c1, d1) < CT2(a2, b2, c2, d2). �

2.5. Group T. This group consists of the following
coefficients: Jaccard (J), Dice (D), normalized expecta-
tion (NE), Anderberg (And), Bray–Curtis (BC), First
Kulczynski (K1), second Sokal–Sneath (SS2), general-
ized Tversky ST , generalized Gower Tθ and generalized
Nieddu SNR. They all generate identical rankings of
associations, except for the Bray–Curtis coefficient. The
presented group is extended compared with the original
proposal (Batagelj and Bren, 1995). The first addition
is the normalized expectation, equivalent to the Dice
coefficient. The second one is the Anderberg coefficient,
equivalent to the second Sokal–Sneath. The third addition
is the Bray–Curtis coefficient, which is closely related to
the Dice coefficient.

Statement 9. Dice (normalized expectation) is a mono-
tone function of the Jaccard coefficient. The orders of the
associated objects in both the coefficients are equal. The
Bray–Curtis is an affine transformation of the Dice co-
efficient. Dice and Bray–Curtis have opposite orders of
the associated object, and thus it is also an anti-monotone
function of the Jaccard coefficient.
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Fig. 2. Relations between Jaccard and other coefficients of
group T.

Proof. We have

2− 2

J + 1
= 2− 2

2a+b+c
a+b+c

= 2− 2a+ 2b+ 2c

2a+ b+ c

=
2a

2a+ b+ c

=
2f(xy)

f(x) + f(y)
= D = NE.

(34)

Then

2

J + 1
− 1 =

2
2a+b+c
a+b+c

− 1 =
b+ c

2a+ b+ c
= BC. (35)

�

Statement 10. The first Kulczynski coefficient is a mono-
tone function of the Jaccard coefficient. The orders of the
associated objects in both the coefficients are equal.

Proof. We have

1

1− J
− 1 =

1

1− a
a+b+c

− 1

=
1

b+c
a+b+c

− 1

=
a+ b+ c

b+ c
− b+ c

b+ c
=

a

b+ c
= K1.

(36)

�

Statement 11. The second Sokal–Sneath (Anderberg)
coefficient is a monotone function of the Jaccard coeffi-
cient. The orders of the associated objects in both the
coefficients are equal.

Proof. We have

2

2− J
− 1 =

2

2− a
a+b+c

− 1

=
2

a+2b+2c
a+b+c

− 1

=
2a+ 2b+ 2c

a+ 2b+ 2c
− 1

=
a

a+ 2b+ 2c
= SS2.

(37)

�

2.6. Group Q. This group consists of the following
coefficients: odds ratio (OR), Yulle’s ω (Y ω), Yulle’s
Q (Y Q). They all generate identical orders of the
associated objects. This group remains identical, as shown
by Batagelj and Bren (1995).
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Fig. 3. Relations between the odds ratio and other coefficients
of group Q.

Statement 12. Yulle’s Q coefficient is a monotone func-
tion of the odds ratio coefficient. The orders of the associ-
ated objects in both the coefficients are equal.

Proof. We have

1− 2

OR + 1
= 1− 2

ad
bc + 1

= 1− 2bc

ad+ bc

=
ad− bc

ad+ bc
= Y Q.

(38)

�

Statement 13. Yulle’s ω coefficient is a monotone func-
tion of the odds ratio coefficient. The orders of the associ-
ated objects in both the coefficients are equal.
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Proof. We have

1− 2√
OR+ 1

= 1− 2
√
ad√
bc

+ 1

= 1− 2
√
bc√

ad+
√
bc

=

√
ad−√

bc√
ad+

√
bc

= Y ω.

(39)

�

2.7. Group DK. This group consists of the following
coefficients: Driver–Kroeber (DK), mutual dependency
(MD) and Sorgenfrei (Sorg). The Driver–Kroeber
coefficient is also known as the Ochiai coefficient and the
Otsuka coefficient. They all generate identical rankings of
associations.
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Fig. 4. Relations between Driver–Kroeber and other coeffi-
cients of group DK.

Statement 14. Let p(xy), p(x) and p(y) be estimated
using relative frequency. Then the Driver–Kroeber coeffi-
cient is a monotone function of mutual dependency. The
orders of the associated objects in both the coefficients are
equal.

Proof. We have

log
(
DK2

)
= log

⎡

⎣

(
a

√
(a+ b)(a+ c)

)2
⎤

⎦

= log

⎡

⎢
⎣

⎛

⎝
1
na√

1
n2 (a+ b)(a+ c)

⎞

⎠

2
⎤

⎥
⎦

= log
p(xy)2

p(x)p(y)
= MD.

(40)

�

Statement 15. The Sorgenfrei coefficient is a monotone
function of the Driver–Kroeber coefficient. Association
rankings of both the coefficients are equal.

Proof. It is trivial, as we have

DK2 =
a2

(a+ b)(a+ c)
= Sorg.

�

2.8. Group F. This group consists of the following
coefficients: pairwise mutual information (PMI), Forbes
(F ) and Gilbert–Wells (GW ). The group contains
coefficients defined as a logarithm transformation of the
Forbes coefficient. They all generate identical rankings of
associations.
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Fig. 5. Relations between Forbes and other association coeffi-
cients of group F.

Statement 16. (Hubalek, 1982) Let p(x), p(y) and p(xy)
be estimated using relative frequency. Then the pairwise
mutual information coefficient is equal to the Gilbert–
Wells coefficient.

Proof. We have

GW = log a− logn− log
a+ b

n
− log

a+ c

n

= log
a
n

(a+b)(a+c)
n2

= log
p(xy)

p(x)p(y)
= PMI.

(41)

�

Statement 17. Let p(x), p(y) and p(xy) be estimated
using relative frequency. Then the pairwise mutual infor-
mation is a monotone function of the Forbes coefficient.
Association rankings of both the coefficients are equal.

Proof. We have

logF = log
na

(a+ b)(a+ c)

= log
a
n

a+b
n

a+c
n

= log
p(xy)

p(x)p(y)
= PMI.

(42)

�
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2.9. Other groups.

Statement 18. Let p(xy), p(x) and p(y) be estimated
using relative frequency. Then the Simpson (Sim) coeffi-
cient is equal to the confidence (C) coefficient.

Proof. We have

Sim =
a

min(a+ b, b+ c)

=
p(xy)

min(p(x), p(y))

= max (p(y|x), p(x|y)) = C.

(43)

�

Statement 19. (Cheetham and Hazel, 1969) Let p(x),
p(y) and p(xy) be estimated using relative frequency.
Then the Pearson (Pear) coefficient is equal to the Phi
(Phi) coefficient.

Proof. We have

Pear =
p(xy)− p(x)p(y)

√
p(x)p(y)(1 − p(x))(1 − p(y))

=
an
n2 − (a+b)(a+c)

n2√
(a+b)(a+c)(n−a−b)(n−a−c)

n4

=
a2 + ab+ ac+ ad− a2 − ab− ac− bc

√
(a+ b)(a+ c)(d+ b)(d+ c)

=
ad− bc

√
(a+ b)(a+ c)(d+ b)(d+ c)

= Phi.

(44)

�

2.10. Linear combinations. The last group of
coefficients includes those that may be represented
as linear combinations of others. Such knowledge
is important when designing recognition methods.
Some recognition methods (e.g., Fisher’s linear
discriminant, multivariate naive Bayes) are sensitive
to linear combinations of features due to a problem
with the zero generalized variance and inversion of the
covariance matrix. Others (e.g., the simple perceptron,
neural networks) are able to easily generate linear feature
combinations. In such cases, linearly combined features
may be simply discarded.

Statement 20. Let p(xy) and p(xy) be estimated using
relative frequency. Then the Sokal–Michiner coefficient is
equal to the sum of joint probabilities.

Proof. It is trivial, as we have

SM =
a+ d

a+ b+ c+ d

=
a

n
+

d

n
= p(xy) + p(xy).

(45)

�

Interesting questions may be raised here. Should
group S be discarded and elementary probabilities p(xy)
and p(xy) be used instead? In which machine learning
methods is such an approach reasonable?

Statement 21. Let p(x), p(y) and p(xy) be estimated
using relative frequency. Then the second Kulczynski co-
efficient is an average of conditional probabilities.

Proof. It is trivial, as we have

K2 =
1

2

(
a

a+ b
+

a

a+ c

)

=
1

2
(p(y|x) + p(x|y)) .

(46)

�

Statement 22. The second Kulczynski coefficient is a lin-
ear combination of the Braun–Blanquet (BB) and Simp-
son (Sim) coefficients.

Proof. We have

1

2
(BB + Sim)

=
1
2a

max(a+ b, a+ c)
+

1
2a

min(a+ b, a+ c)

=
a[min(a+ b, a+ c) + max(a+ b, a+ c)]

2max(a+ b, a+ c)min(a+ b, a+ c)

=
1

2

(
a

a+ b
+

a

a+ c

)
= K2.

(47)

�

3. Generalized Φ coefficient

A generalized binary association coefficient named Φ
is proposed. It can be used instead of several
frequently employed ones. The main application
area of the coefficient are machine learning methods,
especially feature selection and feature generation ones.
The proposed coefficient is defined using elementary
probability values of events x and y. It combines the joint
probability p(xy), the marginal probabilities p(x) and
p(y) and the mean of the marginal probabilities 1

2 (p(x) +
p(y)).

The proposed generalized Φ coefficient is
conceptually different from generalizations proposed
by Tversky (1977), Gower and Legendre (1986) or
Nieddu and Rizzi (2007). They focused on generalizing
the definition based on a, b, c and d elementary object
counts. The proposed coefficient is based on composite,
probabilistic components. The Φ coefficient is defined as

Φ(α, β, γ)

= p(xy)αp(x)βp(y)β
(
p(x) + p(y)

2

)γ

, (48)
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where

α, β, γ ∈ R, Φ(α, β, γ) ≥ 0. (49)

The proposed coefficient allows generating both
normal and reversed orders of associations. It has the
following property:

Φ(α, β, γ) =
1

Φ(−α,−β,−γ)
. (50)

Given that p(xy), p(x) and p(y) are estimated using
relative frequency, Φ(α, β, γ) is equal to

Φ(α, β, γ)

=
(a
n

)α(a+ b

n

)β (
a+ c

n

)β (a+ 1
2 (b + c)

n

)γ

.

(51)

3.1. Motivation and interpretation. Our goal is
to define a coefficient that covers a large number of
groups identified in Table 1. On the other hand, the
coefficient should be as simple as possible and have the
smallest possible number of parameters. After manual
analysis of a number of available coefficients, three
prominent components of typical association measures
have been identified, namely, p(xy)α, p(x)βp(y)β and
1
2 (p(x) + p(y))

γ . The first one is typically used as
a numerator, the second and third ones are typical
denominators. Yet another expected property is the
ability to generate both normal and reversed rankings of
associations (see Eqn. (50)).

An interpretation of the generalized coefficient Φ
comes together with specified parameter values. A
parametrized Φ coefficient models a specific coefficient,
and thus it may be interpreted as this coefficient. However,
given the defined parameters, interpretation may still vary.
For example, the Jaccard and Dice coefficients belong
to the same group T (see Table 1) and are generated by
the same set of parameters, i.e., Φ(1, 0,−1). Despite
this fact, the Jaccard coefficient has the probability of
the sum of events in the denominator, while the Dice
coefficient has the sum of marginal probabilities. As a
consequence, interpretations of both the coefficients is
different. The key observation is that both the coefficients
are monotone transformations of each other. Regardless
of their interpretation, they still provide the same order of
elements.

An interpretation of the coefficient Φ is also related
to that of its component probabilities. Their interpretation
comes from the basic components of association measures
(see the definition in Section 1). A common approach
is to estimate probabilities using relative frequency.
Nominators of Φ components cover three of four basic
values of the contingency table, i.e., a, b and c. The

range of the d value is provided automatically because all
probabilities have n = a+ b+ c+ d as denominators.

The component p(xy)α represents the basic count
of positively associated objects. It holds the elementary
information we are usually looking for, and thus is the
main component of most association measures. For a vast
majority of association measures α �= 0, including all
shown in Table 1. The higher the value of α > 0, the
larger prominence of objects with frequently associated
features.

The component

p(x)βp(y)β =

(
a2 + ab+ ac+ bc

n2

)β

holds symmetric information about objects sharing at
least one feature. Objects sharing one and two features
have similar influence on this component. If it is used
as a normalization factor, we usually have 2β = −α.
Association measures with asymmetric use of marginal
probabilities have also been discussed in the literature,
e.g., semi-conditional information (Washtell and Markert,
2009). Generic modeling of these measures is a separate
topic and is not addressed here.

The last component is (12 (p(x) + p(y)))γ and it
models the mean of the marginal probabilities. If it is
used for normalization, we usually have γ = −α. A
more generic relation can be defined for this purpose,
i.e., α = − 1

2β − γ. It is chosen as a compromise
between modeling the sum of marginal probabilities and
the probability of sum of events. Probability of sum of
events gives fewer possibilities in association measure
modeling. Two interesting cases are the Jaccard and
second Kulczynski coefficients. The former requires the
probability of a sum of events, but it also belongs to
group T, which can be represented by the sum of marginal
probabilities. The latter combines both the sum and the
product of marginal probabilities (see Eqn. (64) in the
next section).

3.2. Formulation of classic coefficients. Let us now
define a set of association measure coefficients using
the proposed one. The joint probability (group RR) is
formulated as

Φ(1, 0, 0) = p(xy). (52)

In consequence (see Statement 1), equal values are also
generated for the Russel–Rao coefficient:

Φ(1, 0, 0) =
a

a+ b+ c+ d
= RR. (53)

The Consonni T3 coefficient ranking is generated by
Φ(1, 0, 0) given that n is constant for all measured
objects. The proof is identical to that for the Russel–Rao
coefficient and is given in Statement 2. The Nieddu
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coefficient with α = 0, β = 1 and γ = 1 is also expressed
by the same formula:

Φ(1, 0, 0) =
a

a+ b + c+ d
= SNR(0, 1, 1). (54)

Pointwise mutual information (group F) is
formulated as a monotone function of Φ. As a result,
the Forbes and Gilbert–Wells coefficients may also be
formulated. When collocation rankings are of interest, the
logarithm in pairwise mutual information can be omitted:

logΦ(1,−1, 0) = log
p(xy)

p(x)p(y)
= PMI. (55)

Mutual dependency (group DK) is formulated as

logΦ(2,−1, 0) = log
p(xy)2

p(x)p(y)
= MD. (56)

The Sorgenfrei coefficient does not require a logarithm
and is defined as

Φ(2,−1, 0) =
p(xy)2

p(x)p(y)

=
a2

(a+ b)(a+ c)
= Sorg.

(57)

In consequence (see Statement 14), equal ranking is also
generated for the Driver–Kroeber, Ochiai and Otsuka
coefficients:

Φ

(
1,−1

2
, 0

)
=

p(xy)
√
p(x)p(y)

=
a

√
(a+ b)(a+ c)

= DK.
(58)

Log frequency biased mutual dependency (group L)
is formulated as

logΦ(3,−1, 0) = log
p(xy)3

p(x)p(y)
= fbMD. (59)

Since n is constant for all observed objects, ranking
equal to the frequency symmetric conditional
probability (Buczyński, 2004) is generated as

1

n
Φ(3,−1, 0) =

1

n

p(xy)3

p(x)p(y)

=
f(xy)3

f(x)f(y)
= FSCP.

(60)

The Dice coefficient is formulated using the following
equation:

Φ(1, 0,−1) =
2p(xy)

p(x) + p(y)
=

2a

2a+ b+ c
= D. (61)

In consequence, all other coefficients of group T
(Jaccard, normalized expectation, first Kulczynski, second

Sokal–Sneath, Anderberg) are also generalized by
Φ(1, 0,−1). The Bray–Curtis coefficient also belongs to
group T. It is an anti-monotone transformation of the
Dice coefficient. Taking into account the property given
by Eqn. (50), the association order of the Bray–Curtis
coefficient is defined as

1− 2

Φ(−1, 0, 1)
= 1− 2

p(x)+p(y)
2p(xy)

= 1− 2a

2(a+ b+ c)

=
b+ c

a+ b+ c
= BC.

(62)

Mutual expectation is formulated as

Φ(2, 0,−1) =
2p(xy)2

p(x) + p(y)

=
2f(xy)

f(x) + f(y)
p(xy) = ME.

(63)

The association order of the second Kulczynski
coefficient is defined as

Φ(1,−1, 1)

=
p(xy)(p(x) + p(y))

2p(x)p(y)

=
1
n2 a(a+ b+ a+ c)

2
n2 (a+ b)(a+ c)

=
a(a+ b+ a+ c)

2(a+ b)(a+ c)

=
a(a+ c)

2(a+ b)(a+ c)
+

a(a+ b)

2(a+ b)(a+ c)

=
1

2

(
a

a+ b
+

a

a+ c

)
= K2.

(64)

3.3. Formulation of generalized coefficients. The
proposed coefficient Φ also generalizes coefficient
rankings of other generalized coefficients. Relations
between coefficients are visually shown in Fig. 6.

Statement 23. The symmetric Tversky (α = β) and
Gover Tθ coefficients are monotone functions of the co-
efficient Φ. The Nieddu coefficient with α = β = 0 is
also generalized by the coefficient Φ. They all generate
identical rankings of associations.
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Proof. Let θ �= 1/2. Then

1

2θ − 1

[
2θ

2θ − (2θ − 1)Φ(1, 0,−1)
− 1

]

=
1

2θ − 1

[
2θ

2θ − (2θ − 1) 2a
2a+b+c

− 1

]

=
1

2θ − 1

[
2θ

2a+2θb+2θc
2a+b+c

− 1

]

=
1

2θ − 1

[
2θa+ θb+ θc

a+ θb+ θc
− 1

]

=
1

2θ − 1

(2θ − 1)a

a+ θb+ θc
=

a

a+ θb + θc
= Tθ.

(65)

Let θ = 1/2. Then

Φ(1, 0,−1) =
a

a+ 1
2b+

1
2c

= T 1
2
. (66)

�
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Fig. 6. Relations between Gover Tθ and the proposed coeffi-
cient Φ(1, 0,−1).

To sum up, using the proposed coefficient Φ, we
are able to generate rankings equal to at least 20 of
widely known and used collocation association measures.
Association rankings generated by the coefficients of
groups RR, T, DK, F and L are covered. Another
advantage of Φ is the ability to generate both normal and
reversed orders of association, due to the property given
by Eqn. (50). A summary of coefficients generated by the
generalized coefficient Φ is given in Table 1.

4. Conclusion

The paper presented a detailed analysis of a set of
binary association coefficients. The analysis focused
on the association order equivalence between these
coefficients. A generalized coefficient was proposed, able
to generate ranking equivalent to at least 20 of association
coefficients. Additionally, by negating parameters of the
coefficient, reversed rankings of all association measures
can be generated.

The work has its background in machine learning,
pattern recognition and feature selection. Usage
of presented association coefficients is common in
many machine learning applications. Well designed
machine learning methods usually work better on
short, non-repeating sets of features. The main
reasons and typical problems include the curse of
dimensionality, the zero generalized variance or a
near-singular covariance matrix caused by numerical
representation errors. Introduction of too many
features generates unnecessary noise in the data and
makes the approach unclear. Additionally, some
presented coefficients are anti-monotone transformations
of others. Simultaneous usage of a coefficient and
its anti-monotone transformation as features may be
considered controversial from a machine learning point of
view.

The main goal of this paper was to overview and
simplify the usage of binary association measures. New
association coefficients constantly appear. Some of them
have interesting properties and are worth of interest. We
encourage other researchers to seek new relations as these
coefficients are proposed.
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