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Consider games where players wish to minimize the cost to reach some state. A subgame-perfect Nash equilibrium can
be regarded as a collection of optimal paths on such games. Similarly, the well-known state-labeling algorithm used in
model checking can be viewed as computing optimal paths on a Kripke structure, where each path has a minimum number
of transitions. We exploit these similarities in a common generalization of extensive games and Kripke structures that we
name “graph games”. By extending the Bellman–Ford algorithm for computing shortest paths, we obtain a model-checking
algorithm for graph games with respect to formulas in an appropriate logic. Hence, when given a certain formula, our
model-checking algorithm computes the subgame-perfect Nash equilibrium (as opposed to simply determining whether or
not a given collection of paths is a Nash equilibrium). Next, we develop a symbolic version of our model checker allowing
us to handle larger graph games. We illustrate our formalism on the critical-path method as well as games with perfect
information. Finally, we report on the execution time of benchmarks of an implementation of our algorithms.
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1. Introduction

We explore connections between (i) Nash equilibrium
computation and (ii) reachability verification through
model checking. In a tree representation of a game,
a subgame-perfect Nash equilibrium can be regarded
as a collection of optimal (i.e., having a minimum or
maximum weight) paths, going from every internal node
to some leaf. Similarly, in model checking, the behavior
of non-deterministic systems is sometimes represented as
a tree structure. When verifying a reachability property
for these systems, a usual approach is to go backwards,
from the known destination to every possible source in
the branching-time structure. By going backwards, this
computation always visits the closest system states first.
In this manner, such a computation can also be regarded
as the construction of optimal paths going from every
system state to the appointed destination. We propose
first using the benefits of symbolic model checking
algorithms in Nash equilibria computation, and secondly
extending the model checking applicability to game-like
situations. More specifically, we approach these goals
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by (i) presenting a symbolic Bellman–Ford algorithm for
games with many players and turns, and (ii) extending
model checking procedures for verifying such games.

We can graphically represent finite, perfect
information, non-cooperative games using trees,
i.e., extensive form games. In this paper we work
with a game tree direct generalization: graph games. The
two main differences are that graph games (i) may contain
cycles and (ii) have weights (or utility values) associated
with every transition. We also define path optimality in
these graph games as a generalization of subgame-perfect
Nash equilibria. Following this definition, we show
how to use an extended Bellman–Ford algorithm for
computing such optimal paths, and thus computing
subgame-perfect Nash equilibria.

It is important to mention that the method we present
here may be adapted to game trees. By generalizing
to graph games we, nonetheless, add little to none
mathematical expense. On the contrary, we ease the
connection with model checking and the applicability of
the Bellman–Ford shortest path algorithm.

For model checking, we can represent reactive and
non-deterministic systems as finite automata. We can
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unfold the behavior of such automata as infinite trees.
For describing some properties of these trees we can
then use computation tree logic (CTL). A commonly
used algorithm for CTL verification is the state-labeling
one. As we mentioned above, when verifying reachability
properties with this algorithm, we actually compute an
optimal path from every state of the system to the selected
destination states. As CTL models’ transitions are not
weighted, such optimal paths consider only the number of
transitions. We propose using game-graph-based models
in CTL model checking. We then develop a CTL
extension for describing not only reachability properties,
but also properties corresponding to the costs/utilities of
the game’s players.

One of the greatest strengths of model checking is
the possibility of verifying large systems. This strength is
mainly due to the use of symbolic algorithms. Symbolic
algorithms use efficient data structures for representing
and manipulating data, such as binary decision diagrams
(BDDs). In particular, we use a generalization of BDDs
known as multi-terminal BDDs (MTBDDs (Fujita et al.,
1997)).

We are interested in MTBDD matrix representation
and multiplication. The reason is that the Bellman–Ford
algorithm can be formulated as a succession of matrix
multiplications. In this paper, we extend the symbolic
version of the Bellman–Ford algorithm developed by
Fujita et al. (1997). Their algorithm computes matrix
multiplication and thus shortest paths for single weighted
graphs (see also Bahar et al., 1997). Our extension
computes shortest paths for graph games, that is, weighted
graphs having multiple cost functions and turns.

In the following sections, we will present a
symbolic version of the Bellman–Ford algorithm for
computing shortest paths in graph games. We will
use this algorithm for extending the model checking
state-labeling algorithm, and thus will verify CTL
models based on graph games. We also present
some experimental results comparing symbolic versus
non-symbolic extended Bellman–Ford implementations.

Our results show that the advantages of using
(MT)BDDs are less pronounced than in CTL model
checking, for example. In a sense this is to be expected,
as the presence of agents involves additional computation
steps, absent in a state-labeling model checker for CTL.
The use of MTBDDs, however, requires less memory
than a nonsymbolic method and allows handling larger
examples.

1.1. Related work. Our graph games are similar to the
dynamic networks of Lozovanu and Pickl (2009). In their
games each player independently selects a vector control
parameter. Each state of the network is then determined
by the selection of all players. Lozovanu and Pickl (2009)
define Nash-equilibrium based solutions as well as other

game theoretic notions. Then the authors show a Dijkstra
algorithm variant for finding such solutions.

In the scope of game and graph symbolic algorithms,
we can mention the works by Bolus (2011) as
well as Berghammer and Bolus (2012), who employ
quasi-ordered BDDs for computing winning coalitions
and solving other game theoretic problems for simple
games—cooperative games having only two possible
cases of coalitions. Our symbolic shortest path algorithm
is an extension of the symbolic Bellman–Ford introduced
by Fujita et al. (1997) and later optimized by Bahar et al.
(1997). A different approach of symbolic shortest path
computation is presented by Sawitzki (2004), who uses
ordinary BDDs, as opposed to multi-valued, for codifying
weighted graphs, and presents symbolic versions of
the Dijkstra and Bellman–Ford algorithms. Both the
Nash equilibrium and shortest path computation are
particular cases of multi-criteria optimization. Although
not symbolic, we refer the reader to Garroppo et al. (2010)
for a summary of various multi-criteria path optimization
approaches.

On the model checking side, Dasgupta et al..
(2001) introduce min-max CTL. They use their min-max
CTL language for verifying and querying quantitative
properties of timed systems. Compared with our
approach, Dasgupta et al.. (2001) neither use a shortest
path nor a symbolic algorithm for min-max CTL
verification and querying. Another approach of symbolic
model checking for multi-agent systems is that of
Raimondi and Lomuscio (2007), who introduce a logical
framework for describing temporal, epistemic, and
deontic properties. The authors also provide BDD-based
algorithms for automated verification.

Finally, assuming a more theoretical approach, there
exist several modal logic characterizations of game
solutions, such as the Nash equilibrium. Compared with
this paper, those works only characterize Nash equilibria,
whereas our method computes them. We find worth
mentioning the seminal work by Bonanno (2001), who
introduces the use of temporal logic for analyzing the
logical structure of perfect information games. Another
representative work in this line is that of Harrenstein
et al. (2003), who also present a logical characterization
of perfect information games. By using dynamic logic
instead of temporal logic, the work of Harrenstein et al.
(2003) adds a more operational flavor to Nash equilibria
characterization.

2. Games and graph games

In this section, we first observe a correspondence between
shortest paths in extensive games and subgame-perfect
Nash equilibria. Next, we define both the graph game and
the notion of a shortest path.
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2.1. Motivation. Games, in a nutshell, are formal
descriptions of rational agents’ interactions. We may
formalize such interactions either as collections of
possible actions available to each player (strategic form),
or as sets of sequences of events (extensive form). The
nature of the game (e.g., of conflict or agreement) is
sometimes described numerically, assigning utility units
to each agent at every game outcome. In this paper,
we deal only with finite, non-cooperative, complete and
perfect information games in extensive form. We thus
refer the reader to Osborne and Rubinstein (1994) for a
more thorough introduction to game theory.

A key feature of the game-theoretic approach to
decision making is that all players are assumed rational.
Rationality dictates a player to always choose the actions
maximizing the player’s own utility. Consequently,
a game solution is a method for choosing strategies
maximizing utility for all players. A well-known solution
concept is that of a Nash equilibrium. A strategy profile
is a Nash equilibrium if every player cannot increase its
utility by unilaterally deviating from the profile.

Consider the game depicted in Fig. 1. The game
has two players, 1 and 2. The player’s turns are depicted
above the non-final nodes and the utility gains below the
leaves. Player 1 moves first, then player 2 moves and the
game ends. Suppose that 1 moves right and then 2 also
moves right; then the players will gain 4 and 2 utility
units, respectively. From the root node, this outcome
is determined if all players follow the strategy profile
emphasized with thick arrows in the figure.

For claiming this solution to be subgame-perfect, we
require that all decisions taken at every state be optimal.
Thus, player 2 must choose right at state s1.

Suppose we add a fictitious final state send, such that
every leaf z in Fig. 1 has a unique and costless/gainless
output arc arriving at send. The solution we described
above defines a unique path going from every state to
send. Moreover, this unique path is optimal, as the best
choice is taken at every state (assuming that all agents
are rational). Also observe that, in the case of a single
player, this problem reduces to finding the longest path
from every state to the destination send, and thus can be
solved using some shortest-path algorithm.

In the rest of this section, we will generalize these
game tree notions to graphs. Later, we will show how it
is possible to extend a shortest-path algorithm for finding
shortest and longest paths in these more general games,
and thus finding their subgame-perfect Nash equilibria.

2.2. Graph games. In this section, we extend the
notion of game trees to directed graphs. Basically, we
allow the game to take the form of a directed graph and
associate cost or utility units with every edge of such a
graph.

s0

s1 s2

z1 z2 z3 z4

send

1

2 2

3, 2 2, 5 5, 0 4, 2

Fig. 1. Two-player game and its subgame-perfect Nash equilib-
rium.

We define a graph game as the quintuple G =
(V,E,N, P,C) such that

• V is a finite set of nodes,

• E ⊆ V 2 is the set of edges,

• N = {1, . . . , n} is a set of players,

• P : V → N is a player’s turn function, and

• C : E → (R+)
n.

Given two distinct nodes v and v′ of a graph
game G, we define a path of length k from v to v′

as a sequence of distinct nodes v1v2 · · · vk, such that
v = v1, v′ = vk, and (vi, vi+1) ∈ E for 1 ≤
i < k. We also define the cumulative cost of such
a path as the pairwise summation Cost(v1 · · · vk) =
∑k−1

1 C(vi, vi+1). If Cost(v1 · · · vk) = x and p ∈ N ,
we define Costp(v1 · · · vk) = xp, where xp is the p-th
component of x.

Note that standard game trees are a special case of
graph games. For these trees, a subgame-perfect Nash
equilibrium is a function defining a path from every node
of the tree to some leaf. As we informally suggested in the
previous subsection, in our graph games, Nash equilibria
correspond to a generalization of the notion of shortest
path in the multiple player case.

As graph games may have no leaves, for defining this
generalization of the notion of a shortest path we must
first choose a single destination node. In this manner,
our solution must find a shortest path from every node
of the graph to the selected destination. Secondly, in
this generalization, we must take into account the player’s
turns. At every node of the graph, each player optimizes
its utility, and thus our notion of shortest path uses the
player’s turns as constraints over the cumulative costs.

A path v1 · · · vk of a graph G is a shortest path from
v1 to vk if for all i ∈ {1, . . . , k − 1} and for all u
such that (vi, u) ∈ E, every path uu′ · · · vk (i.e., any
path from u to vk) satisfies CostP (vi)(vivi+1 · · · vk) ≤
CostP (vi)(viuu

′ · · · vk).
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3. Bellman–Ford algorithm with agents and
turns

3.1. Bellman–Ford algorithm. Several efficient
algorithms exist for finding shortest paths in weighted
graphs. See, for example, the work of Cormen et al.
(2009) for a detailed explanation of some of these
algorithms. In this section we extend the Bellman–Ford
algorithm for finding shortest paths in our graph games.

Usually the Bellman–Ford algorithm is presented as
solving the problem of computing shortest paths from
a given source to all vertices of a graph. In our case,
however, we wish the shortest paths from all vertices to
a given destination. The Bellman–Ford algorithm also
solves this other problem by inverting the edges.

The Bellman–Ford algorithm (shown in Algorithm 1)
finds the shortest path from every node to a single
destination in O(|V | · |E|) time. Briefly, the algorithm
consists in maintaining, for every vertex v, (i) an
over-approximation dist(v) to the cumulative cost of the
shortest path from v to a given destination d and (ii) an
approximate best successor succ(v) of v in such a shortest
path. These over-approximations are repeatedly updated
until converging to the optimal values. The updates are
made by refining the over-approximation of the first node
of each edge in the graph. RELAX refines a single edge,
and TRIANGLE refines all edges.

Algorithm 1. Bellman–Ford algorithm.

1: BELLMAN–FORD(G, d):
2: for all v ∈ V do
3: succ(v)← ⊥
4: dist(v)←∞
5: end for
6: dist(d)← 0

7: for x← 1 to |V | − 1 do
8: TRIANGLE()
9: end for

10: TRIANGLE():
11: for all (v, v′) ∈ E do
12: RELAX(v, v′)
13: end for

14: RELAX(v, v′):
15: if dist(v) > C(v, v′) + dist(v′) then
16: succ(v)← v′

17: dist(v)← C(v, v′) + dist(v′)
18: end if

Before presenting the extended version of the
algorithm, we will recall two relaxation properties crucial
to the Bellman–Ford algorithm’s correctness:

R1 For every edge (v, v′), RELAX(v, v′) cannot increase
the over-approximation dist(v).

R2 If v1 · · · vk is a shortest path from v1 to vk, then
dist(v1) is optimal after relaxing all path edges in
the order (vk−1, vk), (vk−2, vk−1), . . . , (v1, v2).

Property R1 follows immediately from the definition
of RELAX. For R2, observe that just after relaxing
(vk−1, vk) the over-approximation dist(vk−1) is optimal,
as dist(vk) = 0 is initialized to its optimal value. By
following a simple inductive argument we can assert that
after relaxing (vk−(i+1), vk−i) the over-approximation
dist(vk−(i+1)) is optimal.

The correctness of the algorithm follows from these
two properties. The algorithm executes the TRIANGLE()
procedure |V | − 1 times. Thus, all edges are relaxed
|V | − 1 times, the maximum possible length of a shortest
path. At the i-th TRIANGLE() execution, the first edge
(v, v′) of an i-length shortest path is relaxed in the order
required by R2, and dist(v) will remain optimal from then
on (because of R1).

3.2. Extending Bellman–Ford. In Algorithm 2
we present an extended version of the Bellman–Ford
algorithm to graph games. In graph games, the player
function application P (v) represents a constraint to the
node v. When visiting such v, the cumulative cost to
be optimized must be that of player P (v). Accordingly,
in the relaxation procedure, the over-approximation to
be refined is distP (v)(v) (Algorithm 2, line 15). The
decisions taken by player P (v) affect the cumulative cost
of all players. Thus, if an improvement is possible,
the cumulative cost for every player must be updated
(Algorithm 2, line 17).

For explaining the last lines of the algorithm, observe
that a shortest path may not be unique. When searching
for a shortest path from v to v′, we optimize the
cumulative cost function of player P (v). The cumulative
cost of players other than P (v), however, may vary
among those shortest paths. In some applications, like
the one presented in Section 5, we are also interested in
finding, among the shortest paths, the best path for some
distinguished player i∗. For this reason, we check, without
deteriorating the cumulative cost of player P (v), if there
is a better choice for player i∗ (Algorithm 2, lines 18–23).

To state the correctness of this algorithm, we can rely
on two properties analogous to R1 and R2:

R1′ For every edge (v, v′), RELAX(v, v′, i∗) cannot
increase the over-approximation distP (v)(v).

R2′ If v1 · · · vk is a shortest path from v1 to vk, then
distP (v1)(v1) is optimal after relaxing all path edges
in the order (vk−1, vk), (vk−2, vk−1), . . . , (v1, v2).

Property R1′ also follows from the definition of RE-
LAX in Algorithm 2. For R2′, observe that, after relaxing
(vk−1, vk), distP (vk−1)(vk−1) is optimal, as dist(vk) is
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Algorithm 2. Bellman–Ford with many players and turns.

1: BELLMAN–FORD(G, d, i∗):
2: for all v ∈ V do
3: succ(v)← ⊥
4: dist(v)←∞
5: end for
6: dist(d)← 0

7: for x← 1 to |V | − 1 do
8: TRIANGLE()
9: end for

10: TRIANGLE():
11: for all (v, v′) ∈ E do
12: RELAX(v, v′, i∗)
13: end for

14: RELAX(v, v′, i∗):
15: if distP (v)(v) > CP (v)(v, v

′) + distP (v)(v
′) then

16: succ(v)← v′

17: dist(v)← C(v, v′) + dist(v′)
18: else if distP (v)(v) = CP (v)(v, v

′) + distP (v)(v
′) then

19: if dist i∗(v) > Ci∗(v, v
′) + dist i∗(v

′) then
20: succ(v)← v′

21: dist(v)← C(v, v′) + dist(v′)
22: end if
23: end if

initialized to its optimal value 0. In general, at the i-th
step, when relaxing (vk−i, vk−i+1), distk−i(vk−i) will
acquire its optimal value, as distk−i+1(vk−i+1) is already
optimal (i.e., the agent P (vk−i+1) made its best choice,
and thus the cumulative cost for the other players is part of
this path optimality). Thus, we can use the same inductive
argument as for the original Bellman–Ford to prove the
correctness of the extended algorithm.

Finally, we will only mention that it is possible to use
two properties similar to R1′ and R2′ for proving that, if
there are several shortest paths from v to v′, Algorithm 2
will find the shortest path with minimum dist i∗(v).

3.3. Maximizing utility functions. Often, games are
formulated as a utility maximizing problem, as opposed
to a cost minimizing one. For solving such maximization
problems it suffices to invert the sign of the utility
functions. There is, however, a detail we must consider:
the occurrence of negative cycles in the graph. The reason
is that, by traversing a negative cycle, it is always possible
to further minimize the resulting value.

In our graph games, negative weights only affect
arcs (v, v′) such that CP (v)(v, v

′) < 0. Fortunately,
the Bellman–Ford algorithm is capable of detecting such
cycles.

After running |V | − 1 iterations of the TRIAN-

GLE procedure, dist necessarily converges to the optimal
values. If we run again the algorithm (i.e., another |V |−1
iterations of TRIANGLE), at some iteration, when relaxing
arcs (v, v′) in a negative-weighted cycle, the dist(v)
values will necessarily change. The reason is that player
P (v) can minimize even more its distP (v)(v) value by
subtracting CP (v)(v, v

′). Thus, after this extra execution,
we can detect the nodes forming part of a negative cycle
by comparing their over-approximations with the previous
algorithm execution. If, for some v, dist(v) changed, then
we simply set dist(v) = ∞. Finally, after finishing this
negative cycle detection phase, we must restore the sign
of the other dist values to obtain the desired result.

4. Symbolic Bellman–Ford algorithm with
many players and turns

In this section, we present a symbolic version of the
extended Bellman–Ford algorithm. This algorithm is an
adaptation of the matrix multiplication algorithm by Fujita
et al. (1997). We first review the relation between matrix
multiplication and the Bellman–Ford algorithm.

4.1. Matrix multiplication and Bellman–Ford. Our
algorithm is based on the fact that matrix multiplication
and TRIANGLE are equivalent procedures (Bahar et al.,
1997). That is, matrix multiplication conforms to the
semi-ring (R,+,×, 0, 1) and TRIANGLE to the semi-ring
(R ∪ {∞},min,+,∞, 0). Therefore, it is possible to
adapt a matrix multiplication implementation to compute
shortest paths in a graph.

To exemplify the relation of these procedures observe
the following matrix multiplication:

⎛

⎜
⎜
⎝

a b c d
e f g h
i j k l
m n o p

⎞

⎟
⎟
⎠×

⎛

⎜
⎜
⎝

α
β
γ
δ

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

a · α + b · β + c · γ + d · δ
e · α + f · β + g · γ + h · δ
i · α + j · β + k · γ + l · δ
m · α + n · β + o · γ + p · δ

⎞

⎟
⎟
⎠ .

In this product, we combine the rows of the left
square matrix with each element of the right vector using
the semi-ring operators + and ×. If we follow the
same procedure, but using min and + as the semi-ring
operators, we can compute TRIANGLE:

⎛

⎜
⎜
⎝

a b c d
e f g h
i j k l
m n o p

⎞

⎟
⎟
⎠


⎛

⎜
⎜
⎝

α
β
γ
δ

⎞

⎟
⎟
⎠
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=

⎛

⎜
⎜
⎝

min{a+ α, b+ β, c+ γ, d+ δ}
min{e+ α, f + β, g + γ, h+ δ}
min{i+ α, j + β, k + γ, l + δ}
min{m+ α, n+ β, o+ γ, p+ δ}

⎞

⎟
⎟
⎠ .

Here, for the 
 operator, the left matrix is the
adjacency matrix of the graph and the right vector is
an over-approximation vector containing the values of
dist(v) for each v ∈ V .

Each element aij of the adjacency matrix of a
weighted graph G = (V,E,C) is defined as follows:

• aij = C(vi, vj) if (vi, vj) ∈ E,

• aij = 0 if i = j and (vi, vj) �∈ E,

• aij =∞ if i �= j and (vi, vj) �∈ E.

4.2. Multi-terminal binary decision diagrams.
Multi-terminal decision diagrams (MTBDDs) (Clarke
et al., 1993; Fujita et al., 1997) are an extension of the
original reduced ordered binary decision diagrams (BDDs
for short (see Bryant, 1986).

BDDs are a graphical representation of functional
mappings Bn → B. MTBDDs extend these mappings to
the more general case B

n → R, where R is an arbitrary
set, usually R ⊆ R.

An MTBDD representing a function f : Bn → R is
a rooted, directed and acyclic graph. In such a graph, there
are two kinds of nodes: the terminal and the non-terminal
nodes. Every non-terminal node is associated with a
unique Boolean input variable xi ∈ {x1, . . . , xn}. Also,
every non-terminal node has two children: a lo node and a
hi node. A lo node represents the case when the variable of
the parent node has the value 0, and the hi node represents
the case when the variable has the value 1. Each terminal
node is associated with a unique value in R, and has no
descendants.

In a path from the root to a terminal, not all input
variables need to occur. In such paths, however, all the
occurring variables must be ordered. That is, a node
associated with a variable xi must be closer to the root
than a node associated with a variable xj iff i < j, and
we say that xi < xj in such a case. Also, an MTBDD is
reduced (there are no redundant nodes or redundant arcs)
and unique (i.e., canonical).

As an example, see the MTBDD in Fig. 2. This
MTBDD represents a function with three input variables:
x1, x2, and x3. From non-terminal nodes, dotted arrows
lead to lo nodes and continuous arrows to hi nodes. For
evaluating the function, we can follow a path from the
root to some terminal, choosing the desired Boolean value
at each non-terminal node. For example, f(0, 0, 0) =
1, f(0, 1, 1) = 3, and so on. We can think of an
MTBDD as obtained from a binary decision tree where
redundant nodes have been removed. For example, below

x1

x2 x2

x3 x3

1 2 3 4

Fig. 2. MTBDD for a function f : B3 → {1, 2, 3, 4}.

the rightmost node labeled x2, there could be two child
nodes labeled x3, one pointing its child nodes to terminal
‘3’, and the other pointing its child nodes to terminal ‘4’.
These nodes, however, would be redundant, and thus we
eliminate them. Also, note that there is, at most, one
terminal ‘r’ for each r ∈ R.

Finally, before detailing our symbolic algorithm, we
define some notation. Let A and B be two MTBDDs.
Then

• we will refer as top(A) to the variable labeling A’s
root node (assuming that such a node is not terminal);

• we define top(A,B) = min{top(A), top(B)};
• if x = top(A), then A|¬x and A|x refer to the A’s lo

and hi branches, respectively;

• let x be a variable occurring in neither A nor B,
satisfying x < x′, for every variable x′ occurring
in either A or B; we will call newNode(x,A,B) the
MTBDD having (i) the root node labeled x, (ii) A as
the lo branch, and (iii) B as the hi branch.

4.3. Symbolic TRIANGLE. The symbolic TRIAN-
GLE is based on the recursive definition of matrix
multiplication. For this recursive definition, we divide
the original matrices in four quadrants, or two halves in
the case of vectors. For implementing the Bellman–Ford
algorithm, we are only interested in the multiplication
of a square matrix by a vertical vector. The algorithm,
however, is easily extended to more general cases.

The matrix multiplication (by a vector) is recursively
defined as follows:

(
A11 A12

A21 A22

)

×
(
B1

B2

)

=

(
A11 ×B1 +A12 ×B2

A21 ×B1 +A22 ×B2

)

,

where the square submatrices Aij are the four exact
quadrants of the left operand and the subvectors Bk are
the two exact halves of the right operand.
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Again, if we replace the matrix semi-ring operations
by the triangle min and + operations, we obtain a
recursive
 definition:

(
A11 A12

A21 A22

)



(
B1

B2

)

=

(
min{A11
B1, A12 
B2}
min{A21
B1, A22 
B2}

)

.

In the symbolic Bellman–Ford, each matrix is
represented by an MTBDD. We use MTBDD variables
to codify the matrices’ cells’ rows and columns, and
MTBDD terminals to store cell values. We codify
rows and columns as binary numbers. We follow the
common heuristic of alternating the MTBDD variables for
minimizing the space required to store the diagram (cf.
Enders et al., 1992; Dsouza and Bloom, 1995; Hermanns
et al., 1999). In this manner, we use odd variables for
codifying matrix rows and even variables for codifying
matrix columns.

Following this alternating codification, in the bit
sequencex1 · · ·xn, x1 is the most significant bit codifying
a matrix row, x2 is the most significant bit codifying the
matrix column, and so on.

For example, an MTBDD representing a 4×4matrix,
say A, would have, at most, four variables: two codifying
the rows and two codifying the columns. Thus, the cell
position at the fourth row (row 11) and the first column
(column 00) is represented by the bit sequence 1010.
See the next subsection for a complete example of this
codification.

The symbolic TRIANGLE uses the standard MTBDD
Apply algorithm for implementing min and addition. The
Apply algorithm implements termwise binary operations.
An operation � is termwise if, for any two matricesA and
B, (A�B)ij = Aij �Bij .

When running the symbolic TRIANGLE, we traverse
the MTBDDs from the root to the leaves. Each
non-terminal node splits the matrix into two halves. The
nodes with odd variables split the matrix horizontally
and the nodes with even variables vertically. We then
recursively apply TRIANGLE to both halves. On the one
hand, we can see in the recursive
 definition above that,
when splitting the matrix horizontally, we just have to join
the upper and lower halves into a single vector result. On
the other hand, when splitting the matrix vertically, we
must apply min (or mini in the extended algorithm) for
combining the left and right partial results.

It is important to mention that this algorithm requires
that we can always recursively split the matrix into two
exact halves. That is, the algorithm works only for
2n × 2n matrices. Despite this, we can apply the
algorithm to arbitrarily large matrices by attaching an

identity submatrix (Fujita et al., 1997):
(
A 0
0 1

)

for adjusting the required matrices’ size.
Observe, however, that we are working with a

different instance of the product’s semi-ring. Thus, an
identity matrix is that with zeroes on the diagonal, with
infinity values filling the rest of the matrix.

4.4. Symbolic extended Bellman–Ford. We will
present a symbolic version of the extended Bellman–Ford
algorithm. This algorithm finds shortest paths in a graph
game G = (V,E,N, P,C). The graph is represented
by its adjacency matrix, and we use an extension of the
symbolic matrix multiplication. An MTBDD representing
a graph game is a map B→ (R+)

n.
Let A be the adjacency matrix and D the first

over-approximation vector (see Algorithm 2) of some
graph game G:

A =

⎛

⎜
⎜
⎝

a b c d
e f g h
i j k l
m n o p

⎞

⎟
⎟
⎠ , D =

⎛

⎜
⎜
⎝

α
β
γ
δ

⎞

⎟
⎟
⎠ ,

where each component aij of A is now a state-indexed
vector defined as follows:

• aij = C(vi, vj) if (vi, vj) ∈ E,

• aij = 0 if i = j and (vi, vj) �∈ E,

• aij =∞ if i �= j and (vi, vj) �∈ E.

This graph game has four nodes, say s0 to s3. After
running the TRIANGLE procedure, we have the following
vector of state-indexed vectors:
⎛

⎜
⎜
⎝

minP (s0){a+ α, b + β, c+ γ, d+ δ}
minP (s1){e+ α, f + β, g + γ, h+ δ}
minP (s2){i+ α, j + β, k + γ, l + δ}
minP (s3){m+ α, n+ β, o+ γ, p+ δ}

⎞

⎟
⎟
⎠ .

Here, the + operator is the vector pairwise addition.
Note, however, that the mini operator is relative to the
players’ turns.

If X is a set of vectors of length greater than
or equal to i, then miniX denotes an x ∈ X with
a minimal i-th component. For example, let x =
mini{(5, 10), (8, 3), (20, 15)}. For i = 1 we have that
x = (5, 10), and for i = 2 we have that x = (8, 3).

In the matrix resulting from the TRIANGLE

application, the rows dictate the players’ turns. Thus,
minP (s) corresponds to an optimal choice for the player
P (s).
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The mini operation is not termwise, and we
cannot implement it using the standard Apply procedure.
Note that our relative mini operator depends on the
position of the operands. Thus, we must define a
way of implementing termwise position-sensitive binary
operations.

An MTBDD binary operation is termwise position-
sensitive if the resulting value depends at most on (i) the
values of both operands and (ii) the trajectory leading
from the root of the diagram to the terminal nodes.

The Apply algorithm traverses the MTBDDs until
reaching the terminal nodes, and then applies the required
operator to the node values. If the operation is termwise
position-sensitive, then the resulting value may change
if such terminal nodes are reached by following distinct
trajectories. Equivalently, if the MTBDD represents a
matrix, such a trajectory corresponds to the position of
the cell in the matrix.

Our symbolic extended Bellman–Ford algorithm
consists of two subroutines: the RelTriangle and
RelApply procedures. These extended operations differ
from the originals in that they are position-sensitive, and
thus RelTriangle is able to deal with players’ turns in
graph games.

At first sight, it might seem that we can extend the
algorithm of Bahar et al. (1997) to obtain RelTriangle
and RelApply . In such extended operations, when
traversing from top to bottom the two MTBDD operands,
we would only consider the variables occurring in either
path. However, it is important to note that such extended
algorithms based on the one by Bahar et al. (1997) would
be incorrect. The reason is that both these operations
are position-sensitive (sensitive to the operand’s position
on the matrix or the MTBDD trajectories). By skipping
variables, we would lose such information. This
constraint forces us to extend the algorithm of Fujita et al.
(1997) instead of the more efficient one by Bahar et al.
(1997).

For the RelTriangle and RelApply procedures to
be position-sensitive, we must record the values of the
variables leading to a terminal node at the base of the
recursion. We will use, in addition to the other procedure
parameters, a bit-vector b for this purpose. The i-th bit of
b stands for the value we assigned to the MTBDD variable
xi for reaching a terminal node. For both procedures, we
set such values at each recursive call. As the procedures
recur over every variable, when reaching the terminal
node, every bit of b will have a previously assigned value.

RelTriangle procedure. Given some graph game
G = (V,E,N, P,C), let (i) A be an MTBDD
representing the adjacency matrix ofG, (ii)D an MTBDD
representing an approximate-costs vector, (iii) b a bit
vector of length 2 · |V |, (iv) xi the least variable associable

with a non-terminal node, and (v) i∗ ∈ N a distinguished
agent.

We define the RelTriangle(A,D, b, xi, i
∗)

procedure as follows:

1. If xi is odd (i.e., horizontally splits the matrix),

RelTriangle(A,D, b, xi, i
∗)

= newNode(xi,

RelTriangle(A|¬xi , D|¬xi , b|¬, xi+1, i
∗),

RelTriangle(A|xi , D|xi , b|xi , xi+1, i
∗)).

2. If xi is even (i.e., vertically splits the matrix),

RelTriangle(A,D, b, xi, i
∗)

= RelApply(

RelTriangle(A|¬xi , D|¬xi , b|¬xi , xi+1, i
∗),

RelTriangle(A|xi , D|xi , b|xi , xi+1, i
∗),

b, xi+1,min i
∗
).

3. If A and D are terminal nodes,

RelTriangle(A,D, b, xi, i
∗) = Apply(A,D,+),

where the bit vectors b|xi and b|¬xi are obtained from the
bit vector b by setting the i-th bit to 1 and 0, respectively.

RelApply procedure. Let (i) A and B be two
MTBDDs, (ii) b a bit vector of length 2 · |V |, (iii) xi
the least variable associable with a non-terminal node, and
(iv) � a termwise position-sensitive binary operation. We
define RelApply(A,B, b, xi,�) as follows:

1. If A and B are not both terminal nodes,

RelApply(A,B, b, xi,�)

= newNode(xi,

RelApply(A|¬xi , B|¬xi , b|¬xi , xi+1,�),

RelApply(A|xi , B|xi , b|xi , xi+1,�)).

2. If A and B are terminal nodes,

RelApply(A,B, b, xi,�) = A �b B.

In addition to the alternating variable ordering,
RelTriangle requires using the same variables for
codifying both left matrix columns and right matrix
rows. We can easily achieve this by transposing the right
vector before applying the procedure. For computing
the MTBDD representing the transpose of a vector, we
can simply swap odd and even variables on the original
MTBDD vector.
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The first and second cases of RelTriangle split the
matrix and recursively apply the algorithm to both halves.
The third case directly operates on terminal values: the
cell values in the matrices. As the algorithm recursively
descends through the MTBDD, the bit vector b carries the
values of the variables leading to the terminal nodes.

Also, in the second case of RelTriangle , we
use RelApply for computing mini

∗
. This operation

computes an MTBDD with terminals having minimum
i∗-th component, among those already having a minimum
P (b)-th component (see Algorithm 2).

In the first case of RelApply , we recursively descend
through the diagram’s lo and hi branches, recording the
trajectory with the bit vector b. When reaching the
terminal nodes, in the second case, we simply apply the
specified position-sensitive operator to the values.

Observe that in both procedures the xi parameter
iterates over all possible MTBDD variables, even when
such variables do not occur in the given MTBDDs. These
extra steps are present in the algorithm by Fujita et al.
(1997), but not in the one by Bahar et al. (1997). In our
case, however, these extra steps are needed for recording
the exact position in the matrix when reaching the terminal
nodes.

Computing a shortest-path matrix. So far, by using
RelTriangle we can compute the shortest path costs
from every vertex to the selected destination (i.e., the
minimum dist(s)). The last step of the process is to be
able to also compute the shortest paths themselves. In
our representation, we can perform this computation by
simply manipulating the available matrices.

Our goal is to compute an adjacency matrix σ such
that if there is a transition from vertex v to vertex v′ in
σ, then the transition v → v′ is part of a shortest path in
the given graph game. Also, in σ, the cost of transition
v → v′ is the cumulative cost of going from v to the given
shortest-path destination.

Let A be the adjacency matrix of some graph game
G. Let D be the optimal cost vector as computed by
RelTriangle . The operationA+D� is similar to running
a partial relaxation. We add to every edge (in A) the
computed approximation (inD�). The vertices increasing
their over-approximation cannot be in a shortest path, as
the over-approximation already converged to the optimal
value. Thus, in this resulting matrix, we can prune the
surpluses, setting the trimmed cells to ∞. As a result,
we end with an adjacency-like matrix σ having only
shortest-path transitions: a shortest-path matrix.

We prune the matrix as described above with the
termwise position-sensitive BelowThreshold i operation:

BelowThreshold i(a, b) =

{
a if ai ≤ bi,
∞ otherwise,

where i is the position parameter; in our case, the player’s
turn (given by the operands’ row in the matrix).

We define the shortest-path matrix σ as follows:

σ = BelowThreshold (A+D�, D),

where the position-sensitive parameter is given by the
players’ turns.

Finally, we enumerate all the steps for the symbolic
algorithm in Algorithm 3, where G is a graph game, d is
the destination state, and i∗ is a distinguished agent. Also,
initialAproximation(d) is the first over-approximation of
the shortest-path cumulative costs for reaching d from
each vertex of the graph, i.e., initialAproximation(d)
assigns 0 to the i-th vector component if vertex vi = d;
otherwise, it assigns∞.

Algorithm 3. Symbolic Bellman–Ford with many players
and turns.

1: BELLMAN–FORD(G, d, i∗):
2: A← adjacencyMatrix (G)
3: D ← initialAproximation(d)

4: for x← 1 to |V | − 1 do
5: D� ← transpose(D)
6: D ← RelTriangle(A,D�, 0, i∗)
7: end for

8: D� ← transpose(D)
9: tmp ← Apply(A,D�,+)

10: σ ← RelApply(tmp, D, 0,BelowThreshold )

4.5. Example. In this subsection we show some key
steps of an extended Bellman–Ford sample execution.

Consider the graph game G in Fig. 3(a). The
adjacency matrix A and the optimal cost vector D for G
are as follows:

A =

⎛

⎜
⎜
⎝

0, 0 1, 1 2, 1 −
− 0, 0 3, 0 1, 1
− − 0, 0 1, 2
− − − 0, 0

⎞

⎟
⎟
⎠ , D =

⎛

⎜
⎜
⎝

2, 2
1, 1
1, 2
0, 0

⎞

⎟
⎟
⎠ .

For representing these matrices as MTBDDs, we
must use an alternating binary codification. Recall that
we use odd bits for codifying matrices’ rows and even bits
for codifying their columns.

In Fig. 3(b) we show A’s direct binary codification,
followed byA’s alternating codification. Next, in Fig. 3(c)
we showA’s MTBDD representation. We add the optimal
costs to every transition as follows:

A+D� =

⎛

⎜
⎜
⎝

2, 2 2, 2 3, 3 −
− 1, 1 4, 2 1, 1
− − 1, 2 1, 2
− − − 0, 0

⎞

⎟
⎟
⎠ .
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1
s0

2
s1

1
s2

1
s3

1, 1 3, 0 1, 2

2, 1

1, 1

(a)

s, s′ Binary codification Alternating Value

s0, s1 0001 0001 1, 1
s0, s2 0010 0100 2, 1
s1, s2 0110 0110 3, 0
s1, s3 0111 0111 1, 1
s2, s3 1011 1101 1, 2
s0, s0 0000 0000 0, 0
s1, s1 0101 0011 0, 0
s2, s2 1010 1100 0, 0
s3, s3 1111 1111 0, 0

...
...

... ∞,∞

(b)

x1

x2 x2

x3 x3 x3

x4 x4 x4 x4 x4

2, 1 3, 0 1, 1 0, 0 1, 2

(c)

Fig. 3. Sample graph game G (a), G binary codification (b), G
MTBDD representation (c).

We prune the graph game keeping only those
transitions not exceeding the optimal costs:

σ = BelowThreshold (A+D�, D)

=

⎛

⎜
⎜
⎜
⎝

2, 2 2, 2 − −
− 1, 1 − 1, 1

− − 1, 2 1, 2

− − − 0, 0

⎞

⎟
⎟
⎟
⎠
.

In this example, the shortest path s0s1s3 is marked
with thick arrows in Fig. 3, and we enclose in a rectangle
the cumulative costs of this path’s transitions in the
shortest-path matrix above. Also, note that, analogously
to a subgame-perfect Nash equilibrium, we must find a
shortest path from every state reaching the destination.
For this reason, we also mark the transition s2 → s3.

5. Model checking and shortest paths

One of the major applications of symbolic graph
algorithms is in model checking (see Clarke and Emerson,
1982; Clarke et al., 1986; Burch et al., 1992). Briefly,
model checking is a technique for automated verification
of formal specifications. In a model checking approach,
we use non-deterministic state-transition systems as
model representations. In this approach, we sometimes
refer to models as Kripke structures. Once having
a Kripke model, we can use some modal logic for
describing the model specifications. Among the plethora
of modal logics there are a few common choices. Here we
will focus on temporal logic, and more specifically on the
computation tree logic (CTL). For a cogent introduction
to model checking, the readers may consult the book by
Baier and Katoen (2008).

In this section, we show how to use the extended
Bellman–Ford algorithm in model checking. We first
observe the close connection between model-checking
state-labeling algorithm and shortest paths. Next, we
show a CTL extension for describing models with
weighted transitions. Finally, we show some potential
applications of this approach.

5.1. CTL and state-labeling. CTL is a useful
language for describing properties of discrete and
branching-time, non-deterministic systems. Syntactically,
CTL extends propositional logic with the following
single-path temporal modalities:

• Xϕ: the formula ϕ is satisfied at the next state;

• Fϕ: the formula ϕ is satisfied now or at some future
state;

• Gϕ: the formula ϕ is globally satisfied (i.e., from
now on);

• ψ U ϕ: the formula ϕ is satisfied at some future
state reachable by passing only through ψ-states
(i.e., states satisfying ψ).

Additionally, in CTL these single-path operators
must be preceded by an A or an E path quantifier. For
example,

• EFϕ: “there is a possible future state where the for-
mula ϕ holds”;
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• AGϕ: “the formula ϕ will always hold from now
on”.

Formally, given a set P def
= {p, q, . . .} of atomic

propositions, we construct CTL formulas, in existential
normal form, according to the following grammar:

ϕ ::= � ∣
∣ p

∣
∣ ¬ϕ ∣

∣ ϕ ∧ ϕ ∣
∣ σ,

σ ::= EXϕ
∣
∣ EGϕ

∣
∣ E [ϕ U ϕ] ,

where p ∈ P and � �∈ P .
We also define the other CTL operators as follows:

EFϕ
def
= E [� U ϕ] ,

AXϕ
def
= ¬EX¬ϕ,

AGϕ
def
= ¬EF¬ϕ,

AFϕ
def
= ¬EG¬ϕ,

A [ψ U ϕ]
def
= ¬E [¬ϕ U (¬ψ ∧ ¬ϕ)] ∧ ¬EG¬ϕ,

and we keep the usual definitions for the other Boolean
connectives (e.g., by using the De Morgan laws).

We define a Kripke model as the following relational
structure:

M
def
= (S,R, 	),

where

• S def
= {s0, . . . , sm} is a finite set of states;

• R ⊆ S×S is a serial accessibility relation (i.e., every
state has at least one successor);

• 	 : S → 2P is a total function labeling the states in
S with atomic propositions in P .

The satisfaction relation |= relates pairs (M, s), s ∈
S, and formulas according to the following rules:

• (M, s) |= �;

• (M, s) |= p iff p ∈ 	(s);

• (M, s) |= ¬ϕ iff (M, s) �|= ϕ;

• (M, s) |= ϕ ∧ ψ iff (M, s) |= ϕ and (M, s) |= ψ;

• (M, s) |= EXϕ iff there is an s′ ∈ S such that
(s, s′) ∈ R and (M, s′) |= ϕ;

• (M, s) |= EGϕ iff there is an infinite path π such
that π[0] = s and (M, π[i]) |= ϕ for all i ≥ 0;

• (M, s) |= E [ψ U ϕ] iff there is a path π and i ≥ 0
such that π[0] = s, (M, π[i]) |= ϕ, and (M, π[j]) |=
ψ for all 0 ≤ j < i.

Here a path π is a sequence of states in S such that π[i]
denotes the i-th state on the sequence and, for all i ≥ 0,
(π[i], π[i + 1]) ∈ R.

The model-checking state-labeling algorithm
computes the set Sat(ϕ) of all the states satisfying the
formula ϕ. Starting with the atomic propositions and
the labeling function 	, we induce the set Sat(ϕ) in a
bottom-up manner according to the following rules:

Sat(p)
def
= {s | p ∈ 	(s)},

Sat(�) def
= S,

Sat(¬ϕ) def
= S \ Sat(ϕ),

Sat(ϕ ∧ ψ) def
= Sat(ϕ) ∩ Sat(ψ),

Sat(EXϕ)
def
= Pre(Sat(ϕ)),

Sat(EGϕ)
def
= the largest subset S′ ⊆ S such that

(i) S′ ⊆ Sat(ϕ),

(ii) s ∈ Pre(S′) implies s ∈ S′,

Sat(E[ψ U ϕ])
def
= the smallest subset S′ ⊆ S such that

(i) Sat(ϕ) ⊆ S′,

(ii) s ∈ Sat(ψ) and s ∈ Pre(S′)

imply s ∈ S′,

where Pre(X) = {s ∈ S | (s, s′) ∈ R for some s′ ∈ X}
is the preimage under R of some state set X .

We are mainly interested in the case Sat(E[ψ U
ϕ]), representing reachability. For this case, we begin
computing Sat(ϕ). Then, we continue by iteratively
accumulating the preimage until reaching a fixed point. At
each iteration, we can also record the transitions made by
each accumulated predecessor, thus defining a path from
every state in S to a state in Sat(ϕ). It is easy to prove
that such paths have a minimum number of transitions.

Note that it is possible to define the preimage
Pre(X) in terms of the relational product ofR by {(s, s) |
s ∈ X}. In fact, this definition leads to an efficient
symbolic implementation of Sat (see Clarke et al., 1999,
p. 77).

Based on the previous observations, we propose
first using weighted transitions in the models, and then
extending CTL for describing such models. Our CTL
extension proposal employs formulas such as min[α U
ϕ] < min[β U ϕ]. We can use such formulas to, for
example, compare the costs of α-routes against β-routes,
for reaching ϕ-states.

In the next subsections, we pursue further these
ideas. First, we consider models with weighted
transitions. Next, we consider weighted models with
multiple agents and turns, that is, game graphs.
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5.2. CTL-with-costs. In this subsection we extend
CTL with cost-comparison formulas. The purpose is
to capture the behavior of models having weighted
transitions. Also, for model checking, we show that it is
possible to use a shortest-path algorithm as an extension
to the state-labeling algorithm.

CTL-with-costs formulas are interpreted on
relational structures based on weighted graphs. We
define such structures as follows:

M
def
= (S,R, 	, C),

where

• we define S, R, and 	 as in the previous subsection;

• the total function C : R → R+ assigns costs to
transitions, such that, for all (s, s′) ∈ R, if s = s′,
then C(s, s′) = 0.

Given a set P def
= {p, q, . . .} of atomic propositions,

we construct CTL-with-costs formulas according to the
following grammar:

ϕ ::= � ∣
∣ p

∣
∣ ¬ϕ ∣

∣ ϕ ∧ ϕ ∣
∣ σ,

σ ::= EXϕ
∣
∣ EGϕ

∣
∣ E [ϕ U ϕ]

∣
∣ ζ � ζ,

ζ ::= c
∣
∣ min [ϕ U ϕ]

∣
∣ max [ϕ U ϕ] ,

�::= <
∣
∣ >

∣
∣ ≤ ∣

∣ ≥ ∣
∣ =,

where p ∈ P , � �∈ P , and c ∈ R+.
We also define the following derived cost-formulas:

min [Fϕ]
def
= min [� U ϕ] ,

max [Fϕ]
def
= max [� U ϕ] .

The min and max cost operators refer to the
cumulative cost of the shortest and of the longest path,
respectively, for reaching a state satisfying the right side
of the U operator. For example,

• max[Fϕ] < 10: the longest (most expensive) path
reaching a ϕ-state has a cumulative cost less than 10;

• min[α U ϕ] < min[β U ϕ]: an α-based shortest
path improves costs over a β-based shortest path for
reaching a ϕ-state.

We define the cumulative cost of a finite path π =
s0, . . . , sm as the sum

Cost(π)
def
=

m−1∑

k=0

C(sk, sk+1).

The satisfaction relation for the CTL fragment
is defined as in the previous subsection. For the
new cost-comparison operators, we use the following
semantics:

• (M, s) |= ζ � ξ iff Value(s, ζ) � Value(s, ξ).

We define the Value function as follows:

• Value(s, c)
def
= c if c ∈ R+.

• Value(s,min[ψ U ϕ])
def
= minπ{Cost(π)} such

that π[0] = s and, for some k ≥ 0, π[k] ∈ Sat(ϕ)
and π[i] ∈ Sat(ψ) for all 0 ≤ i < k, if there exists
such a π; otherwise, we define Value(s,min[ψ U

ϕ])
def
= ∞.

• Value(s,max[ψ U ϕ])
def
= maxπ{Cost(π)} such

that π[0] = s and, for some k ≥ 0, π[k] ∈ Sat(ϕ)
and π[i] ∈ Sat(ψ) for all 0 ≤ i < k, if there exists
such a π; otherwise, we define Value(s,max[ψ U

ϕ])
def
= ∞.

Note that, when maximizing a cumulative cost, if
there is a path having cycles, then Value(s,max[ψ U
ϕ]) will be ill-defined. In such cases, we assume
Value(s,max[ψ U ϕ]) =∞.

According to the previous definitions, extending the
state-labeling algorithm requires computing the following
set:

Sat(ζ � ξ)
def
= {s ∈ S | Value(s, ζ) � Value(s, ξ)}.

For computing Sat(ζ � ξ) we must compute
Value(s, ζ) for every s of the model. Thus, we must
compute either the shortest or the longest path costs from
every state to some destination.

We can compute the shortest paths by using either
the Bellman–Ford algorithm or Dijkstra’s algorithm. As
we mentioned in Section 3.3, for computing longest paths
we can simply invert the values of the cost functions.
However, we must take extra care when maximizing,
as Dijkstra’s algorithm does not handle negative weight
cycles. In such cases, we can use the Bellman–Ford
algorithm as already described in Section 3.

In the following, we will assume the use of the
Bellman–Ford algorithm. We will also take on the
solution discussed before for maximization problems,
and we will focus our presentation on the minimization
problem.

The first step for using the Bellman–Ford algorithm
for computing Value is to condense the destination set
into a single fresh state. Given a model M = (S,R, 	, C)
and two CTL-with-costs formulas ψ and ϕ, we define the
following model:

M|ψUϕ def
= (S′, R′, 	′, C′),

where

• S′ def
= {sϕ} ∪ ((S \ Sat(¬ψ)) \ Sat(ϕ)), with sϕ a

fresh state not in S;
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• R′ def
= {(s, t) | (s, t) ∈ R and s, t ∈ S′} ∪ {(s, sϕ) |

s ∈ S′, t ∈ Sat(ϕ), and (s, t) ∈ R} ∪ {(sϕ, sϕ)};

• 	′(s) def
= 	(s) for all s ∈ S′, and 	′(sϕ)

def
=⋃

s∈Sat(ϕ) 	(s);

• C′(s, t) def
= C(s, t) for all s, t ∈ S′, C′(s, sϕ)

def
=

mint∈Sat(ϕ){C(s, t)}, and C′(sϕ, sϕ)
def
= 0.

Note that we do not take into account the transitions
leaving Sat(ϕ), and that we always add the loop (sϕ, sϕ).
The reason is that we only verify reachability properties
for these sets.

The Bellman–Ford algorithm computes a map
dist(s) assigning to s the shortest-path cost of reaching
the given destination.

By using dist(s) we can compute Value(s, ζ):

• if ζ = c, then Value(s, ζ) = c;

• if ζ = min[ψ U ϕ], then Value(s, ζ) = dist(s),
using the model M|ψUϕ and the destination state sϕ;

• for all s ∈ Sat(ϕ), we set Value(s, ζ) = 0;

• for all s in M but not in M|ψUϕ, we set
Value(s, ζ) =∞.

5.3. Multi-agent case. We extend the approach of the
previous subsection to multi-agent settings. We consider
models involving a finite set of agents (or players), where
each agent is associated with a cost function and is taking
turns at each state. These models are basically a subclass
of graph games augmented with a node labeling function.

The formulas of this new language are interpreted on
relational structures:

M
def
= (S,R, 	, {Ci}i∈N , N, P ),

where

• we define S, R and 	 as in the previous sections;

• for all i ∈ N , the total function Ci : R → R+

assigns costs to transitions for the agent i, such that,
for all (s, s′) ∈ R, if s = s′, then Ci(s, s′) = 0;

• the total function P : S → N assigns players’ turns
to states.

For the multi-agent case, we enrich the syntax of the
cost-comparison operators from the previous subsection.
In these enriched operators we must specify which agent
cost we want to compare.

Let P = {p, q, . . .} be a set of atomic propositions
and N = {1, . . . , n} a finite set of agents. We specify

the syntax of multi-agent CTL-with-cost in the following
BNF grammar:

ϕ ::= � ∣
∣ p

∣
∣ ¬ϕ ∣

∣ ϕ ∧ ϕ ∣
∣ σ,

σ ::= EXϕ
∣
∣ EGϕ

∣
∣ E [ϕ U ϕ]

∣
∣ ζ � ζ,

ζ ::= c
∣
∣ mini [ϕ U ϕ]

∣
∣ maxi [ϕ U ϕ] ,

�::= <
∣
∣ >

∣
∣ ≤ ∣

∣ ≥ ∣
∣ =,

where p ∈ P , i ∈ N and c ∈ R+.
Given a path π = s0, . . . , sm and an agent i ∈ N ,

we define the following cumulative cost:

Cost i(π)
def
=

m−1∑

k=0

Ci(sk, sk+1).

Note that a model M = (S,R, 	, {Ci}i∈N , N, P )
structure conforms a graph game. Consequently, we can
use the same shortest path definitions from Section 2.

We define the satisfaction relation for this language
similarly to the language without agents. The
CTL fragment has the usual semantics, and for the
cost-comparison operators we define the satisfaction
relation as follows:

• (M, s) |= ζ � ξ iff Value(s, ζ) � Value(s, ξ),

where Value is defined as

• Value(s, c)
def
= c if c ∈ R.

• Value(s,mini[ψ U ϕ])
def
= minπ{Cost i(π)} such

that for some k ≥ 0, π is a shortest path from π[0] =
s to π[k], π[k] ∈ Sat(ϕ), and π[j] ∈ Sat(ψ) for all
0 ≤ j < k, if such a π exists; otherwise, we define

Value(s,mini[ψ U ϕ])
def
= ∞.

• Value(s,maxi[ψ U ϕ])
def
= maxπ{Cost i(π)} such

that, for some k ≥ 0, π is a shortest path from π[0] =
s to π[k], π[k] ∈ Sat(ϕ), and π[j] ∈ Sat(ψ) for all
0 ≤ j < k, if such a π exists; otherwise, we define

Value(s,mini[ψ U ϕ])
def
= ∞.

For computing Value, we may proceed as before
by first condensing the destination set. Given
some model M = (S,R, 	, {Ci}i∈N , N, P ) and a
CTL-with-costs-and-agents formula ϕ, we define the
following model:

M|ψUϕ def
= (S′, R′, 	′, {C′

i}i∈N , N, P ′),

where

• S′ def
= {sϕ}∪((S\Sat(¬ψ))\Sat(ϕ)) with sϕ �∈ S;

• R′ def
= {(s, t) | (s, t) ∈ R and s, t ∈ S′} ∪ {(s, sϕ) |

s ∈ S′, t ∈ Sat(ϕ), and (s, t) ∈ R} ∪ {(sϕ, sϕ)};
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• 	′(s) def
= 	(s) for all s ∈ S′ and 	′(sϕ)

def
=⋃

s∈Sat(ϕ) 	(s);

• the cost functions are as follows:

– C′
i(s, t)

def
= Ci(s, t) for all s, t ∈ S′;

– C′
i(sϕ, sϕ)

def
= 0;

– C′
i(s, sϕ)

def
= mint∈Sat(ϕ){Ci(s, t)} if i =

P (s);

– C′
j(s, sϕ)

def
= mint∈Sat(ϕ){Cj(s, t)} for i =

P (s) and j �= i;

• P ′(s) = P (s) if s ∈ S′, and P (sϕ) = 1.

For computing the shortest paths we use the modified
Bellman–Ford algorithm shown in Algorithm 2. Here
dist i(s) is the shortest-path cost from state s to destination
d for the agent i, and i∗ is a distinguished agent subject to
the optimization.

As in the previous subsection, we define the
computation of Value(s, ζ) as follows:

• if ζ = c, then Value(s, ζ) = c;

• if ζ = mini[ψ U ϕ], then Value(s, ζ) = dist i(s),
using the model M|ψUϕ and the destination state sϕ;

• for all s ∈ Sat(ϕ), we set Value(s, ζ) = 0;

• for all s in M but not in M|ψUϕ, we set
Value(s, ζ) =∞.

5.4. Examples.

5.4.1. Planning and scheduling. In this subsection,
we will show how to use our single-agent CTL extension
for the analysis of planning and scheduling problems. We
focus on project analysis using the critical-path method
(Kelley and Walker, 1959) in non-probabilistic settings
(i.e., without duration uncertainties; see below).

A project consists of sequentially ordered jobs, with
some of them possibly running in parallel. Each job has
a duration, and some jobs may depend on the finishing
of other jobs in order to begin. The critical-path method
analyzes a project by finding sequences of jobs that, if not
completed in time, may delay the whole project. Also,
this method searches for jobs that may be delayed without
affecting the total project completion.

A project may be graphically described using activity
networks. These networks are acyclic weighted graphs
also called PERT graphs. In a PERT graph, the nodes
represent the completion of some jobs and are called mile-
stones. The edges of the graph represent the project jobs,
and we associate each job with a duration. The sequence
and direction of the edges represent the dependencies

1
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5

6
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B, 6

C, 6

D, 3

E, 10

F, 5

G, 3

(a)
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{}
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{A,B,D,E}

{A,B,C,D,E, F,G}

5

6

6

3

10

5

3
0

(b)

Fig. 4. Sample project’s PERT graph (a) and Kripke model (b).

between jobs. The paths that cannot be shortened without
delaying the whole project are called critical paths. The
extra time that some job may take without delaying the
project is called slack time.

We can easily transform a PERT graph into a
CTL-with-costs model. Figure 4(a) shows the PERT
graph of a sample project. The project has seven jobs,
A to G, and six milestones, 1 to 6. Each edge of the
PERT graph is labeled with the job’s name, and also with
its duration. The critical path, 1 → 3 → 5 → 6, has
a duration of 19 time units and is emphasized with thick
arrows.

For converting the PERT graph in Fig. 4(a) into
the CTL-with-costs model in Fig. 4(b), we can do the
following steps:

• we create a state si for each milestone i;

• we add a transition (si, sj) to R iff there is a job
X taking the project from milestone i to milestone

j (i.e., there is a transition i
X→ j in the PERT graph),

and we set C(si, sj) = c iff c is the duration of job
X ;

• for each jobX , if there is a transition i
X→ j, then we

add X to sj labels, and also to the labels of all of the
sj descendants;

• we add the label ini to the first milestone (the
beginning state), and the label end to the last
milestone (the ending state);
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• we set C(s, s) = 0 for all s, and we add (sm, sm) to
R if m is the last milestone;

• finally, for identifying the initial and final state,

we define ini
def
=

∧
X∈Jobs ¬X and end

def
=∧

X∈Jobs X , where Jobs is the set of all jobs.

For example, we can verify the following:

s1 |= ini ,

s6 |= end .

We can also verify the duration of the critical path:

s1 |= max [Fend ] = 19

and of the one with the longest slack times:

s1 |= min [Fend ] = 11.

We can also compare paths (possibly adding
information to our model using atomic propositions):

s1 |= max [(ini ∨ ¬C) U end ]

>max [(ini ∨ C) U end ] .

Observe that by verifying a formula like

s1 |= max [Fend ] > 0,

we can use the methods described in Section 4.4 for
computing the critical path of the project.

For verifying the above formula, we must compute
Value(s1,max [Fend ]) = Value(s1,max [� U end ]),
as specified by the semantics of Section 5.2.

As this is a maximization problem, we invert the
sign of the transition cost functions. We then use the
Bellman–Ford algorithm as a matrix multiplication. The
initial operands are the following adjacency matrix A and
the initial over-approximationD0:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −5 −6 −6 ∞ ∞
∞ 0 ∞ ∞ −3 ∞
∞ ∞ 0 ∞ −10 ∞
∞ ∞ ∞ 0 ∞ −5
∞ ∞ ∞ ∞ 0 −3
∞ ∞ ∞ ∞ ∞ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞
∞
∞
∞
∞
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We iteratively apply the matrix multiplication
procedure, reaching the desired result D = D3 after three

iterations:

D1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∞
∞
∞
−5
−3
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, D2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−11
−6
−13
−5
−3
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−19
−6
−13
−5
−3
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Before restoring the signs of the transitions,
we compute the shortest-path matrix as described in
Section 4.4:

A+D� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−19 −11 −19 −11 ∞ ∞
∞ −6 ∞ ∞ −6 ∞
∞ ∞ −13 ∞ −13 ∞
∞ ∞ ∞ −5 ∞ −5
∞ ∞ ∞ ∞ −3 −3
∞ ∞ ∞ ∞ ∞ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then we apply the BelowThreshold operation for
obtaining the shortest-path matrix σ:

σ = BelowThreshold (A+D�, D)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−19 ∞ −19 ∞ ∞ ∞
∞ −6 ∞ ∞ −6 ∞
∞ ∞ −13 ∞ −13 ∞
∞ ∞ ∞ −5 ∞ −5
∞ ∞ ∞ ∞ −3 −3
∞ ∞ ∞ ∞ ∞ 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The transitions 1 → 3 → 5 → 6 of the critical
path are marked with thick arrows in Fig. 4(a), and
the remaining time from each milestone is framed in
the shortest-path matrix above (we omit here the sign
restoring step). By computing this matrix, we computed
both the critical path timings and the critical path itself.

Finally, by verifying the formulas described in the
present subsection with this method, we can also compute
the timings of other paths with slack times, and use
arithmetic subtraction to compute the slack time of
particular paths or jobs.

5.4.2. Games with perfect information. Our graph
games are motivated by extensive-form games with
perfect information. In this section, we present a simple
example showing how it is possible to use our language
for computing and reasoning about backward induction
solutions of such games (see, for example, the work of
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Fig. 5. Three-player game (a) and its Kripke model (b).

Osborne and Rubinstein (1994) for a larger discussion
about games).

Consider the extensive-form game in Fig. 5(a). For
defining a model representing this game (Fig. 5(b)), we
proceed as follows:

• there is a one-to-one correspondence between the
tree nodes and the model states;

• we add a loop transition to every leaf z (we omit
these loops in Fig. 5(b) for clarity);

• we define Ci(s, s′) = 0 for every transition such that
s′ is not a leaf; and

• we define Ci(s, z) = c if player i gains c utility units
by reaching z.

We can further extend this model by codifying
information about strategies using atomic propositions.
For this game, we codify the strategies of player i
as the atomic propositions Li and Ri. By using
these propositions, we characterize strategies and strategy
profiles. For example,

z1 |= L1 ∧ ¬R1,

z2 |= L1 ∧ ¬R1,

z4 |= R1 ∧R2.

We can also verify the utility that the agents gain by

following such strategies:

s0 |= max1[F(R1 ∧R2)] = 5,

s0 |= max1[F(L1)] = 2.

Furthermore, as well as in the previous example, by
model-checking a simple formula like

a �max1 [F(L1 ∨ L2 ∨ L3 ∨R1 ∨R2 ∨R3)] ,

we can use the shortest-path matrix defined in Section 4.4
for computing the game’s solution, rather than only giving
a logical characterization (a and the comparator can be
arbitrarily chosen, as in the previous example).

Note that the game has two subgame-perfect
solutions (marked with thick arrows). One of these
solutions is better for player 1. By using the operator
max1 we can compute the better solution for agent 1.

Computing subgame-perfect solutions for perfect
information games is usually done with the backward in-
duction algorithm (see Osborne and Rubinstein, 1994).
This computation is done in linear time in the size
of the game tree, as it is equivalent to a depth-first
search. Many real-life games, however, have a very
large state space. Common examples of this are Chess
and Go: the state space for this kind of games grows
exponentially in the number of game moves (i.e.,O(2m)).
For two-player, zero-sum games it is possible to optimize
the computation with, for example, the alpha-beta pruning
reducing the search space up to O(2m/2) (see Russell
and Norvig, 2003). For imperfect information games,
the solution computation is even computationally harder.
Gambit (McKelvey et al., 2014) is a well known tool for
the analysis of these games. McKelvey and McLennan
(1996) review of the algorithms implemented by Gambit.
There are efficient algorithms for solving games in normal
(strategic) form, and it is possible to solve an extensive
game by converting it to its normal form. This conversion
has, however, an exponential time penalty. It is possible
to solve games directly in their extensive form, but it
is a computationally demanding problem (even some
simple classes of games are NP-hard (see McKelvey and
McLennan, 1996)).

Compared to the aforementioned methods,
our approach proposes a memory-efficient game
representation that can be useful for certain classes of
games.

6. Experimental results

For illustrating our methods we implemented a C++
prototype of the RelTriangle procedure and of the
shortest-path matrix computations. Our prototype
implements a standard node table MTBDD representation
(for some implementation details, see the work of Meinel
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and Theobald (1998)). We ran all tests on a machine with
4 GB of RAM.

The test cases consisted of graph games with 2n

states (i.e., having adjacency matrices of size 2n × 2n)
for n = 2, . . . , 17. For each n value we ran 20 different
pseudorandomly generated tests.

For making a comparison, we ran the same tests
for, the symbolic and the non-symbolic versions of the
algorithm, both using matrix multiplication. In Fig. 6
we show the performance results of the non-symbolic
algorithm and in Fig. 7 of the symbolic one.

The non-symbolic algorithm exhausted the
computer’s memory for all tests having n > 13, as
most tests would require more than 4 GB of memory for
storing their adjacency matrices. The biggest example
we ran using the symbolic algorithm had an adjacency
matrix of size 217 × 217 and four agents. Considering
that, for this example, each cell of the matrix has four
floating point values, an explicit matrix representation
would need 512 GB of memory (this is the current
limit for a computer running Microsoft Windows 8 (see
MSDN, 2013)).

The MTBDD matrix representation introduces
additional computations, and the application of
position-sensitive operations also requires recording
a complete path to the terminal node, including the
absent non-terminal nodes in a particular MTBDD
(this is the reason why we extend the algorithm of
Fujita et al. (1997) instead of the more efficient one
by Bahar et al. (1997)). Because of this, the symbolic
algorithm’s memory efficiency has a time penalty. While
the non-symbolic algorithm tests required only a few
computational seconds, the largest tests took several
hours for completion using the symbolic algorithm.

These tests are not conclusive on the efficiency
of neither algorithm, and we highlight that this
implementation is not intended to be industry strength.
We can, however, use these results for illustrating the
potential benefit of the symbolic algorithms. Although the
explicit matrix representation is faster, we can see how
using BDDs allows treating large problems, otherwise
having expensive explicit representations.

Finally, we note that our algorithm and
implementation use MTBDDs and for the general case
when the cost functions have domains in R (or floating
point numbers in their computer implementation). If an
application only requires integer-valued functions, it may
be possible to extend the algorithm of Sawitzki (2004)
that uses ordinary BDDs with a bit vector representation
of integer numbers. We leave this route for future
research.

7. Conclusions

It is possible to use shortest-path algorithms for
solving multi-objective discrete problems and for finding
solutions of game-like network structures (see the work by
Lozovanu and Pickl (2009), the surveys by Garroppo et al.
(2010) and Tarapata (2007), and the references therein).
An advantage of this approach is the possibility of using
symbolic versions of these shortest-path algorithms. A
symbolic algorithm is capable of treating large problems
through the use of a memory-efficient data structure
such as a BDD. Some shortest path-algorithms already
have BDD-based symbolic implementations (for example,
Bahar et al., 1997; Fujita et al., 1997; Sawitzki, 2004).

In this paper, we extended existing BDD procedures
by Fujita et al. (1997) used in a symbolic Bellman–Ford
implementation. Our extensions allow computing
position-sensitive termwise operations. Such operations
are sensitive to the position of a cell in a matrix,
or, in other words, sensitive to the path leading to
a terminal node in a BDD. We use these extended
procedures for computing the shortest paths in graph
games. Our graph games are generalizations of finite,
non-cooperative games with perfect information. Thus,
our symbolic algorithm is also applicable to such games,
and amounts to finding all the subgame-perfect Nash
equilibria. Furthermore, we also proposed using these
algorithms (both the original and the extended versions,
and both the symbolic and the non-symbolic variants) in
CTL model checking. For this objective, we progressively
presented two CTL extensions aiming at expressing
graph game specifications. Finally, we reported some
experiments with a prototype implementation of our
extended algorithms.

The experiments we report compare the symbolic
and non-symbolic versions of our algorithm. We
do not provide comparisons with other methods, such
as algorithms using sparse matrix multiplication, for
example. The reason is that, as far as we know, such
algorithms have not been extended as we have done here
with BDD-based algorithms.

By using a symbolic algorithm for computing game
solutions we expect to benefit both these related areas. For
example, we can apply formal verification and symbolic
algorithms to optimization and game-theoretic problems,
or vice versa.

From these aims we can articulate some directions
for further research. It would be interesting to find
out whether it is possible to apply similar algorithms to
other multi-objective or multi-constraint problems. We
would also be interested in the application of symbolic
algorithms and other formal verification techniques to
other classes of games. Examples are games with
imperfect information, infinitely repeated games, and
cooperative games. Finally, we also suggest further



594 P.A. Góngora and D.A. Rosenblueth

(a) (b)

Fig. 6. Non-symbolic algorithm results: extended Bellman–Ford time in seconds (a), process resident size in GB (as measured by the
Unix time command) (b).

(a) (b)

(c) (d)

Fig. 7. Symbolic algorithm results: extended Bellman–Ford time in seconds (logarithmic scale) (a), maximum number of RelTriangle
iterations before converging (b), extraction time, in seconds (logarithmic scale), of shortest paths from Bellman–Ford results
(c), process resident size in GB (as measured by the Unix time command) (d).
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investigating the possible benefits of using optimization
algorithms and techniques in model checking and formal
verification.
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Autónoma de México, México. He has done re-
search in applications of non-classical logics to
computer science and biological systems. He
has participated in the design and development
of Antelope, an online model checker for gene
regulatory networks. His current research activi-
ties include model checking applications to game

theory.

David A. Rosenblueth graduated from the Uni-
versity of Victoria, B.C., Canada, in 1989. He
has worked both in logic programming and in
model checking. Within logic programming, he
has contributions to connections between logic
programs and context-free grammars, inductive
logic programming, program transformation, and
logic programming applied to genetic regulation.
Within model checking, he has investigated the
update problem, studied temporal logics applied

to game theory, and applied model checking to genetic regulation. He
has authored about fifty scientific publications in books, journals, and
conference proceedings.

Received: 20 December 2013
Revised: 30 July 2014
Re-revised: 6 December 2014


