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The connected dominating set (CDS) has become a well-known approach for constructing a virtual backbone in wireless
sensor networks. Then traffic can forwarded by the virtual backbone and other nodes turn off their radios to save energy.
Furthermore, a smaller CDS incurs fewer interference problems. However, constructing a minimum CDS is an NP-hard
problem, and thus most researchers concentrate on how to derive approximate algorithms. In this paper, a novel algorithm
based on the induced tree of the crossed cube (ITCC) is presented. The ITCC is to find a maximal independent set (MIS),
which is based on building an induced tree of the crossed cube network, and then to connect the MIS nodes to form a CDS.
The priority of an induced tree is determined according to a new parameter, the degree of the node in the square of a graph.
This paper presents the proof that the ITCC generates a CDS with a lower approximation ratio. Furthermore, it is proved
that the cardinality of the induced trees is a Fibonacci sequence, and an upper bound to the number of the dominating set is
established. The simulations show that the algorithm provides the smallest CDS size compared with some other traditional
algorithms.
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1. Introduction

Networks of a number of wireless sensor nodes, named
wireless sensor networks (WSNs), may be deployed to
sense, gather and process information in a region of
interest for a variety of purposes, such as many civilian
application areas, including traffic control, healthcare
applications, home automation, long-term and low-cost
geographical monitoring, and so forth (Zhao et al., 2012;
Liao and Li, 2013; Goli, 2012). In WSNs, there is no
fixed infrastructure, one sensor can communicate with
other sensors within the transmission range. In many
applications, sensors communicate via a shared medium,
either through a single hop or multi-hops. The sole energy
source of the nodes in WSNs is the battery. Recharging
the battery is impossible since the sensor nodes usually
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locate in an unpredictable area. A prolonged network
lifetime is a critical issue in energy efficiency algorithms
for WSNs (Tang et al., 2012; Kim et al., 2009; Zhu et al.,
2011; Padmavathy, 2010; Zam and Movahedinia, 2013).

The self-organization of WSNs includes no fixed
infrastructure, while frequent and hard-to-predict
topology changes are the most important issues that
must be taken into consideration in WSNs, and topology
control is one of the approaches to prolong the network
lifetime, reduce interference and packet retransmission
(Zhao et al., 2012). Topology control is mainly of two
types (Tang et al., 2012): power control and hierarchical
topology control. The former is to adjust the transmission
range of sensors to construct a network with better
properties. Although there is no physical backbone
infrastructure, the latter aims to form a virtual backbone
by constructing a connected dominating set (CDS). Since
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traffic is only forwarded by a virtual backbone, routing is
easier and can adapt quickly to topology changes, so it
can improve the routing performance and save energy of
the networks. For example, broadcasting in a WSN could
be simplified by letting each node of a CDS transmit
once. The nodes within the CDS are called dominators,
the nodes that are adjacent to a dominator are called
dominatees. WSNs use a CDS to serve as a virtual
backbone for energy efficiency.

The concept of a CDS plays a crucial role in the
management and maintenance of WSNs, while the size of
the CDS is the primary concern to measure the quality of
a virtual backbone (Kim et al., 2009). The interference
problem will occur because the nodes in WSNs share
their communication channel; a smaller virtual backbone
suffers less from this problem. Meanwhile, if the
CDS is getting smaller, it becomes more efficient when
performing in routing. It also makes the maintenance of
the virtual backbone easier. So, reducing the size of a CDS
is our purpose in this paper. The crossed cube (Cheng
et al., 2013) is an important class of variants of hypercubes
as rule networks, which is proven to be superior to the
hypercube counterpart, since it can reduce the diameter
of the network. However, no result has been reported on
constructing the CDS by using a crossed cube.

The contribution of this paper is the following:

1. One induced tree of the crossed cube based on an
equivalent definition of the crossed cube network
is defined, and the induced tree is constructed by
induction on the dimension of the crossed cube
network.

2. A novel distributed CDS construction algorithm is
presented named CDS-ITCC-G∗, which is a CDS
construction algorithm based on the induced tree
of crossed cube in the square of a graph G. The
algorithm can be easily implemented in practice.

3. The theoretical analysis has been established and
clearly shows that CDS-ITCC-G∗ can generate a
maximal independent set with the approximation
ratio of 3.2833γ + 4.5590, where γ is the size of
any optimal CDS. It is proved that the cardinality of
induced trees is a Fibonacci sequence, and an upper
bound of the number of the DS is derived.

The rest of this paper is organized as follows.
Section 2 briefly summaries related works on the
connected dominating set. Section 3 presents the problem
statement of our work. Section 4 is devoted to the newly
presented CDS CDS-ITCC-G∗ algorithm, which is based
on the induced tree of the crossed cube. The theoretical
analysis and the simulation results are shown in Sections 5
and 6, respectively. Finally, Section 7 concludes the paper.

2. Related works

It has been proven that the problem of finding a minimum
connected dominating set (MCDS) is NP-hard, but it has
a polynomial-time approximation scheme (PTAS) in unit
disk graphs (Cheng et al., 2003). That is to say, there
is a polynomial-time algorithm producing an approximate
solution with the size within a factor of 1 + ε from an
optimal one for ε > 0. Many algorithms have been
proposed for the purpose of fast approximations with a
small performance ratio for constructing an MCDS.

The construction of an MCDS in WSNs has
been studied extensively. Some approximation MCDS
construction algorithms are introduced in this section,
most of them consisting of two stages. The first phase
is to construct a dominating set, the second one is to
select connectors, in order to link the dominators, and
then let the virtual backbone connect (Du et al., 2011; Li
et al., 2011). In order to estimate the size of the MCDS,
to establish an upper bound for the MIS is critical. Wan
et al. (2008) presented an example to show that 3γ + 2 is
reachable, while Wu et al. (2010) gave a conjecture as the
following open problem.

Open problem. (Conjecture) In a unit disk graph, any
maximal independent set has size α ≤ 3γ + 2, where α
is the size of the maximal independent set, γ is the size of
any optimal CDS.

Each maximal independent set has size at most 4γ +
1, which was first shown by Wan et al. (2002). Later
research on the open problem is still quite active: some
efforts (Wu et al., 2006; 2010; Funke et al., 2006; Lin,
2006; Xu and Lin, 2007; Wan et al., 2008; Gao et al.,
2009; Li et al., 2011; Han, 2009; Bahaa-Eldin et al.,
2012) have been made for improving this bound. Wu et
al. (2006) proposed an algorithm with an approximation
factor of 3.8γ + 1.2. Wan et al. (2008) proved that the
approximation ratio of their algorithm is α ≤ 3 2

3γ + 1, if
G has at least two nodes. Gao et al. (2009) improved the
upper bound 3.478γ + 4.874 with the help of the Voronoi
diagram and the Euler formula—the area of boundary and
non-boundary i-polygons s′i and si was computed. It
got the following equations: s3 = 1.299, s4 = 1, s5 =

Table 1. Upper bound for the maximal independent set in a unit
disk graph.

Approx. algorithm Upper bound for the MIS

Wan et al. (2002) 4γ + 1
Wu et al. (2006) 3.8γ + 1.2

Funke et al. (2006) 3.748γ + 9
Wan et al. (2008) 3.6667γ + 1.3333
Gao et al. (2009) 3.478γ + 4.874
Li et al. (2011) 3.4306γ + 4.8185

Wu et al. (2010) 3γ + 2 (conjecture)
CDS-ITCC-G∗ 3.2833γ + 4.5590
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0.9082, s6 = s7 = · · · = 0.8661; s′3 = 1.1781, s′4 =
0.9717, s′5 = 0.8968, s′6 = 0.8546, s′7 = s′8 = · · · =
0.8525. The performance of these approximations highly
depends on the relationship between the size of an MIS
(α) and the size of minimum CDS (γ) in graph G. Here
α/γ is called the theoretical bound to approximate the
CDS.

A theorem that the rough bound for the MIS and the
MCDS is SMIS ≤ SMCDS ≤ 2.9425γ + 4.1251 has been
given. They obtained an upper bound 3.478γ + 4.874
by the Euler formula. Li et al. (2011) obtained a
tighter relation between the independence number and
the connected domination number, and employed quite
a complicated geometry argument to push this bound
further to 3.4306γ+ 4.8185. To our knowledge, no result
has been reported on constructing the CDS by using rule
networks. As a rule network, the crossed cube has good
properties. In this paper, based on the induced tree of the
crossed cube in the square of a graph, a novel distributed
CDS construction algorithm named CDS-ITCC-G∗ is
presented, which can generate a maximal independent set
with the approximation ratio of 3.2833γ + 4.5590. The
evolution of the improvement is shown in Table 1.

There is also some research on the second stage
(Xu and Lin, 2007; Kim et al., 2009; Wan et al., 2008;
Han, 2009; Bahaa-Eldin et al., 2012; Wu et al., 2010;
Zou et al., 2011; Misra and Mandal, 2010; Li et al.,
2011; Tang et al., 2012). Constructing a minimum
spanning tree is one majority way to connect a dominating
set into a connected virtual backbone. Han (2009)
proposed the Zone algorithm, with the highest priority
in its neighborhood, where the node is selected as the
dominator. The priority of nodes can be determined
according to the lowest ID node and the highest degree
node. In the second phase, between two dominators,
the highest-priority node is considered as a connector
node in the same zone. Kim et al. (2009) proposed the
connected dominated sets-bounded diameters-distributed
(CDS-BD-D) clustering algorithm, which is a distributed
clustering algorithm that comprises two phases. The
first one applies the distributed breadth first search (BFS)
algorithm, and the second one selects dominators and
connectors.

The CDS-BD-D algorithm is interested in using
the average backbone path length (ABPL) to evaluate
the CDS, which considers energy to extend the network
lifetime. The ABPL of a CDS is the sum of the
hop distance between any pair of CDSs divided by
the number of all the possible pair of nodes. Tang
et al. (2012) proposed an efficient approximation MCDS
construction algorithm, E-MCDS (energy efficient MCDS
construction algorithm), which explicitly takes energy
consumption into account. The E-MCDS contains the
CDS construction stage and the pruning stage. In this
paper, the performance of our algorithm is compared

with the CDS-BD-D algorithm (Kim et al., 2009),
Zone-Min-ID, Zone-Max-Degree algorithms (Han, 2009)
and the E-MCDS (Tang et al., 2012).

The objectives of the algorithms described above
include minimizing the size of the CDS, but the objectives
of CDS construction are not or not only minimizing the
size of the CDS in some research. For example, there exist
works (Wang et al., 2009; Thai et al., 2007; Dai and Wu,
2005; Wu et al., 2007; Wu and Li, 2008; Li et al., 2012b;
Kim et al., 2010) that focus on constructing k-connected
m-dominating sets for fault tolerance. Algorithms of Li et
al. (2012a), Liu et al. (2013), He et al. (2013), Ding et al.
(2011) or Wu and Li (1999) focus on reducing routing
costs, rather than minimizing the total CDS size. These
algorithms have no fixed approximation ratios. Some
works consider constructing CDS for heterogeneous
networks; for example, the algorithm proposed by Ding
et al. (2012) takes into the consideration the issue of
constructing an energy-efficient virtual network using
directional antennas.

3. Problem statement

3.1. Definitions and notation. In this paper, a
communication model will be introduced by using graph
theory. Sensor nodes are randomly distributed in the
network field and have the same transmission range. The
link between any pair of nodes is bidirectional. One
network is modeled as a connected bidirectional graph
G = (V,E), where V and E represent the node set
and the link set in G, respectively. For any u, v ∈ V
there exists an edge (u, v) in G if and only if u is in
v′s transmission range in the network, v is also in u′s
transmission range, and there is no obstacle preventing
radio wave transmission between u and v.

Definition 1. (Node neighbourhoods) (Bahaa-Eldin et
al., 2012) Consider a node u. The set of nodes covered by
u is represented by N(u), N(u) = {v | (v, u) ∈ E} is
called the open neighbor set of u, N [u] = N(u) ∪ {u} is
called the closed neighbor set of u.

Nodes using an exchange of hello messages can find
its distance-1 neighbour nodes and ascertain their degree.
N2(u) denotes the set of nodes which are at most at
distance-2 from u. The distance-2 neighbour of u is
represented as N2(u)−N(u), which is composed of node
u′s local graph denoted as LG(u).

Definition 2. (Maximal independent set) (Kim et al.,
2010) A maximal independent set of a graph G = (V,E)
is a subset V

′ ⊆ V (G) such that every pair of vertices
in V

′
is not adjacent, and no independent vertex can be

added into V
′
.

Definition 3. (Dominating set) (Kim et al., 2010) A
dominating set of a graph G = (V,E) is a set of nodes
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V
′ ⊆ V (G) such that, for every (u, v) ∈ E(G), u ∈ V

′

or v ∈ V
′
.

Definition 4. (Connected dominating set) (Kim et al.,
2010) A connected dominating set of a graph G = (V,E)
is a DS of G such that the subgraph of G induced by the
nodes in this set is connected.

In many cases, an MIS construction algorithm is used
to find a DS. The nodes in the CDS are called dominators
and dominatees otherwise. The size of the CDS is equal
to the number of the dominators. Our algorithm is to find
an MIS which is based on building an induced tree of the
crossed cube network, and then connect the MIS nodes to
form a CDS.

3.2. Induced trees of the crossed cube network.
The ITCC algorithm is a distributed CDS constructed
algorithm; the construction of CDS is based on a square
of a local graph, which is defined as following.

Definition 5. (Square of a graph (G2)) (Bahaa-Eldin et
al., 2012) The square of a graph G, denoted by G2, is a
graph on the same vertex set such that two vertices are
adjacent in G2 iff their distance in G is at most two hops.

Fig. 1. Graphs G (a), the square of graph G2 (b), the star of
graph G∗ (c).

As shown in Fig. 1(a), N(u) = {v, y}, N(v) =
{u, y, w}, N(w) = {v, x}, N(x) = {w}. Since u,w ∈
N(v), but w /∈ N(u), add the link (u,w) when G2 is
constructed; in a similar way, (v, x) is the added link,
which is shown in Fig. 1(b). Set G∗ = G2\E(G), as
depicted in Fig. 1(c). Our algorithm is a distributed local
algorithm, so all the following G∗’s are constructed on
some local graphs LG(u).

Definition 6. (Crossed cube) (Cheng et al., 2013)
The crossed cube CQ1 is a complete graph with two
vertices labeled by 0 and 1, respectively. For n ≥ 2, an
n-dimensional crossed cube CQn consists of two (n −
1)-dimensional sub-crossed cubes, CQ0

n−1and CQ1
n−1,

and a perfect matching between the vertices ofCQ0
n−1and

CQ1
n−1, according to the following rule.

Let V (CQ0
n−1) = {0un−2un−3 . . . u0 | ui = 0 or

1} and V (CQ1
n−1) = {1vn−2vn−3 . . . v0 | vi = 0 or 1}.

The vertex u = 0un−2un−3 . . . u0 ∈ V (CQ0
n−1) and the

vertex v = 1vn−2vn−3 . . . v0 ∈ V (CQ1
n−1) are adjacent

in CQn if and only if
(1) un−2 = vn−2 if n is even, and
(2) u2i+1u2i ∼ v2i+1v2i, for 0 ≤ i ≤ �(n− 1)/2	.

Two binary strings u = u1u0 and v = v1v0 are
pair-related, which is denoted by u ∼ v, if

(u, v) ∈ {(00, 00), (01, 11), (11, 01), (10, 10)}.
An edge (u, v) ∈ E(CQn) is labelled by j if uj 
= vj and
ui = vi for j+1 ≤ i ≤ n−1. For n ≥ 2, suff(u) = u1u0

denotes the rightmost two bits of u.
For example, CQ1, CQ2, CQ3 and CQ4 are shown

in Figs. 2(a1), (b1), (c1) and (d1), respectively.

Definition 7. (Vertex extension) (Wang et al.,
2011) Let u be a binary string. A quadrilateral
consisting of u00, u01, u11, u10 is called a basic
quadrilateral of u, denoted by Cu. The edges
{(u00, u01), (u01, u11), (u11, u10), (u10, u00)} in Cu

are called basic edges.

For all n ≥ 3, CQn is a crossed extension of all the
edges in CQn−2.

All the trees are bipartite, the bipartite partition
of the tree T is denoted as {V1(T ), V2(T )}. That is
V1(T ), V2(T ) ⊆ V (T ), which satisfies V1(T ) ∩ V2(T ) =
φ and V1(T ) ∪ V2(T ) = V (T ). For every (u, v) ∈ E(T ),
there exist u ∈ V1(T ), v ∈ V2(T ). |V1(T )| ≤ |V2(T )| is
set without loss of generality.

Definition 8. (Induced trees of the crossed cube) The
induced tree of CQ1 is a tree with two vertices labelled
by 0 and 1, respectively,

V1(T ) = {1}, V2(T ) = {0}.
The induced tree of CQ2 is a tree with three vertices
labelled by 00 , 01 and 10, respectively,

V1(T ) = {00}, V2(T ) = {01, 10}.
Let Tn be an induced tree of CQn(n ≥ 2). Set

V1(Tn+2) = {u01 | u ∈ V1(Tn)}
∪ {u00 | u ∈ V2(Tn)},

V2(Tn+2) = {u10, u01 | u ∈ V2(Tn)}
∪ {u00 | u ∈ V1(Tn)}.

Then Tn+2 is the induced tree of CQn+2 with the set
V1(Tn+2) ∪ V2(Tn+2).

The induced trees Tn(n = 1, 2, 3, 4) are shown in
Figs. 2(a2), (b2), (c2) and (d2), respectively, where

V (T1) = {0, 1}, V (T2) = {00, 01, 10},
V (T3) = {000, 001, 010, 100, 101},
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Fig. 2. Graphs CQ1 (a1), CQ2 (b1), CQ3 (c1), CQ4 (d1), trees
T1 (a2), T2 (b2), T3 (c2), T4 (d2).

V (T4) = {0000, 0001, 0100, 0101, 0110,
1000, 1001, 1010}.

Assume the set of hollow circles is V1(Tn), and the set of
solid circles is V2(Tn).

4. CDS-ITCC-G∗ algorithm

In order to understand CDS-ITCC-G∗ better, the overview
of the algorithm is given first. Then we describe each part
of the algorithm in detail. There are mainly three stages
in CDS-ITCC-G∗: the first one is to construct G∗, the
second is to find the MIS based on the ITCC, which is
constructed in the local graphG∗, and then form a CDS by
connecting the nodes in MIS. The third stage is to prune
the set with the elimination rule, which aims to minimize
the size of the CDS.

4.1. G∗ construction stage. At the initial stage,
all nodes have to be given an initial status and then
exchange neighbour information among themselves to get
ready for CDS construction. All nodes must construct
the local graphs G, G2 and G∗ with themselves as the
centre. Each node ui holds message (id,W (ui)), where
W (ui) = (f(ui), dG∗(ui), dG(ui), re(ui)) is the weight

of the corresponding node. For each node ui, f(ui) is the
identification of the node status, the numerical value can
be obtained by the formula:

f(ui) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if ui is a normal node,
1, if ui is in the DS,
2, if ui is a connected node,
3, if ui has been eliminated.

(1)

Here dG∗(ui) is the degree of the node ui in graph
G∗, dG(ui) is its degree in graph G, and the value of
re(ui) represents residual energy. The node’s weight is the
priority for these elements. For example, for some nodes
with the same value of f , the higher the degree of dG∗ ,
the greater the weight, so the probability of the node to
be selected into the CDS is greater. A detailed description
will be given in the following algorithm.

Following the stages described in Sections 4.2 and
4.3 is the main operation for generating a near-optimal
MCDS, which is composed of two steps: CDS-ITCC-G∗

construction and the elimination stage.

Fig. 3. Construction of the induced tree of the crossed cube T1

(a), T3 (b), T5 (c).
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4.2. CDS-ITCC-G∗ construction stage. The
CDS-ITCC-G∗ construction stage is divided into two
sub-stages, which are a DS-ITCC-G∗ construction stage
and a connecting stage. In the first sub-stage, an initial
node is selected as the root, and then, to construct an
induced tree of the crossed cube, the second sub-stage
aims to connect the DS and form a CDS. Figure 4 shows
the overall mechanism of the CDS-ITCC-G∗ algorithm.

The (n + 2)-dimensional induced tree Tn+2 is
uniquely determined by the (n)-dimensional induced tree
Tn. The 1- and 2-dimensional induced trees T1, T2 are
determined in Definition 8. Then the induced tree of any
dimensions crossed cube can be constructed recursively as

T1 → T3 → T5 . . .

and
T2 → T4 → T6 . . .

Figure 3 shows an example of the recursive
procedure of induced trees. T1 is shown in Fig. 3(a),
where V1(T1) = {1} and V1(T2) = {0} are the bipartite
partitions of the tree T1. Figure 3(b) is the induced tree
T3. Since

V1(Tn+2) = {u01 | u ∈ V1(Tn)}
∪ {u00 | u ∈ V2(Tn)},

V2(Tn+2) = {u10, u01 | u ∈ V2(Tn)}
∪ {u00 | u ∈ V1(Tn)},

the set of hollow circles is V1(T3) = {000, 101}, and
the set of solid circles is V2(T3) = {001, 010, 100}.
Similarly, the set of hollow circles shown in Fig. 3(c) is
V1(T5), and the set of solid circles is V2(T5), which is
extended from T3. Algorithm 1 is a CDS algorithm based
on induced trees of the crossed cube network.

Initialization for the parameters should be conducted
before the algorithm starts (Line 1 in Algorithm 1), then,
one node is selected to join into the graph of induced trees
of the crossed cube GT (Line 2 in Algorithm 1). Assume
that the node u0 has the maximum weight, labelled by 0.
The function dom (V (Tn)) is called at the same time. It
aims to find the dominatees for each dominator in V (Tn),
and the set of NG(V (Tn)) is added into the set of the
dominatees Vd. Since a flag named flag is used to describe
whether the algorithm is completed, it is also implemented
by the function dom (), which is to judge whether all the
nodes in the network have decided their own states, as a
dominator or a dominatee. When Vd ∪ S is equal to V ,
this means the algorithm is completed, and set flag ⇐ 1 .

If flag! = 1, the function one-tree () is called to
construct the 1-dimension induced tree of the crossed cube
T1. One node u1, which has the maximum weight, is
selected from NG∗(u0), labeled by 1, and set f(u1) ⇐
1. This new node u1 and the related edge are added
into induced tree V (T1) at the same time, then, the new

Algorithm 1. CDS algorithm based on induced trees of
the crossed cube network (CDS-ITCC-G∗).
Require: A simple connected graph G(V,E)

1: V (Tn) = φ; E(Tn) = φ; CDS = φ, the set of the
dominatees Vd = φ; each node ui hold (id,W (ui)),
where f(ui) = 0; flag = 0; n = 1.
2: select a node u0, labeled by 0 with f(u0) = 1,
V (Tn) = u0, call function dom(V (Tn));
3: if (flag! = 1)
4: call function one-tree(V (Tn));
5: endif;
6: if (flag! = 1)
7: n = 2;
8: call function two-tree(V (Tn));
9: endif;
10: while (flag! = 1) do
11: n++;
12: call function induced-tree(V (Tn));
13: end while;

induced tree is constructed as V (Tn) ⇐ {u0, u1} and
E(Tn) ⇐ E(Tn) ∪ (u0, u1). According to Definition 2,
the dimension of the induced tree can be extended, the
nodes must be divided into bipartite partitions. Let
V1(Tn) ⇐ {u1} and V2(Tn) ⇐ {u0}.

When at least two nodes are selected into the induced
tree as a DS, the function connect (GT ) is called, which
aims to select the connector nodes to make the DS
connected. This function is implemented as follows. For
each edge (u, v) ∈ E(G∗), according to the definition of
graph G∗, there exist some nodes in NG(u) ∩ NG(v) if
f(u) == f(v) == 1. The one that has the maximum
weight, named w, can be selected as the connector node;
thus, node w joins the set of CDS referred to as CDS ⇐
V (Tn) ∪ w and set f(w) ⇐ 2 at the same time; set
C1 ⇐ CDS. Later, the function dom (CDS) also must
be exacted to judge whether the algorithm is completed.

If it is still flag! = 1, the function two-tree () is
called to construct the 2-dimension induced tree, which
is similar to the function one-tree (). After evaluating
this function, the nodes and edges are selected, where
V (Tn) ⇐ {u0, u1, u2} and E(Tn) ⇐ E(Tn) ∪ (u0, u2).
These nodes divided into bipartite partitions as V1(Tn) ⇐
{u0} and V2(Tn) ⇐ {u1, u2}. If still flag! = 1, the
n-dimension induced tree can be extended by the function
induced-tree () until flag == 1. This function is similar to
the function one-tree (). The new nodes are extended by
the bipartite partitions, which is describe in Algorithm 2.

4.3. Elimination stages. Applying a dominating
reducing rule can reduce some redundant nodes in the
CDS. In this section, the elimination stage is designed
to minimize the size of a CDS. If all the nodes of the
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Fig. 4. Overall mechanism of CDS-ITCC-G∗.

CDS, nodes’ non-CDS neighbours and the node itself are
covered by at least two nodes of the CDS, the node of the
CDS is redundant and deleted from the CDS. The pruning
stage is introduced in detail in Algorithm 3.

5. Theoretical analysis

This section will elaborately prove the following facts:
(i) the correctness that all nodes with f(ui) = 1 or 2
form a CDS, (ii) calculation of the approximation ratio
of the CDS-ITCC-G∗ algorithm, (iii) the cardinality of the
induced trees is a Fibonacci sequence, and an upper bound
of the number of the DS is established.

Theorem 1. Given a graph G = (V,E), before the
elimination stage, all nodes in Tn with f(ui) = 1 form an
MIS.

Proof. The nodes u, v are connected in G∗ if, and only if
the nodes u, v are non-adjacent in graph G. At the initial
stage, u0 is selected as an initiator, and f(u0) = 1, after
operating Line 2 in Algorithm 1, each node in NG(u0)
is dominated by u0 and belongs to Vd. The algorithm is
being completed until flag == 1. Lines 4, 8 and 12 in

Algorithm 1 are employed to construct the induced tree,
each node v with f(v)=1 in V (Tn) is selected from

NG∗(vi)\(Vd ∪ CDS),

so all nodes in Tn are independent, which either belong
to N(Tn) or Vd. According to Definition 2, V ′ is an MIS
when no independent vertex can be added into V ′. If there
is an independent vertex which can be added into Tn, there
must be flag! = 1 (Lines 3, 6 and 10 in Algorithm 1),
which contradicts the fact that the algorithm is complete.
Therefore, all nodes in Tn with f(ui) = 1 form an MIS.

�

Theorem 2. Given a graph G = (V,E), all nodes with
f(ui) = 1 or 2 form a CDS.

Proof. All nodes ui with f(ui) = 1 form a DS. Now
we need to show that the set of nodes with f(ui) = 1
or 2 is connected. Assume that u, v ∈DS are two adjacent
nodes in G∗; after calling the function connect (), the relay
node w with f(w) = 2 is selected from NG(u) ∩NG(v),
where w is the common neighbour of u, v. If there is no
such node, the distance between u and v is more than two
hops, neither u and v are not adjacent in G∗ according to
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Algorithm 2. Induced-tree().

Require: V (Tn)
1: for each ui ∈ V1(Tn−2) /∈ φ and flag! = 1 and
NG∗(ui)\(Vd ∪CDS)! = φ
2: i = 0;
3: V (Tn) = V (Tn−2);
4: select a node in NG∗(ui)\(Vd ∪ CDS), with
the maximum weight uj with f(uj) = 1;
5: V (Tn) = V (Tn) ∪ uj , E(Tn) = E(Tn) ∪
(ui, uj);
6: i++;
7: call function connect(V (Tn)); dom(CDS);
8: end for;
9: for each vi ∈ V2(Tn−2) /∈ φ and flag! = 1 and
NG∗(vi)\(Vd ∪ CDS)! = φ
10: i = 0;
11: select a node in NG∗(vi)\(Vd ∪CDS), with
the maximum weight vj with f(vj) = 1;
12: V (Tn) = V (Tn) ∪ vj , E(Tn) = E(Tn) ∪
(vi, vj);
13: call function connect(V (Tn)); dom(CDS);
14: if flag! = 1
15: select a node in NG∗(vi)\(Vd ∪ CDS),
with the maximum weight vk with f(vk) = 1;
16: V (Tn) = V (Tn)∪ vk, E(Tn) = E(Tn)∪
(vi, vk);
17: endif;
18: i++;
19: call function connect (V (Tn)); dom(CDS);
20: end for;
21: each ui ∈ V1(Tn−2), ui labelled by ui00;
22: each vi ∈ V2(Tn−2), vi labelled by vi00;
23: each uj code of uj01, vj labelled by vj01, and vk
labelled by vk10;
24: V1(Tn) = {uj01, vi00 : uj ∈ V1(Tn−2), vi ∈
V2(Tn−2)}, V2(Tn) = V (Tn)− V1(Tn);

Algorithm 3. Elimination( ).

Require: GT (V (Tn), E(Tn)), CDS
1: for each node u ∈ V (Tn)
2: if (suff(u)! = 00)
3: if (NG[u] ⊂ NG[CDS − u])
4: V (Tn) = V (Tn)− u, f(u) = 3;
5: endif;
6: endif;
7: end for;

the Definition 4, a contradiction. Therefore, all nodes with
f(ui) = 1 or 2 are connected.

After the elimination stage, the dominators in the
boundary, whose neighbourbood includes themselves, are
dominated by other nodes in the CDS, f(ui) = 3 (Lines 2,
3 and 4 in Algorithm 3). It does not affect the connectivity

Fig. 5. One example for the Voronoi diagram.

and the domination. Therefore, all nodes with f(ui) = 1
or 2 form a CDS. �

Theorem 3. Given a graph G = (V,E), let α be the DS
obtained from the algorithm CDS-ITCC-G∗. Then

α ≤ 3.2833γ + 4.5590 (2)

where γ is the size of any optimal CDS of G.

Proof. The algorithm CDS-ITCC-G∗ is based on
constructing the MIS. Let |MIS| = α, and |MCDS| = γ.
There is a close relationship between α and γ in the
unit disk graph. A new graph G′ can be constructed by
increasing the transmission range of nodes from 1 to 1.5,
which are in the MCDS, and decreasing the transmission
range of the rest nodes from 1 to 0.5, so that the cover area
of the nodes in V is located inside the area formed by the
MCDS. If we select an MIS for G, for the nodes in the
the MIS, the distance between any two nodes’ cover area
should be greater than 1. Since the transmission range of
nodes in V \ MCDS for G′ is decreased to 0.5, any two
of cover areas from the MIS will not intersect each other.
Now we want to find the rough bound between the sum of
the maximum area of the MIS and the area of the MCDS:
α/γ.

For a graph G′, for each cover area of each node
ui ∈ MIS, as shown in Fig. 5, the corresponding
Voronoi cell, with the outer boundary, is the boundary
for the MCDS. Clearly, each non-boundary Voronoi cell
is a convex polygon, and the boundary Voronoi cells is
some special kind of polygons with one arc edge. With
exactly i edges, the number of non-boundary Voronoi
cells are denoted as αi, the boundary Voronoi cells are
denoted as α′

i. The i-polygon cell, which is the minimum
area of the non-boundary cell, is denoted as si, and the
minimum area of the boundary cell is denoted as s′i. The
following formula (Gao et al., 2009) gives a bound for the
approximation ratio α/γ:
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SMIS =
∑

i

(siαi + s′iα
′
i)

= 1.299α3 + 1.178α′
3

+ α4 + 0.972α′
4 + 0.9082α5

+ 0.8968α′
5 + 0.866(α6 + . . . )

+ 0.8546α′
6 + 0.8525(α′

7 + . . . )

≤ SMCDS ≤ 2.9435γ + 4.1251.

(3)

For an induced tree Tk, it is easy to see that the vertex
v has the maximum degree in G∗, where dG∗(v) = k− 1.
The node is in the intermediate cell with the Voronoi
division, as to simplify the calculation. The Voronoi
division will be modified as regularization, such that the
degree of any vertex of v in the Voronoi division is exactly
k. For any vertex v whose d(v) = d < k, add k − d
new vertices v1, v2, . . . , vk−d as its new neighbours in
clockwise ordering, such that the distance between v and
any vi is sufficiently small, so that the area of all Voronoi
cells will almost remain the same, and the number of
edges of original Voronoi cells is no more than that of new
cells. By using Euler’s formula, we get

∑

i

(αi + α′
i)−m+ n = 1. (4)

Since G′ is a k-regularization graph, according to the
principle of the shaking hand, there is 2m = kn. Then

∑

i

(αi + α′
i)−

k − 2

2
n = 1. (5)

Each edge is exactly in two faces and there is at least
one edge belonging to the outer face for any boundary cell.
Hence

∑

i

iαi +
∑

i

(i+ 1)α′
i − kn ≤ 0. (6)

By the formulae (5) and (6), we have
( 2k

k − 2
− 3

)
α3 +

( 2k

k − 2
− 4

)
α′
3 + · · · ≥ 2k

k − 2
. (7)

By the formulae (3) and (7), we have

· · ·+ [0.8661−
( 2k

k − 2
− 6

)
× 0.0114]α6 + . . .

+ [0.8546−
( 2k

k − 2
− 7

)
× 0.0114]α′

6 + . . .

≤ 2.9435γ + 4.1251− 0.0114× 2k

k − 2
.

(8)

From α =
∑

i(αi + α′
i), we have

α ≤ 2.9435γ + 4.1251− 0.0114× 2k
k−2

0.8661− ( 2k
k−2 − 6)× 0.0114

. (9)

Since Wu et al. (2010) proved that a dominating disk
can contain at most five independent nodes, set k = 5.
Then α ≤ 3.2833γ + 4.5590. �

Theorem 4. Given a graph G = (V,E), the number of
nodes in the DS based on the induced tree of the crossed
cube is approximately equal to

0.447× [1.618n+2 − (−0.618)n+2], (10)

where n ≥ 1 is the dimensional of the crossed cube.

Proof. According to Definition 8, the number of the
nodes in the induced tree consists of bipartite partition
V1(Tn) and V2(Tn). We have

|Tn| = |V1(Tn)|+ |V2(Tn)| . (11)

Especially, |T1| = 2 in CQ1, |T2| = 3 in CQ2, and |T3| =
5 in CQ3.

According to the definition of the induced trees of the
crossed cube, |Tn| is a Fibonacci series for n = 1, 2, . . .
satisfying

|Tn| = |Tn−1|+ |Tn−2| (n ≥ 3). (12)

Assuming that

|Tn| = Fn, (13)

and

Fn+1 + xFn = y(Fn + xFn−1), (14)

we have

Fn+1 = (y − x)Fn + xyFn−1 (15)

and

Fn+1 = Fn + Fn−1. (16)

Hence

(
x =

√
5− 1

2
, y =

√
5 + 1

2

)

or
(
x =

−√
5− 1

2
, y =

−√
5 + 1

2

)
.

Take the former solution; then

Fn+1 +

√
5− 1

2
Fn

=

√
5 + 1

2
(Fn +

√
5− 1

2
Fn−1). (17)

Assume that

bn = Fn+1 +

√
5− 1

2
Fn. (18)

Then

bn =

√
5 + 1

2
bn−1,
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Fig. 6. One comparative example of the number of MCDSs.

Fig. 7. Construction of a CDS by CDS-ITCC-G∗.
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so the series bn is geometric, with the first element

b1 =
(√5 + 1

2

)3

,

and the common ratio

q =

√
5 + 1

2
,

so

bn =
(√5 + 1

2

)n+2

.

Hence

Fn+1 +

√
5− 1

2
Fn =

(√5 + 1

2

)n+2

. (19)

Assume that

Fn+1 + x
(√5 + 1

2

)n+3

=
1−√

5

2

[
Fn + x

(√5 + 1

2

)n+2]
. (20)

By the formulae (19) and (20), there is x = −1/
√
5

such that

Fn+1 − 1√
5

(√5 + 1

2

)n+3

=
1−√

5

2

[
Fn − 1√

5

(√5 + 1

2

)n+2]
.

(21)

Assume that

cn = Fn − 1√
5

(√5 + 1

2

)n+2

.

The series cn is a geometric one with the first element

c1 = 3− 1√
5

(√5 + 1

2

)3

= − 1√
5

(1−√
5

2

)3

(22)

and the common ratio (1−√
5)/2 so

cn = − 1√
5

(1−√
5

2

)n+2

.

We have

Fn =
1√
5

[
(√5 + 1

2

)n+2

−
(1−√

5

2

)n+2
]

≈ 0.447×
[
1.618n+2 − (−0.618)n+2

]
. (23)

Therefore the number of nodes in the DS based on the
induced tree of the crossed cube is approximately equal to
0.447× [1.618n+2 − (−0.618)n+2]. �

Theorem 4 illustrates that for the network, when the
dimensionality of the induced tree of the crossed cube
has been settled, the number of the nodes in CDS can be
calculated, which is more accurate than the approximation
ratio.

6. Simulations

6.1. One example of the CDS-ITCC-G∗ algorithm.
The performance of the CDS-ITCC-G∗ algorithm is
evaluated by comparing it with some traditional CDS
algorithms (Kim et al., 2009; Han, 2009) in this section.
In order to illustrate how CDS-ITCC-G∗ outperforms
these CDS clustering algorithms in terms of reducing
the CDS size, the same distribution of nodes are used.
Figure 6 shows a comparative example quoted from
(Bahaa-Eldin et al., 2012). In Figs. 6(b)–(e), each CDS is
constructed according to a certain CDS algorithm. Figures
6(b)–(d) show the CDS when Zone-Min-ID (Han, 2009),
Zone-Max-degree (Han, 2009) and CDS-BD-D (Kim
et al., 2009) algorithms are applied, the number of the
CDS being 9, 6 and 5, respectively. It is shown that the
CDS-ITCC-G∗ algorithm has the smallest CDS size of 4
which is shown in Fig. 6(e).

Figures 7(a)–(e) illustrate the execution stages of our
algorithm. At first the graph G∗ is constructed in Fig. 7(a).
Node 8 has the maximum degree in G∗, so it is selected as
the initiator coloured with black. Let u0 = 8, and labelled
by 0, f(8) = 1 (Line 2 in Alg.1). Call the function dom ()
in Fig. 7(b). It is easy to see that the nodes 3, 4, 5 and 6 are
dominated by the node 8. However, {8, 3, 4, 5, 6} 
= V ,
so the algorithm continues as specified (Line 3 in Alg. 1).
Then call the function one-tree () (Line 4 in Alg. 1).

Node 12 has the maximum weight in NG∗(8), as it
has the greatest degree dG∗(12) = 6. Node 12 is selected
into the induced tree coloured with black. Let u1 = 12,
and labelled by 1, f(12) = 1, and V (Tn) = {u0, u1}.
Then call the function connect (V (Tn)). There is only
one node 5 satisfying wi ∈ NG(8) ∩NG(12), so CDS =
V (Tn)∪{5} and f(5) = 2 coloured with gray as shown in
Fig. 7(c). Since CDS∪Vd 
= V , call the function two-tree
(V (Tn)) (Line 8 in Alg. 1).

Since the label of each node in the 2-dimensional
crossed cube is 2-bit, node u0 is labelled by 00, node u1

labelled by 01, and there are two nodes

{1, 2} ⊆ NG∗(8)\(CDS ∪ Vd).

Node 2 is selected into the induced tree coloured with
black as dG∗(1) = dG∗(2) and dG(1) < dG(2). Let
u2 = 2, and labelled by 10, f(2) = 1, and V (Tn) =
{u0, u1, u2}. In Fig. 7 (d), call the function connect
(V (Tn)). There are two nodes satisfying {3, 4} ⊆
NG(8)∩NG(2). Node 3 is selected as the connector node
coloured with grey as dG∗(3) > dG∗(4), so f(3) = 2
and CDS = V (Tn) ∪ {3}. Now flag == 1, so execute
Alg. 3, in Fig. 7(e) according to the elimination stage
NG[2] ⊂ NG[CDS − {2}], so V (Tn) = V (Tn) − {2},
f(2) = 3 (Line 3 in Alg. 3). The CDS consists of nodes
3, 5, 8 and 12 as shown in Fig. 6(e).
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Fig. 8. Comparative example.

6.2. Comparative example. Another comparative
example also quoted from the work of Bahaa-Eldin et al.
(2012) is presented in Figs. 8(a)–(d). Network parameters
used in these figures are identical, 100 nodes are in a
100×100 network generated randomly with 25 as the
transmission range. Figures 8(a)–(c) show the CDS
when Zone-Min-ID, Zone-Max-degree and CDS-BD-D
algorithms are applied and the CDS sizes are 24, 23 and
21, respectively. The induced tree T3 has been structured
in Fig. 8(e), and CDS ∪ Vd 
= V . Consequently, the
algorithm must be continued. The induced tree T4 has
been structured in Fig. 8(f), where

V (Tn) = {0000, 0001, 1000, 1001, 1010, 0101, 0110}.
Obviously, CDS ∪ Vd 
= V .

Another NG[0101] ⊂ NG[CDS − 0101], so {0101}
is eliminated. Continue the algorithm. The induced tree
T5 has been structured in Fig. 8(g). We have

NG[00101] ⊂ NG[CDS − {00101}],
so {00101} is eliminated. After all nodes have determined
their states by CDS-ITCC-G∗ the total size of the CDS is
13 nodes as shown in Fig. 8(d). It also can show that
CDS-ITCC-G∗ has the smallest CDS size.

In order to fully evaluate the performance of CDS
size, we will complete our CDS-ITCC-G∗ algorithm
with the recent ones, CDS-BD-D (Kim et al., 2009) and
E-MCDS (Tang et al., 2012). The nodes are randomly
distributed in the network, and all points in the figures are
simulated 100 times. Consider two system parameters,
the number of nodes in the space and the common
transmission range of nodes. The number of nodes is
increased by 10 from 10 to 100, and the maximum
transmission range varies between 20 and 30. Figure 9
shows the comparison of the algorithms in terms of CDS
size.

From Fig. 9, it is easy to see that the CDS size of
CDS-ITCC-G∗ is the smallest among all the compared
algorithms, the CDS size of CDS-BD-D being the biggest.
The size of CDS is increasing as the number of nodes
becomes bigger. Compared with (a) and (b), it is easy to
see that the CDS size becomes smaller as the transmission
range increases, which is because the transmission range
is bigger, the covered area is larger, and at the same
time the network area size is finite and then the size of
CDS is smaller. From these figures it is evident that
CDS-ITCC-G∗ provides the smallest CDS size.
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Fig. 9. CDS size versus the number of nodes R = 20 (a), R =
30 (b).

7. Conclusion

In this paper, a new induced tree based on the crossed cube
is defined and constructed recursively. A novel algorithm
CDS-ITCC-G∗ based on the induced tree in the G∗ is
presented, which can generate a maximal independent
set with the approximation ratio of 3.2833γ + 4.5590,
where γ is the size of any optimal CDS. It was proven
that the cardinality of the induced trees is a Fibonacci
sequence, an upper bound of the number of the DS is
0.447 × [1.618n+2 − (−0.618)n+2]. Compared with
some traditional algorithms, the CDS-ITCC-G∗ algorithm
enjoys the smallest CDS size.

Our interest for further investigation is to find some
methods to construct k-connected m-dominating sets for
fault tolerance, based on induced trees of the crossed cube.
Besides, we are interested in designing new distributed
CDS construction algorithms considering more factors
such as load balance, fault tolerance, and so forth.
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