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FLIGHT ACTUATORS

DANIEL OSSMANN a,∗, ANDREAS VARGA a

aInstitute of System Dynamics and Control
DLR Oberpfaffenhofen, D-82234 Wessling, Germany

e-mail: {daniel.ossmann,andreas.varga}@dlr.de

We propose linear parameter-varying (LPV) model-based approaches to the synthesis of robust fault detection and diag-
nosis (FDD) systems for loss of efficiency (LOE) faults of flight actuators. The proposed methods are applicable to several
types of parametric (or multiplicative) LOE faults such as actuator disconnection, surface damage, actuator power loss or
stall loads. For the detection of these parametric faults, advanced LPV-model detection techniques are proposed, which
implicitly provide fault identification information. Fast detection of intermittent stall loads (seen as nuisances, rather than
faults) is important in enhancing the performance of various fault detection schemes dealing with large input signals. For
this case, a dedicated fast identification algorithm is devised. The developed FDD systems are tested on a nonlinear actuator
model which is implemented in a full nonlinear aircraft simulation model. This enables the validation of the FDD system’s
detection and identification characteristics under realistic conditions.
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1. Introduction

There are several classes of flight actuator faults whose
early detection and timely handling contribute to safe
operation of aircraft, avoid excessive fuel consumption
(with all associated negative environmental effects) and
increase the aircraft operational autonomy. Therefore,
the deployment of fault detection and diagnosis (FDD)
systems for monitoring and identification of these faults
is of paramount importance for large civil transport
aircraft. Once a certain type of fault has been identified,
appropriate reconfiguration actions may take place in
order to eliminate the effects of malfunctioning and to
ensure acceptable performance. A standard certification
requirement for aircraft is that no single fault can lead
to catastrophic consequences. To fulfill this aim, the
flight control system augmented with appropriate FDD
systems must reliably operate over the whole flight
envelope, for a large variety of maneuvers, in the presence
of uncertainties such as external wind disturbances or
variations of aircraft parameters.

Robust linear parameter-varying (LPV) model based
fault diagnosis approaches for the main categories of
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additive type flight actuator faults have been developed
by Varga and Ossmann (2014) using a component level
approach, where each flight actuator is independently
monitored using exclusively locally available signal
measurements. The main advantages of such an approach
is that the fault isolation is implicitly provided by the
fault detection scheme and the resulting fault detection
filters are simpler to implement than filters resulting from
system-wide approaches. Due to these advantages this
approach is the current industrial state-of-the-practise.
However, the development of similar component level
methods for parametric or multiplicative types of faults,
such as various loss of efficiency (LOE) faults, raises
challenges because of the typical lack of a strong fault
detectability property. In other words, parametric faults
typically lead to changes in the actuator dynamics and
therefore have asymptotically vanishing effects which
need very short fault detection times. To fill this gap,
in this paper we address the problem of detecting and
identifying a parametric type of LOE faults by proposing
a complete methodology for the design of a dedicated
model based FDD system on the actuator level.

The detection and identification of the LOE type of
flight actuator faults has been intensively studied (see,
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e.g., the works of Caglayan et al. (1988), Marton and
Ossmann (2012), Eykeren et al. (2012) and the references
cited therein). Early detection of these faults is important
to prevent, via suitable control reconfiguration schemes,
undesired effects on the flight mechanics, aircraft stability
and fuel consumption. There exists LOE faults which,
although parametric, can be still addressed using methods
suited for additive faults. An example of such an
LOE fault is an unmeasurable change in the actuator’s
input signal, caused, for example, by incorrect signal
transmissions from the flight control computer to the
actuator or induction of an undesired current by external
effects. The result is a corrupted input-output transfer
gain, as discussed by Boškovic et al. (2005). Suitable
methods to monitor these faults are given by Varga and
Ossmann (2014).

In this paper we focus on developing methods
suitable for the detection and identification of parametric
(or multiplicative) LOE faults, whose main effects are
changes in the dynamical behavior of the actuator. Such
LOE faults are caused by a leakage within the actuator, a
damage in the control surface or even the disconnection of
the actuator rod from the control surface, which represents
a worst-case scenario of the LOE, as the efficiency of
the control surface goes to zero. The disconnection
of the actuator, as well as any damage of the control
surface, leads to an increased bandwidth of the actuator
due to the reduced aerodynamic loads transferred to the
actuator piston. In contrast, due to a reduced available
pressure, leakages cause a decrease in the bandwidth. For
the development of a fault tolerant flight control system,
robust detection and identification of such a parametric
type of LOE faults over the whole flight envelope, for
different pilot maneuvers and wind conditions, and over
the whole range of uncertain parameter variations is an
important prerequisite.

A special type of LOE discussed separately in this
paper is the so-called stall load phenomenon. Stall
loads are intermittent saturations of the actuator, which
occur when the aerodynamics loads temporarily exceed
the maximum available actuator force produced by the
hydraulic pressure in the system. The net effect is a
temporarily stucking of the control surface at its current
position (Goupil et al., 2014). Although this phenomenon
can be interpreted as a certain type of LOE fault, in
most cases it has merely the character of a nuisance
(thus to be ignored), due to its short time appearance.
Nevertheless, since stall loads manifest typically at large
control amplitudes, their fast detection and identification
is important to distinguish them from other (e.g., additive)
faults. Without explicitly recognizing stall loads, the
detection of many additive faults in the case of large
control inputs becomes more difficult due to the need for
using larger detection thresholds which limit the smallest
amplitude of detectable faults.

There are several ways to deal with the problem
of a stall load. One is to use high fidelity models
which include stall load effects as a basis for residual
generator synthesis as presented by Ossmann (2014a).
This requires the use of complex nonlinear models of the
underlying actuator dynamics (e.g., the reference model)
as part of the residual generator. However, to reduce the
necessary computational efforts on the flight computers,
much simpler models are to be preferred. In this paper a
different approach is proposed which is based on simpler
actuator models (thus simpler residual generators), by
using a dedicated detection and identification strategy of
stall load situations. Timely detection and identification of
the onset and termination of stall loads allow a substantial
enhancement of the aircraft situational awareness with
potentially improved overall FDD system performance.

Note that the paper does not address the aircraft stall
problem, but the actuator stall load phenomenon, which
may occur at large deflections of control surfaces due to
excessive aerodynamic loads acting on the actuator. In
contrast, during a stall of the aircraft the actuator loads
may decrease as the flow over the surfaces is separated.

The structure of the paper is as follows. In Section 2,
an overview of the model-based synthesis methodology
is presented. The architectures of two dedicated FDD
system architectures are described in Sections 2.1 and
2.2 for the detection, isolation and identification of the
parametric type of LOE fault as well as the stall load
phenomenon. The development of a suitable LPV-model
for the actuator dynamics as a basis for residual filter
design is presented in Section 3. In Sections 4 and 5
detailed discussions of the setup of the two FDD systems
are provided. In Section 6 the proposed detection and
identification strategies are applied to an aircraft aileron
actuator implemented in a nonlinear aircraft model.
Examples and validation results of the detection and
identification of the parametric type of LOE faults as well
as of the stall load are presented.

2. Model-based FDD

Model-based fault diagnosis relies on suitable dynamical
models of the system to be monitored. Typical
components/blocks of any FDD system include (i) the
residual generator to produce residual signals which
indicate the presence or absence of a specific fault, (ii)
the residual evaluation block to evaluate approximations
of the residual signal norms, (iii) the decision making
block to produce information on the presence or absence
of a fault, (iv) an optional signal processing-based fault
identification block to gather further information about the
fault (e.g., fault classification).

In what follows, we discuss shortly two possible
FDD system architectures suitable for monitoring
parametric LOE faults and the stall load.
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Fig. 1. FDD system for parametric LOE monitoring.

2.1. FDD system based on model detection. An
FDD system architecture suited for monitoring parametric
faults of flight actuators is presented in Fig. 1 and it
is based on model-detection techniques such as those
proposed by Varga (2009). The parametric faults are
modeled as a collection of N + 1 models, which includes
the fault-free model and N models describing relevant
fault cases. The residual generator is formed of a
bank of N + 1 model detection filters, which process
the commanded actuator position uc as well as the
measured current actuator position u and generate the
corresponding components of the (N + 1)-dimensional
residual vector rm. The i-th model detection filter
generates the i-th component of rm, which is a non-zero
signal of significant magnitude for all measurement pairs
(uc, u), except those which correspond to the i-th model,
in which case the i-th component of rm will (ideally) be
nearly zero. To cope with model uncertainties, robust
model detection techniques are envisaged to be used
based on LPV gain-scheduling techniques. For this
purpose, the vector ρ of scheduling variables is used as
described in Section 3. The residual evaluation block
computes specific approximations θm of the norms of the
components of the residual vector. These values are used
in the decision making block, where a threshold-based
decision logic is used to set the components of the
signature vector ιm to 0/1 values, which codes the model
detection results as follows: the i-th fault is detected
provided all components of ιm are 1 except for the i-th
component, which must be 0. Since the fault identification
is implicitly performed by this detection schemes, no
additional fault identification block is necessary.

2.2. FDD system for fault detection and identifica-
tion. For the detection and identification of stall loads an
FDD system with a traditional architecture as depicted in
Fig. 2 can be used. Besides a dedicated robust (LPV-gain
scheduled) residual generator with a scalar output r,
the FDD system includes blocks for residual evaluation,
decision making and stall load identification. In the
residual evaluation block an approximation θ of the norm
of the residual r is computed. A threshold-based decision
logic is employed to generate the decision signal ι, which,
if nonzero, triggers a specific signal based identification
processes. The output of this identification block is the
classification signal η, which indicates the presence (η =
1) or absence (η = 0) of a stall load. The identification
of the stall load consists in the determination of its main
characteristics from the measured actuator input signal uc

and the output signal u.

Fig. 2. FDD system for stall load detection and identification.

3. Generation of LPV models

Synthesis methodologies of FDD systems for various
flight actuator failures must comply with strong
requirements, by providing FDD-system designs which
guarantee performance robustness (e.g., the lack of false
alarms, the lack of missed detections, fast detection
times) in all operating conditions and in the presence of
model and environmental uncertainties. A prerequisite
for model-based approaches for robust fault diagnosis is
the availability of high-fidelity models to describe the
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complex actuator dynamics and their interaction with
aerodynamics loads acting on the control surfaces. In
this paper we rely on low complexity linear-parameter
varying (LPV) actuator models to serve for synthesis
purposes of FDD systems. The usefulness of such models
in addressing robust diagnosis of various additive types
of faults has been already demonstrated by Varga and
Ossmann (2014).

In the case of parametric actuator faults, such as
LOE types of faults, suitable parametric fault models are
necessary to describe not only the fault-free case but also
all relevant fault cases. In what follows, we apply the
LPV-model generation approach of Varga et al. (2011)
to generate LPV models starting from a high fidelity
nonlinear actuator model which describes the two main
categories of LOE faults. The resulting LPV models will
serve FDD-system synthesis purposes.

Let ν = [ νp,1, νp,2 ] be a two-dimensional vector
whose first component 0 < νp,1 ≤ 1 is used to describe
the effects of leakage (e.g., by lowering the available
pressure), while the second component 0 ≤ νp,2 ≤
1 describes the effect surface damage or disconnection
(e.g., by lowering the effect of aerodynamic force).
The fault-free case corresponds to ν = [ 1, 1 ]. For
the actuator with LOE faults we use a parameterized
nonlinear dynamic model of a hydraulic servo controlled
actuator described by a first-order nonlinear state equation
(e.g., Goupil, 2010; Marton and Ossmann, 2012) of the
form

ẋ = K(p, x, ẋ, ν)(uc − x), (1)

with the output u = x, where x and u are the rod position,
uc is the commanded position and

K(p, x, ẋ, ν)

:= KciKp

[
1

ΔPref
(νp,1ΔP (x)

−
(
νp,1sign(ẋ)Faero(p, x) +Kdẋ

2)S−1
)] 1

2

, (2)

whereKp is the servo control gain,Kci is a gain to convert
an estimated current to a corresponding rod speed, ΔP
is the hydraulic pressure delivered to the actuator, ΔPref

is a differential pressure for a fully opened servo-valve
(maximum rod speed), Faero represents the aerodynamic
forces at the control surface, Kdẋ

2 represents, in the case
of an active/passive actuator scheme (Goupil, 2010), the
estimated servo-control load of the adjacent actuator in
damping mode, and S is the actuator piston surface area.
The components of the vector p are flight parameters
like the calibrated airspeed Vcas and the aircraft altitude
h. Observe that the state-space model (1) is already in
a quasi-LPV form. However, the complex dependence
of the gain K(p, x, ẋ, ν) in (2) on its arguments (e.g.,

Faero(p, x) is available only in a tabular form) limits the
use of this model as basis for on-board implementations.

Let ν(i), i = 0, 1, . . . , N , be a collection of N + 1
representative values of fault parameter ν, which includes
the fault-free case ν(0) = [ 1, 1 ]. For each value ν = ν(i),
we aim to obtain a simple LPV model

ẋ = k(i)(ρ)(uc − x), (3)

which approximates (1) with good accuracy, where
ρ = (x, sign(ẋ), p) is the vector of measurable
parameters. The method employed by Varga et al. (2011)
approximates the nonlinear gain K(p, x, ẋ, ν) by (2) by
an easily computable gain k(p, x, ẋ, ν(i)), which is then
used in the first order actuator model as given in (3)
as k(i)(ρ) := k(p, x, ẋ, ν(i)). Taking into account that
the main variations of K(p, x, ẋ, ν) are caused by the
aerodynamic force Faero(p, x) which acts on the control
surface, the approximate gain is computed in the form

k(p, x, ẋ, ν(i))

= C0(p, ν
(i)) + C1(p, ν

(i))sign(ẋ)

+ x
(
C2(p, ν

(i)) + C3(p, ν
(i))sign(ẋ)

)
,

(4)

where, for fixed p, C0(p, ν
(i)) can be interpreted as

the nominal gain, C2(p, ν
(i)) describes the influence of

the deflection angle x on k, while the factor sign(ẋ)
allows distinguishing between upward and downward
movements of the control surface, modeled by C1(p, ν

(i))
and C3(p, ν

(i)).
The chosen functional dependence on x and sign(ẋ)

reflects the actual behavior of the actuator dynamics
for different control surface positions and signs of the
deflection rate. For Ci(p, ν

(i)), i = 0, 1, 2, 3, affine
approximations were used, where the intervening constant
coefficients were determined using parameter fitting
techniques based on comparing the output responses of
the nonlinear actuator model (1) and the LPV-model (3).
The final form of k(i)(ρ) is simple enough to be used in
LPV-model based fault diagnosis applications.

4. FDD system for detection and
identification of parametric LOE faults

Actuator faults due to leakage in the hydraulic system, or
a broken actuator rod, or surface damage lead to changes
in the actuator gain (2) and thus can be interpreted as
a parametric type of LOE faults. Due to the lack of
the strong fault detectability property, fault sensitivity
is provided only during transients, and therefore the
detection of such actuator faults using methods for
additive faults is often difficult. Also, the solution of
the associated fault identification problem (e.g., by using
parameter estimation techniques) is challenging due to the
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time-varying nature of the actuator gain. In this section
we describe an alternative approach to simultaneously
achieve fault detection and fault identification using an
approach based on model detection techniques. In what
follows we discuss the setup of the main components of
the FDD system in Fig. 1.

4.1. Residual generator for model detection.
Consider N + 1 LPV models of the actuator having the
simple form (3),

ẋ(i) = k(i)(ρ(i))(uc − x(i)),

u(i) = x(i),
(5)

which describe the relevant degradations of actuator
performance (i.e., slower dynamics due to different
degrees of the LOE type of faults) corresponding to the
values ν(i) for i = 0, 1, . . . , N . Here

ρ(i) =
(
x(i), sign(ẋ(i)), p

)
is the vector of measurable parameters to be used for
gain-scheduling.

To simplify the formal manipulations, we assume
that each ρ(i) is constant, so we can alternatively use
input-output representations of the form

u(i)(s) = G(i)(s, ρ(i))uc(s) (6)

for i = 0, 1, . . . , N , with the transfer functions

G(i)(s, ρ(i)) =
k(i)(ρ(i))

s+ k(i)(ρ(i))
. (7)

u(i)(s) and uc(s) are the Laplace-transformed quantities
of u(i)(t) and uc(t), respectively. The model detection
problem can be formulated as follows (Varga, 2009):
Determine a bank of N + 1 filters with scalar outputs of
the form

r(i)(s) = Q(i)(s, ρ(i))

[
u(s)
uc(s)

]
, (8)

with i = 0, 1, . . . , N and u(s) as the Laplace-transformed
quantity of u(t), such that for all uc(t) we have

(i) r(i)(t) ≈ 0 when u(t) = u(i)(t);
(ii) r(i)(t) �= 0 when u(t) = u(j)(t) for i �= j;

(iii) r(i)(t) is asymptotically bounded.
(9)

We can fulfill the condition (i) by simply choosing

Q(i)(s, ρ(i)) = M (i)(s)
[
1 −G(i)(s, ρ(i))

]
, (10)

which is by construction stable if M (i)(s) is stable, so the
condition (iii) is automatically fulfilled. M (i)(s) can be
chosen to modify the dynamics of the filter. For example,

M (i)(s) = (G(i)(s, ρ(i)))−1Gp(s) ensures the same poles
for all filters, defined by Gp(s). Furthermore, we have, for
u(t) = u(j)(t) and for j �= i,

r(i)(s)

= Q(i)(s, ρ(i))

[
u(j)(s)
uc(s)

]

= M (i)(s)
(
G(j)(s, ρ(j))−G(i)(s, ρ(i))

)
uc(s),

(11)

which shows that the condition (ii) is also fulfilled,
provided uc(t) is nonzero. Due to the presence of a zero
in the origin of G(j)(s, ρ(j)) − G(i)(s, ρ(i)), strong fault
detectability is not provided. Thus, for successful model
detection, uc(t) must not be a step signal.

The overall residual generator used for model
detection results in the form

rm(s) :=

⎡
⎢⎢⎢⎣
r(0)(s)

r(1)(s)
...

r(N)(s)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Q(0)(s, ρ(0))

Q(1)(s, ρ(1))
...

Q(N)(s, ρ(N))

⎤
⎥⎥⎥⎦
[
u(s)
uc(s)

]
. (12)

4.2. Residual evaluation and decision making. For
the evaluation of the magnitude of the residual signal
r(i)(t) for i = 0, . . . , N , we employ the so-called
Narendra signal evaluation scheme of the form (Narendra
and Balakrishnan, 1997)

θ(i)(t) = α(i)|r(i)(t)|

+ β(i)

∫ t

0

e−γ(i)(t−τ)|r(i)(τ)| dτ,
(13)

where θ(i)(t) can be generated by the first order filter

ξ̇(i)(t) = −γ(i)ξ(i)(t) + β(i)|r(i)(t)|,
θ(i)(t) = ξ(i)(t) + α(i)|r(i)(t)|.

(14)

The filter parameters α(i) ≥ 0 and β(i) ≥ 0 are
suitable weights for instantaneous and long-term values,
respectively, while γ(i) > 0 is the forgetting factor and
can be set to different values for different models.

For the detection of the i-th model, all components
of the residual vector rm(t) must be nonzero, except for
the i-th component. For each component r(i)(t) of the
N + 1-dimensional residual vector rm(t) an evaluation
signal θ(i)(t) of the form (13) can be generated to build
the evaluation vector

θm(t) := [ θ(0)(t), . . . , θ(N)(t) ]T ,

and define the decision vector ιm as

ιm(t) := [ ι(0)(t), . . . , ι(N)(t) ]T ,
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whose i-th component is defined as

ι(i)(t) =

{
1, if θ(i) ≥ τ (i)‖u‖2,
0 otherwise,

(15)

where τ (i) is a suitable threshold for nonzero gains. For
the threshold selection we can exploit (11) and choose

τ (i) := inf
j �= i

ρ(j), ρ(i)

‖G(j)(s, ρ(j))−G(i)(s, ρ(i))‖∞. (16)

Furthermore, with suitable scalings of the filters (14), it
is possible to use a unique value, say τ (i) = τm, for all
thresholds.

Regarding decision making, note that the only valid
signatures in ιm for model detection are those with a
single zero component. Therefore, all other signatures,
such as, e.g., all components nonzero or all components
zero, rule out cases when there is no LOE type of fault or
the detection conditions uc �= 0 or uc nonconstant are not
fulfilled. Note that this implicitly includes the fact, that
the parametric LOE actuator fault cannot be detected with
the proposed FDD system if the input is zero.

5. FDD system for detection and
identification of stall loads

In this section we describe the detection and identification
of the stall load phenomenon, which occurs when the
sum of antagonist forces to which the actuator has to act
exceeds the available hydraulic pressure in the system. In
this intermittent situation the control surface seems to be
temporarily stuck at its current position. This load from
a faulty behavior is to increase the detection threshold
so that the residual induced by a stall load does not
trigger an alarm. Another possibility is to delay possible
detections, as the time of occurrence of a stall load is
limited. Both approaches result in a degradation of the
detection performance of the FDD system (e.g., detection
times, minimum detectable fault magnitudes). However,
this is unacceptable in some cases.

These circumstances provide the motivation to
develop a dedicated detection and identification procedure
for stall loads. If the stall load situation is clearly
identified, the need for decreased thresholds or delayed
detections disappears and with it the degradation
of the resulting FDD system performance. Due
to the intermittent characteristics of stall loads, the
required situation awareness and hence the detection and
identification have to be achieved in a minimum of time.
Therefore, optimization based techniques will be used to
provide the best detection times together with a maximum
of robustness.

5.1. LPV residual generator for detection of stall
loads. Assume temporarily that the parameters in ρ

are constant. In this case we can use an input-output
representation of the actuator fault model in the form,

u(s) = G(s, ρ) (uc(s) + f(s)) , (17)

where u(s), uc(s), and f(s) are the Laplace-transformed
quantities of u(t), uc(t), and the fault f(t), respectively.
In (17), G(s, ρ) is a parameter dependent transfer
functions corresponding to (3)

G(s, ρ) =
k(ρ)

s+ k(ρ)
. (18)

As a residual generator we use a parameter dependent
filter of the form

r(s) = Q(s, ρ)

[
u(s)
uc(s)

]
, (19)

where Q(s, ρ) is the 1 × 2 transfer-function matrix of
the filter, which explicitly depends on the measurable
parameter ρ (e.g., via an equivalent state-space realization
of the filter). For a physically realizable filter, Q(s, ρ)
must be robustly stable for all values of ρ. The robust fault
detection synthesis problem addresses the robustness of
the fault detection system with respect to the measurable
parameter ρ by attempting to achieve robustness using an
LPV gain scheduling approach.

To address robust detection of the LOE, we employed
the synthesis method described by Varga et al. (2011).
Accordingly, we can use a first order detector of the form

Q(s, ρ) =

[
a

k0

s+ k(ρ)

s+ a
− k(ρ)a

k0(s+ a)

]
, (20)

where a is an arbitrary positive value specifying the
dynamics of the detector and k0 is a typical nominal
value of the gain k(ρ). By replacing in (19) u(s) by
its expression in (17), we obtain the internal form of the
detector,

r(s) = Ruc(s, ρ)uc(s) +Rf (s, ρ)f(s), (21)

where

[Ruc(s, ρ) |Rf (s, ρ) ]

:= Q(s, ρ)

[
G(s, ρ) G(s, ρ)

1 0

]
.

(22)

The choice (20) of Q(s, ρ) guarantees an exact
decoupling of control inputs in (22). Thus Ruc(s, ρ) = 0.
The corresponding fault-to-residual transfer function is

Rf (s, ρ) =
k(ρ)

k0

a

s+ a
.

The LPV state-space realization of the residual
generator (19) can be always obtained in the form

ẋQ(t) = AQxQ(t) +BQ(ρ)

[
u(t)
uc(t)

]
,

r(t) = CQxQ(t) +DQ(ρ)

[
u(t)
uc(t)

]
.

(23)
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For the detector (20), the state-space matrices are

AQ = −a, BQ(ρ) = a

[
k(ρ)− a

k0

k(ρ)

k0

]
, (24)

CQ = 1, DQ =

[
a

k0
0

]
.

The chosen form (20) of the detection filter leads to
a state-space realization with a constant feed-through
matrix DQ. This has the major advantage of preventing
all direct effects on r(t) of the discontinuities in the
scheduling signal ρ (e.g., jumps due to the presence of
the signum-function in (4)).

5.2. Residual evaluation and decision making. For
the evaluation of the scalar residual, the Narendra signal
evaluation scheme (14) is used. In this case, the evaluation
signal θ(t) is compared to a specific threshold τ in the
decision making process to determine the decision signal
ι(t) using the decision logic

ι(t) =

{
1 if θ(t) ≥ τ,

0 otherwise.
(25)

The signal θ(t) is ideally equal to zero or sufficiently
small in fault free situations, whereas it will exceed the
threshold τ when a stall load occurs. Hence, for the
detection of the stall load the appropriate selection of
the values of the free parameters α, β or γ, together
with an appropriate threshold τ , essentially influences the
performance of the FDD system.

5.3. Determination of the detection threshold. The
free parameters α, β and γ of the residual evaluation
blocks and the threshold τ used in the decision blocks
must be chosen to ensure that the requirements regarding
typical performance criteria used in the industry such as
the false alarm rate (FAR), the missed detection rate
(MDR) or the detection time performance (DTP) are
fulfilled. Simultaneous minimization of these quantities
(e.g., by using multi-objective optimization techniques)
would provide the best achievable detection performance.
Unfortunately, analytical expressions of the FAR and the
MDR are not available, and only surrogates can be used,
which are suitable only when we require FAR = 0 and
MDR = 0. The applicability of such surrogates based on
tuning has been demonstrated by Varga et al. (2011).

For an optimization based tuning setup, the
requirements for the lack of false alarms and missed
detections can be formulated as either optimization
criteria or constraints. In the absence of faults, the
requirement for no false alarms leads to a constraint on
the false alarm bound,

τf := sup
f=0

θ(t) < τ, (26)

where the supremum is taken for all admissible operation
points, all relevant aircraft maneuvers, all admissible
variations of uncertain parameters and all relevant
disturbances.

The requirement for no missed detection can be also
expressed as a constraint on the detection bound,

τd := inf
t∈[tf ,tdetec]

θ(t) ≥ τ, (27)

which must be satisfied for all relevant stall load
situations. Here, tdetec is the maximum admissible
detection time and tf is the stall load occurrence time.
To ensure simultaneously the lack of false alarms and of
missed detections, the condition τf < τd must be fulfilled.
Various optimization strategies are presented by Varga and
Ossmann (2014).

A positive detection gap τd−τf can be interpreted as
a robustness measure of the fault detection performance.
Note that the worst-case parameter combinations resulting
from the computation of τf in (26) and τd in (27) are
usually different. If τd − τf > 0 holds, a constant
threshold τ satisfying τd ≤ τ < τf can be chosen to
guarantee no false alarms and no missed detections. A
choice of τ near to τf allows in general shorter detection
times.

For the computation of τf and τd, solving
global worst-case optimization problems to find the
worst-case parameter combinations appears to be the
most adequate choice. However, less demanding
computational approaches can be used, such as a
gridding based worst-case search over the flight envelope
and parameter space, or Monte-Carlo simulations, to
determine approximations of the upper bound τf and
lower bound τd.

5.4. Stall load identification. Due to its time limited
occurrence, fast identification of the stall load is the main
requirement for the design of the identification logic.
Two different approaches to identify the stall load will
be presented in what follows. The first, more complex
one is based on model detection methods, similar to the
detection and identification approach presented for the
parametric type of LOE fault. The second one is based
on a signal based analysis, showing reduced complexity
but increased robustness.

5.4.1. Identification via model detection. To identify
the stall load using a model detection approach, a
dedicated model of the actuator dynamics during the stall
load needs to be generated. If a stall load occurs, nearly
no movement of the actuator rod is possible. Thus, a
linear first order approximation with the actuator gain (1)
simplifying to a constant gain k(ρ) = ksl can be used.
Typical values for the gain ksl lie between 0.01 and 0.1.
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To be able to address the identification of stall loads via
model detection, a residual filter in the form

Qsl(s) = M(s)

[
1 − ksl

s+ ksl

]
(28)

is proposed, where M(s) can be selected to modify the
filter dynamics. For example, with the inverse of the
actuator dynamics and asl being an arbitrary positive
value, M(s) can be specified as

M(s) =
s+ ksl
ksl

asl
s+ asl

, (29)

resulting in the filter

Qsl(s) =

[
asl
ksl

s+ ksl
s+ asl

− asl
s+ asl

]
. (30)

The output of the residual filter

rsl(s) = Qsl(s)

[
u(s)
uc(s)

]
(31)

will be zero or sufficiently small if the modeled dynamics
correspond to the behavior of the real actuator, while and
nonzero otherwise. To improve the robustness of the
detection, the output of the residual filter is evaluated with
a Narendra filter (14) before comparing it to a dedicated
threshold τsl. Note that a residual value below this
threshold does not directly indicate a stall load. The
residual will be lower than τsl if no input is present (uc =
0) or very slow movements of the actuator are requested
by the input signal uc. Hence, only the combination
of a sufficiently large residual r of the residual of filter
(19) and a sufficiently small residual rsl(t) leads to the
identification of a stall load situation.

5.4.2. Signal-based identification. Signal-based
identification approaches offer an easier but robust way
to identify stall load situations. As described by Goupil
et al. (2014), during a stall load the surface seems to
be stuck at its current position. Hence, the signal based
identification logic for jammed actuators presented by
Varga and Ossmann (2014) using a variance measure
of the output signal provides a good starting point for
signal based stall load identification. However, the main
drawback with regard to fast identification times of this
approach is the variance computation, which requires a set
of collected values to be collected. As for the stall load the
identification has to be very fast; the required variation of
the actuator output is approximated via its mean value at
time ti by

¯̇u ≈ u(ti)− u(td)

ti − td
, (32)

where td is the detection time and ti = td + iT ,
i = 1, 2, . . . , with T being a suitable sampling period.

Early identification of the stall load can then be done
by checking that the actuator deflection variation rate is
below or above a certain slew rate u̇min respectively,

|¯̇u| ≤ u̇min, (33)

where ¯̇u is the mean value of the derivative over a given
time period.

As all other relevant actuator faults, except for
jamming, in general show a nonzero variance on the
output signal, the stall load can be discriminated from
these faults using the condition (33). While the detection
and identification of jamming faults is primary interesting
at low deflection signals (Varga et al., 2013), stall loads
usually occur at extensive input maneuvers where the
aerodynamic forces acting on the control surface are
high. This fact can be used to discriminate between
a jamming fault and a stall load. Let τuc,max and
τumax be the threshold for large input and output signals,
respectively, which can be used to discriminate between
normal (care-free) operations and operations with large
inputs and outputs, where potentially jamming is of more
interest:

|uc| ≥ τuc max ,

|u| ≥ τumax .
(34)

Finally, to add more robustness against other fault
identification schemes, a stall load situation requires that
the sign of the input and output signal be the same and
the absolute value of the output signal be lower than the
absolute value of the input signal. These two conditions
can be summarized in a single one by

sign(uc − u) = sign(u). (35)

To confirm a stall load, we set η(t) = 1 if the three
conditions (33), (34) and (35) are fulfilled.

Note that signal processing based identification of
the stall load is only activated if the evaluated residual
of the residual of the filter (19) is large enough to cross
its threshold τ , so that the output of the decision block
is set to ι = 1. This separation between detection and
identification is a distinctive feature of this approach,
when compared with other techniques, such as those used
by Goupil (2010) and Gheorghe et al. (2013), where
fault identification algorithms must run permanently on
on-board flight control computers (Varga and Ossmann,
2014).

6. Application examples

In this section we describe the application of the
methodologies described in this paper to the detection
and identification of parametric LOE faults and stall loads
of an aileron surface controlled by a hydraulic actuator.
The nonlinear actuator model of the aileron is part of
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a nonlinear model of a closed-loop aircraft including a
nonlinear control law ensuring robust stability over the
whole flight envelope.

6.1. Parametric LOE. Figure 3 shows the output
signals of the fault-free actuator and of a faulty actuator
with a loss of the hydraulic pressure by 25% occurring
at 15 s. As only the dynamical behavior of the actuator
is influenced, there is only a small difference in the
two signals, making the parametric LOE fault nearly
undetectable using additive fault based approaches. This
is the reason why the model detection based approach
is used for the detection and identification of this type
of LOE fault. For the case of a parametric LOE fault,
we employed six actuator models for the following pairs
of fault parameters: ν(0) := [1, 1] for the fault free
case, ν(1) := [1, 0], ν(2) := [1, 0.33], and ν(3) :=
[1, 0.66], for a 100%, 66% and 33% loss of the control
surface effectiveness, respectively, and ν(4) := [0.85, 1]
and ν(5) := [0.73, 1], for a 15% and 27% loss of
the hydraulic pressure, respectively. Correspondingly,
approximations of the actuator gains k(i)(ρ) of the form
(4) were determined using parameter fitting techniques
described in Section 3. In the special case of a 100%
LOE due to either actuator disconnection or total surface
damage, no aerodynamic force is acting on the actuator
dynamics any more. In this case, the gain (1) simplifies to
the following easily implementable exact gain:

k(1)(ρ) = KciKp

√
ΔP (x)

ΔPref
, (36)

which can be used alternatively.

6.1.1. Parameter setting. The six actuator models of
the form (7) were used to define the corresponding six
scalar output detectors (10), which enter in the overall
detector (12). For all six Narendra filters in the evaluation
block, the same values of the parameters were used,
namely, α = 0, β = 1, γ = 0.1. Using suitable scaling
of the individual detectors, the same detection threshold
value of τm = 0.15 was used for all τ (i).
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6.1.2. Verification and validation results. Figure 4
shows the results of model detection for different
degradations of the control surface between 0% and 100%
as well as for leakage in the pressure supply of up to
30% on a dedicated point in the flight envelope. The
vertical lines indicate the grid values corresponding to
the faults for which an LPV model was developed and
used in the detector. The circles show the results of
the model identification obtained using the closed-loop
flight control system augmented with the developed FDD
system. Important to notice is that all models near a grid
value were correctly detected (i.e., there are no switching
between models), and therefore no false classification of
the fault occurred. More accurate fault identification can
be obtained by increasing the number of models (with the
associated increased computational load).

The model detection approach for the parametric
LOE was tested on different points in the flight envelope
with different maneuvers to check the false alarm rate as
well as the detection performance. No false alarms were
encountered during the analysis. As the detection time and
its demanded value highly depends on the size of the fault
(i.e., the degree of efficiency degradation), it is reasonable
to analyze the detection times for different fault sizes
separately. As an example, the worst-case detection time
in the relevant flight envelope for the complete loss of
surface effectiveness was determined at approximately 10
s, while the required detection time was 120 s, indicating
good detection time performance.

6.2. Stall load. Figure 5 shows a typical stall load
situation. During a high input maneuver the aerodynamic
force to which the actuator has to act temporarily exceeds
the available hydraulic pressure. This results in two
stall loads situations of up to 5 s, where the actuator
output u is not able to follow its commanded input uc,
which can be seen in the first diagram of Fig. 5. The
second diagram shows the normalized pressure difference
ΔP−sign(ẋ)Faero/S, which is the available pressure used
to move the actuator. This pressure difference is dropping
to zero at around 4 s and 16 s simulation time, resulting
in stall load situations. In the third diagram the residual
signal of the detector (20) is depicted, clearly indicating
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an increased residual caused by the stall load situations.
Without dedicated identification of these situations

the thresholds in an FDD system for monitoring actuator
faults need to be increased or the detection and
identification of faults has to be delayed so that the
stall loads do not lead to any false alarm. Applying
the presented detection and identification strategy for
stall loads in Section 5.4, these steps and the resulting
degradation of FDD system performance can be avoided.
In Fig. 6 the stall load identification signal η is
depicted beside the normalized input and output of
the actuator. This clearly indicates fast detection and
identification of the stall load situations. With this
awareness, the thresholds of other fault detection and
identification channels (see Varga and Ossmann, 2014)
can be maintained low.

6.2.1. Parameter tuning. The free parameters of the
fault evaluation and decision block can be determined in

an optimal way, such that typical requirements as a lack of
false alarms and missed detections, besides constraints on
the detection time, which is the most important aspect for
the detection of a stall load, are fulfilled. Multi-objective
optimization based tuning strategies has been described,
for example, by Ossmann (2014b) as well as Ossmann
and Varga (2013). For the tuning of the FDD system,
the values of the parameters α, β and γ were determined
to guarantee a fast detection time and fulfill a positive
detection gap τd − τf . The parameters of the Narendra
filter are set to α = 1, β = 1, γ = 0.1, while the
threshold is set to τ = 2.5. The parameter values of the
identification strategy presented in Section 5.4 were set
using the relevant stall load signal characteristics. Recall
that the signal processing based identification of the stall
load is only triggered if the detection has been successful.

6.2.2. Verification and validation results. The
robustness of the designed FDD system was thoroughly
tested for both stall load free and stall load situations in the
whole flight envelope and a full range of aircraft parameter
variations. To check for the lack of false alarms, typical
maneuvers such as, for example, piloted flights with
various pilot inputs (longitudinal/lateral stick doublets,
pedal input demand, nose up and nose down demands)
or typical navigation maneuvers (level flight, flight path
angle target mode, yaw angle target mode, speed change,
steady sideslip, coordinated turn, etc.) were successfully
used. Various high input maneuvers (lateral stick
doublets, roll protection maneuvers, constant sideslip
maneuvers) were simulated on different points in the
flight envelope to check the detection and identification
performance, providing satisfactory results. All relevant
stall load situations were detected below half a second.

7. Conclusions

In this paper we proposed a model-based synthesis
and tuning methodology for the development of an
FDD system for the detection and identification of
parametric loss of efficiency failure cases as well
as stall load situations for aircraft actuators. The
main features of the proposed approach, which confers
superior performance over existing approaches, include (i)
relying on accurate LPV models allowing the synthesis
of robust fault detection filters, (ii) application of
advanced synthesis methods of LPV residual generators
guaranteeing robust fault detection, (iii) employing
integrated optimization-based tuning of the parameters of
the fault evaluation and decision making blocks, including
the determination of detection thresholds to guarantee no
false alarms and no missed detections, (iv) employing a
real-time implementable fault identification method.

Using a dedicated identification strategy for stall
load situations, the performance of FDD systems is no
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larger degraded by the need of higher threshold values
or delayed detections. An important aspect to mention
is that while the synthesis of LPV residual generators
relies on a fault monitoring approach at the component
(actuator) level, the tuning of the overall FDD system
parameters and the final verification and validation involve
the closed-loop aircraft. The proposed methodologies
were successfully applied for the design of an FDD system
for the identification of parametric LOE faults and stall
loads of an aileron actuator.

An open question not addressed in this article is how
the derived information about the fault situation can be
used for reconfiguring the flight control system. This is
the topic of ongoing research within the FP7 RECONFIG-
URE project.
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