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Simultaneous state and parameter estimation based actuator fault detection and diagnosis (FDD) for single-rotor unmanned
helicopters (UHs) is investigated in this paper. A literature review of actuator FDD for UHs is given firstly. Based on
actuator healthy coefficients (AHCs), which are introduced to represent actuator faults, a combined dynamic model is
established with the augmented state containing both the flight state and AHCs. Then the actuator fault detection and
diagnosis problem is transformed into a general nonlinear estimation one: given control inputs and the measured flight
state contaminated by measurement noises, estimate both the flight state and AHCs recursively in each time-step, which
is also known as the simultaneous state and parameter estimation problem. The estimated AHCs can further be used for
fault tolerant control (FTC). Based on the existing widely used nonlinear estimation methods such as the unscented Kalman
filter (UKF) and the extended set-membership filter (ESMF), three kinds of adaptive schemes (KF-UKF, MIT-UKF and
MIT-ESMF) are proposed by our team to improve the actuator FDD performance. A comprehensive comparative study
on these different estimation methods is given in detail to illustrate their advantages and disadvantages when applied to
unmanned helicopter actuator FDD.
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1. Introduction

Helicopters have been widely used in both civilian and
military fields due to their capabilities of hovering,
vertical take-off and landing, low-altitude and low-speed
flight. In the past two decades, the unmanned helicopter
(UH) has become an attractive research topic in academic
communities worldwide and numerous research groups
have designed their own unmanned helicopter platforms
such as Yamaha-RMAX of Carnegie Mellon University
(Amidi et al., 1998), GTMax of the Georgia Institute of
Technology (Johnson and Schrage, 2003), ServoHeli of
the Shenyang Institute of Automation, Chinese Academy
of Sciences (Qi et al., 2009) and the Lion unmanned aerial
vehicle (UAV) of the National University of Singapore
(Cai et al., 2011b).

The increasing utilization of UHs in civilian
environment demands higher reliability and safety to
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avoid potential accidents. However, structure features
of the helicopter induce that it does not have the same
graceful degradation property as other aerial vehicles,
such as fixed-wing aircraft and airships, under faults
(degradation) or failures (out of order) (Heredia et al.,
2008). Furthermore, the normally small size, light weight
and compact structure characteristics of UHs make the
redundancy of on-board sensors and actuators redundancy
extremely limited. As is known, the main rotor of the
helicopter is used not only to provide the lift but also to
control the helicopter. In order to control the main rotor,
a swashplate is used. A small UH’s swashplate, which
mainly performs the lateral, longitudinal and vertical
motion to control the UH through three actuators, is
illustrated in Fig. 1. There is no redundancy among
these actuators and the actuator fault will directly lead to
malfunction of the swashplate.

In this paper, actuator faults of UHs are considered.
Typically, actuator faults mainly include constant output
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Fig. 1. Small UH’s swashplate with three actuators.

faults, constant gain change faults and drift faults. A
constant output faulty means that the fault actuator cannot
respond to the control input and will stay at a fixed
position. Typical reasons for constant output faults of
UHs are servo stucks and engine failures. A constant
gain change fault represents the fact that the real output
value of fault actuator is proportional to the fault-free
case. Servo power and engine power lost are the
representatives. A drift fault means that the actuator’s
output value changes along with the flight state of the UH
(Qi et al., 2014). From another point of view, Heredia
et al. (2004) classify actuator faults according to the
location of the actuators and whether or not they have been
stuck: (i) the servo involved in the rolling (or pitching)
motion has a fault, but does not get stuck, (ii) the servo
involved in the rolling (or pitching) motion actually gets
stuck, so neither the collective nor the rolling (or pitching)
actuators will work, (iii) the collective actuator can no
longer work or it may work with a limited range, due to a
fault in the mechanical links. The first two kinds of faults
are investigated in this paper.

In order to achieve acceptable performance of the
post-fault UH system, the first task is to obtain fault
information in time, because it is the basis to reconfigure
the control strategy or mission planning to guarantee
system stability. Many fault detection and diagnosis
(FDD) techniques have been proposed to obtain fault
information, and these approaches have been widely used
in the process industry. However, research results of
FDD approaches used for UHs are limited, especially for
actuator FDD. Generally speaking, based on the amount
of fault information provided, FDD approaches can be
divided into three levels: fault detection, fault isolation
and fault identification. Fault detection is just to decide
whether or not a fault has occurred, fault isolation is to
determine the location of the fault and its type, and fault
identification is to determine the magnitude of the fault

(Zhang and Jiang, 2008; Qi et al., 2013). Clearly, the
higher the level, the more detailed information can be
provided. On the other hand, FDD techniques can also
be classified into model based and model free approaches.
Compared with model free approaches, model based
approaches can provide more details of the fault, which
can usually cover all the three levels of FDD. Thus, most
existing approaches for UHs’ actuator FDD are model
based. The key idea of these approaches is to generate
a residue according to outputs of a real system and the
known model. Based on the way of generating the
residue, the FDD approaches can be classified into (i)
parity space based methods, (ii) observer based methods
(Heredia et al., 2004; 2008; Arne and Jürgen, 2011), (iii)
estimation based methods (Ducard and Geering, 2008; Qi
et al., 2007; Campbell et al., 2007).

Two ways were utilized by Drozeski et al. (2005)
for UH actuator fault detection. The first one
is the state-dependent approach, which is based on
neural network training and used for collective pitch
control actuator fault detection. Another one is
the sensor-dependent approach, which employs sensors
placed on the actuators to detect a fault; this approach
is more preferable if sensor mounting is feasible. The
authors provided the first real flight test validation of
swashplate actuator fault detection and fault tolerant
control.

Heredia et al. (2004; 2008) used a Luenberger
observer based on an input-output model for actuator fault
detection. The input-output ARX model is identified
based on the collected input and output data of the UH in a
fault-free case, then the fault-free output can be predicted
based on the input-output model. The corresponding
residue is described by the deviation from measured
output to nominal output:

R(k) =

3∑

i=1

mi(vi(k)−v̂i(k))2+
3∑

i=1

ni(ωi(k)−ω̂i(k))
2,

(1)
where vi and ωi are measured linear and angular
velocities, respectively, v̂i and ω̂i are nominal linear and
angular velocities, respectively, mi and ni are weighting
factors. In order to achieve fault isolation, an independent
residue is constructed for each different actuator fault, and
a reasoning method is used for residue evaluation.

A robust fault isolation observer is proposed by
Arne and Jürgen (2011) for actuator fault detection. The
target is to obtain the transfer function matrix Grf (s)
associating faults and residues,

Grf (s) = diag(gr1f1(s), . . . , grnf
fnf

(s)), (2)

where grifi(s) is the transfer function from fault fi to
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residue ri. The residue r is generated by the fault observer
{
˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)),

r(t) = V (y(t)− Cx̂(t)),
(3)

where L and V are observer gains which should be
designed for the specific problem. This method is capable
of isolating simultaneous actuator and sensor faults.

Compared with observer based approaches,
estimation based approaches have been investigated
more extensively. These approaches can be classified
into two groups: parameter estimation approaches and
simultaneous state and parameter estimation approaches
(Zhang and Jiang, 2008). The latter have attracted more
attention in recent years. There are two key issues
involved in estimation based approaches: the actuator
fault’s mathematical model and estimation method. Qi
et al. (2007) proposed an actuator fault model which
uses actuator healthy coefficients (AHCs) to represent
various UH actuator faults. Amoozgar et al. (2013) set
forth an additive and multiplicative actuator fault model
established for four rotors of a quadrotor unmanned aerial
vehicle (UAV). Apart from that, a locked-in-place and
floating actuator mathematical fault model for a fix-wing
UAV were defined by Ducard and Geering (2008).

Taken the actuator fault parameter and flight state
as an augmented state, the actuator FDD problem can be
transformed into a general nonlinear state estimation one,
which is also called the simultaneous state and parameter
estimation problem. Many common nonlinear estimation
methods have been utilized for such a simultaneous state
and parameter estimation problem, with proper selection
of the augmented state’s noise characteristics. In the
work of Ducard and Geering (2008), locked-in-place
and floating actuator faults are estimated by an extended
Kalman filter (EKF) for a fix-wing UAV. Campbell et al.
(2007) used a square root sigma point filter and a square
root extended set-membership filter (ESMF) for fault
estimation on for fixed-wing UAVs. Many comparisons
have already been made for these methods (Zhou and
Han, 2007; Bätz et al., 2013; Cui et al., 2005).

Even though the simultaneous state and parameter
estimation problem can be considered a general nonlinear
estimation one, it differs from other estimation problems
in that the actuator fault’s parameters have constant values
normally, but with abrupt changes as actuator faults
are encountered. The characteristics of actuator fault
parameter noise are quite different between the normal
case and the fault case, which means a constant noise
characteristic setting will be either overestimated in the
normal case or underestimated in the fault case. An
adaptive noise characteristics setting scheme should be
introduced to improve the estimation accuracy. Based
on the unscented Kalman filter (UKF), which is believed
to yield a more accurate estimation compared with the

frequently used EKF (Kotecha and Djuric, 2003), two
adaptive updating methods were proposed: the MIT-rule
based updating method (MIT-UKF) (Qi et al., 2007)
and the KF assist updating method (KF-UKF) (Qi
et al., 2012). An MIT-rule based adaptive extended
set-membership filter (MIT-ESMF) was also proposed
by Wu et al. (2012), which assumes the system and
measurement noise signals as unknown but bounded to
better fit real applications. Xiong (2013) established
another set-membership filter with an emphasis on the
system model’s uncertainty using interval analysis (the
model uncertainty is assumed to be unknown but bounded,
which is more suitable for the real case where modeling is
inevitably inaccurate). Since simultaneous state and fault
parameter estimation based FDD is a newly developed
research area, a comparative study will be given in
this paper regarding the different estimation methods to
illustrate their advantages and disadvantages for actuator
FDD on a UH, with emphasis on KF-UKF, MIT-UKF and
MIT-ESMF.

The paper is organized as follow. Section 2 contains
the overall scheme of simultaneous state and parameter
estimation based actuator FDD, along with the AHC fault
model. In Section 3, a complete nonlinear unmanned
helicopter dynamic model is introduced as the basis for
estimation. Section 4 briefly introduces the existing
estimation methods that can be used for simultaneous state
and parameter estimation. A comparative study of these
methods is given in Section 5, followed with a conclusion
in Section 6.

2. Problem statement of simultaneous state
and parameter estimation based actuator
fault detection and diagnosis for a UH

The overall scheme of actuator FDD is illustrated in Fig. 2.
The main difference of this scheme when compared with
the normal flight control system is that the actuator’s fault
model is explicitly used to represent the actuator fault.
Through the combination of the UH’s dynamic model
and the actuator’s fault model, a combined model can
be established with an augmented state of the normal
flight state and AHCs. Then the AHCs can be estimated
on-line along with the flight state, given the control input
provided by the flight controller and the measurement
obtained from the on-board sensors. With the estimated
AHCs, the flight controller can adjust its structure or
coefficients to compensate for the actuator fault so as to
ensure system stability. In this paper, the main focus will
be on simultaneous state and AHCs estimation methods;
fault tolerant control (FTC) design can be found in the
works (Qi et al., 2007; Campbell et al., 2007).

The general dynamic model of the UH is defined as
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Fig. 2. Actuator fault detection and identification scheme.

follows: {
xk+1 = f (xk, uk) + ωk,

yk = h (xk) + υk,
(4)

where xk is the UH’s flight state vector, uk is the
actuator’s control input, and yk is the measurement
obtained by the on-board sensors.

In the normal case, the actuator’s real action ûk is in
accordance with the expected actuator action uk. But ûk
will deviate from uk in the presence of various actuator
faults. The mathematical model of an actuator fault is
defined as

ûk = g (θk,, uk) , (5)

where θk is the parameter vector of the actuator fault and
can generally be assumed as a random walk variable (Bian
et al., 2011)

θk+1 = θk + ωθ,k, (6)

where ωθ,k represents the zero-mean process noise.
Then the combined dynamic model of UH and

actuator fault can be represented as
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 = f̂ (xk, θk,, uk) + ωk,

f̂ (xk, θk,, uk) = f(xk, g(θk, uk)),

θk+1 = θk + ωθ,k,

yk = h (xk) + υk.

(7)

The actuator FDD problem can be transformed into a
nonlinear state estimation one by defining the augmented
system state vector zk = [xk, θk]

T . The two key issues
involved are the actuator fault’s mathematical model
and the simultaneous state and parameter estimation
method. The actuator fault’s mathematical model will be
introduced in this section, and the estimation methods will
be discussed in Section 4.

Generally, a UH is governed by five control surfaces
to perform six-degrees-of-freedom movements (Cai et
al., 2011b): the throttle servo θthrottle for the main rotor
rotation speed control, the collective pitch servo θM for
main rotor blade angle control, the aileron servo θLat

for lateral motion control, the elevator servo θlon for
longitudinal motion control and the rudder servo θT for
tail rotor blade angle control. Normally, the rotation speed
of the main rotor is kept constant using a governor by

θthrottle to facilitate the controller design. Obviously, the
UH is an under-actuated system and the main control input
is [θM , θlat, θlon, θT ].

Actuator faults of UHs mainly include constant
output faults, constant gain change faults and drift faults.
For explicit presentation of an actuator fault, an actuator
fault model is established as follows (Qi et al., 2006):

⎧
⎨

⎩

ûk = Γfuk +Δf ,
Γf = diag[γ1, γ2, . . . , γl],
Δf = diag[δ1, δ2, . . . , δl],

(8)

where γi and δi are the proportional effectiveness and
fault biases of the i-th actuator, respectively, and θk =
[γ1, . . . , γl, δ1, . . . , δl] are defined as AHCs.

With this actuator fault model, various actuator faults
can be expressed effectively as follows:

• constant output faults: γi = 0, δi = k,

• constant gain change faults: γi = k, δi = 0,

• drift faults: γi = γ(t), δi = δ(t).

3. Dynamic model of the UH

As the basis of state estimation, a UH’s dynamic model
will be introduced in this section. Through a combination
with the actuator fault model introduced in Section 2,
a combined dynamic model can be established for the
nonlinear augmented state estimation.

The single rotor unmanned helicopter generally
consists of the main rotor, the tail rotor, the fuselage,
the horizontal stabilizer and the vertical stabilizer. For
simplification, the unmanned helicopter is considered as
a rigid body with external forces and torques generated
respectively by the main rotor, tail rotor and fuselage.
The body frame is defined as shown in Fig. 3 (He and
Han, 2010).

Fig. 3. Frames on an unmanned helicopter.

The nose, right side and downward directions of the
helicopter are defined as the x, y and z axes of the body
frame, respectively, with the origin located at the center of
gravity. The 6-DOF dynamic model of the helicopter can
be expressed by the following Newton–Euler equations
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with respect to the body frame (Cai, Chen, Dong and
Lee, 2011a):

{
mV̇ B +ΩB ×mV B = FB

ext,

IΩ̇B +ΩB ×mΩB =MB
ext,

(9)

where the label B denotes that the variable is defined
in the body frame, × denotes the cross-product of two
vectors, m is the mass of the helicopter, I is the matrix
of the moments of inertia, V B = [vb,x, vb,y, vb,z]

T is the
velocity vector, ΩB = [p, q, r]T is the angular velocity
vector. FB

ext and MB
ext are the sums of external forces

and torques, respectively. The force and torque generated
by the fuselage, the horizontal stabilizer and the vertical
stabilizer are ignored for simplification since they are
quite small compared with those of the main rotor and tail
rotor, especially in low speed flight.

Simplified FB
ext andMB

ext are given as follows (He and
Han, 2010):

FB
ext =

⎡

⎣
XM

YM + YT
ZM

⎤

⎦+RHP→B

⎡

⎣
0
0
mg

⎤

⎦ , (10)

MB
ext =

⎡

⎣
LM + YMhM + ZMyM + YThT
MM +MT −XMhM + ZM lM

NM − YM lM − YT lT

⎤

⎦ , (11)

where [XM , YM , ZM ]
T and [LM ,MM , NM ]

T denote
the forces and torques generated by the main rotor
in the x, y and z axes, respectively, [XT , YT , ZT ]

T

and [LT ,MT , NT ]
T denote the forces and torques

generated by the tail rotor in the x, y and z axes,
respectively, [lT , yT , hT ]

T and [lM , yM , hM ]
T are the

distances between the center of gravity and the center
of the main rotor or the tail rotor in the body frame,
respectively. RHP→B is the transformation matrix from
the local horizontal plane coordinate frame to body
coordinate frame.

Given the control input [θM , θlat, θlon, θT ], the
corresponding control input exerting on the main rotor
and tail rotor is [θM , a1s, b1s, θT ], where a1s and b1s are
the tip-path-plane (TPP) flapping angles of the main rotor
corresponding to θlat and θlon. The force TM and the
torque QM generated by the main rotor can be calculated
by θM . The force TT and the torque QT generated by
the tail rotor can be calculated by θT . The calculation of
TM , QM , TT , and QT will be ignored for simplification
since they are related to the complicated aerodynamics of
rotor; details about the calculation are given by He and
Han (2010).

Given TM , QM , TT , and QT , the force and torque
elements exerted on each axis are given as follows (He

and Han, 2010):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XM = −TM sina1s,

YM = TM sin b1s,

ZM = −TM cos aa1s cos b1s,

LM = −b1skb1s −QM sin a1s,

MM = −a1ska1s −QM sin b1s,

NM = −QM cos a1s cos b1s,

YT = −TT ,
MT = −QT ,

(12)

where kb1s and ka1s are the rotor stiffness factors in
the lateral and longitudinal axes, respectively; explicit
coefficients are determined for a given helicopter and can
be found in the work of He and Han (2010).

There are two frames used in the helicopter
description: the body coordinate frame and the inertial
coordinate frame. The kinematics model is defined as (Cai
et al., 2011b)

⎡

⎣
φ̇

θ̇

ψ̇

⎤

⎦ =

⎡

⎣
1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤

⎦

⎡

⎣
p
q
r

⎤

⎦ , (13)

Ṗn = Vn = R−1
i2bVb, (14)

Ri2b =

[
cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

]
, (15)

where sx denotes sin(x), cx denotes cos(x), tx denotes
tan(x); φ, θ and ψ denote roll, pitch and yaw,
respectively; Pn and Vn are the position and velocity
vectors in the inertial coordinate frame.

A combined dynamic model can then be organized as
Eqn. (7), with the state, input and measurement as follows:

• flight state:
xk = [Vb,Ab, φ, θ, ψ, p, q, r]

T ,

• actuator health coefficients:
θk = [γ1, γ2, γ3, γ4, δ1, δ2, δ3, δ4],

• actuator control input:
uk = [θM , θlat, θlon, θT ]

T ,

• measurement:
yk = [Vb,Ab, φ, θ, ψ, p, q, r]

T ,

where uk is the flight controller’s output which can
be derived directly by the on-board processor. The
measurement yk can be obtained by the UH’s on-board
navigation system. The UH’s on-board sensors mainly
include a GPS, an inertial navigation unit, a barometer
and a magnetometer (Wu et al., 2010; Dai et al., 2012).
Through the utilization of a differential GPS (DGPS)
and the fiber optic gyroscope, the navigation system’s
accuracy can be greatly improved as show in Table 1 (this
is mainly used for experimental validation purposes).
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Table 1. Measurement accuracy of the UH navigation system.
Position 0.02m Velocity 0.02m/s
Altitude 0.02 m Acceleration 0.03 m/s2

Attitude 0.05◦ Angular rate 0.1◦/s

4. Simultaneous state and parameter
estimation methods

With the combined dynamic model established in
Section 3, the actuator FDD problem is transformed
into a nonlinear state estimation problem. Then a key
issue for actuator FDD is to select a suitable estimation
method from the various existing estimation techniques.
In the remainder of this paper, the main focus will be
on the comparison of these different methods. Based
on the way of representing measurement and system
noise, the estimation methods included in this paper
can be categorized into two groups: Kalman filter
based estimations methods and set-membership based
estimation methods. They are different in the assumption,
presentation and propagation of noise over the system
dynamic model.

4.1. Kalman filter based approach. The Kalman
filter is the most well-known sequential estimation method
for linear systems; the EKF applies the standard linear
Kalman filter to nonlinear systems by linearization of
nonlinear equations. This linearization in the EKF will
introduce substantial errors into the estimation result,
which may lead to poor performance or even the
divergence of the estimation result.

4.1.1. Unscented Kalman filter. Since the commonly
used EKF only retains the first-order Taylor series
expansion of a nonlinear system, the performance of the
EKF will deteriorate significantly with an increase in the
system nonlinearity. For better estimation performance,
the unscented Kalman filter was proposed to improve the
accuracy, consistency and efficiency of the Kalman filter.
The UKF uses a set of sigma points to represent the
distribution of random variables; the sigma points are then
propagated through the nonlinear dynamics, and the mean
and covariance of the propagated random variable can
be calculated using the propagated sigma points (Xiong
et al., 2006; Kandepu et al., 2008; Julier and Uhlmann,
2004; Bätz et al., 2013).

A generally used sigma-point set to capture the
random variable with mean value x̄ ∈ R

n and covariance
matrix Px is defined as follows:

χ0 = x̄,

wm
0 =

λ

n+ λ
, (16)

χi|i=1,...,n = x̄+
(√

(n+ λ)Px

)

i

wm
i =

1

2(n+ λ)
, (17)

χi|i=n+1,...,2n = x̄−
(√

(n+ λ)Px

)

i
,

wm
i =

1

2(n+ λ)
, (18)

where λ = n(α2−1), α ∈ (0, 1), is the factor to determine
the distribution of the sigma point χi is a sigma point,wm

i

is the corresponding weighting factor for mean calculation
and

2n∑

i=0

wm
i = 1.

To include prior knowledge of the distribution, the
weighting factor for covariance calculation is slightly
different with respect to the mean calculation:

wc
0 =

λ

n+ λ
+ (1 − α2 + β), wc

i =
1

2(n+ λ)
,

β > 0. Here β is generally chosen as β = 2 for Gaussian
distributions.

The update process for the UKF is the same as for
the EKF, except that the mean and covariance update are
replaced by the calculation of the mean and covariance of
the propagated sigma points. The UKF has proved to be
more accurate, less susceptible and much simpler to use
than the EKF (Campbell et al., 2007). Detailed stability
analysis of the UKF can be found in the work of Xiong
et al. (2006). The time and measurement updates of the
UKF are listed as follows (Van Der Merwe, 2004):
• time update equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χk−1 ∈ S (x̄k−1, Pk−1) ,

χ∗
k|k−1 = f(χk−1, uk),

x̄k|k−1 =
2n∑

i=0

wm
i χ

∗
i,k|k−1,

Pk|k−1 =
2n∑

i=0

wc
i (χ

∗
i,k|k−1 − x̄k|k−1)

2 +Q;

(19)

• measurement update equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χk|k−1 ∈ S
(
x̄k|k−1, Pk|k−1

)
,

γk|k−1 = h(χk|k−1),

ȳk|k−1 =
2n∑
i=0

wm
i γi,k|k−1,

Pȳkȳk
=

2n∑
i=0

wc
i (γi,k|k−1 − ȳk|k−1)

2 +R,

Px̄kȳk
=

2n∑
i=0

wc
i (χi,k|k−1 − x̄k|k−1)

× (γi,k|k−1 − ȳk|k−1)
T
,

Kk = Px̄kȳk
P−1
ȳk ȳk

,
Pk = Pk|k−1 −KkPȳkȳk

KT
k ,

x̄k = x̄k|k−1 +Kk(yk − ȳk|k−1),

(20)
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where S (xk, Pk) denotes sigma point calculation with
mean value xk and covariance matrix Pk . Q and R are
the covariance matrices of process noise and measurement
noise, respectively. Q and R are normally set as constant
before the implementation of the UKF.

If Q and R can be determined accurately, the UKF
will accomplish optimal estimation in a probabilistic
sense. In the real case, R is much easier to be determined
since it just relies on the sensor’s characteristics, while
Q is hard to determine not only because of the modeling
error but also because of the time-varying characteristics
of AHCs. An adaptive algorithm with the ability to update
Q in accordance with the time-varying process noise
characteristics will dramatically increase the estimation
accuracy. MIT-UKF and KF-UKF are proposed for this
purpose.

4.1.2. MIT rule based adaptive unscented Kalman
filter. The MIT rule (also known as the gradient rule)
was originally introduced for self-optimization adaptive
control (Åström and Wittenmark, 2013). Here an MIT
rule based adaptive algorithm will be introduced for
system noise covariance matrix on-line update. The
algorithm should find a loss function Jk that is associated
with the time-varying process noise covariance matrixQk.

In MIT-UKF, Jk is defined as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ek = yk − ȳk|k−1,

Sk =
1

N

k∑

i=k−N+1

eke
T
k ,

Ŝk =

2n∑

i=0

(γi,k|k−1 − ȳk|k−1)(γi,k|k−1 − ȳk|k−1)
T

+R,

Jk = tr
[
(Sk − Ŝk)

2
]
,

(21)
where N is the window length used for accumulating
prediction error ek; a detailed definition of other
variables in these equations can be found in Eqn. (20).
The loss function is defined as the deviation of
the time-averaged innovation covariance Sk and the
filter-computed innovation covariance Ŝk. This loss
function has proved to be more sensitive to the variation
of process noise characteristics.

Qk is implicitly associated with Jk through
Eqn. (21), Based on the MIT rule, the update rule of Qk

can be derived as follows:
⎧
⎪⎨

⎪⎩

q̇ik = −η ∂Jk
∂qik

,

qik = qik−1 − q̇ikΔt,

(22)

where qik is the i-th diagonal element ofQk matrix at time

k, η is the tuning ratio which satisfies

ηk > 0,
∑

k

ηk = ∞,
∑

k

η2k <∞,

Δt is the discrete time step.
Through the recursive update process, Q̂k will

converge to the real Qk in a finite number of time steps,
and with this accurate Qk the estimation accuracy of
AHCs can be improved significantly compared with the
traditional UKF. Detailed proofs of asymptotic behaviors
and equations for optimization, which can be found in
the work of Qi et al. (2007), will be ignored here for
simplification.

4.1.3. KF aided adaptive unscented Kalman fil-
ter (KF-UKF). As a different way of updating the
process noise covariance matrix Qk, the KF aided
adaptive UKF uses an aided slave KF to estimate the
noise covariance Qk, and the standard UKF is executed
using the recursively estimated noise covariance Qk.
Without modifications of the original UKF, the KF
aided adaptive UKF is much simpler compared with the
above-mentioned MIT-AUKF. The structure of KF-UKF
is illustrated in Fig. 4.

Fig. 4. KF-UKF structure.

With the assumption that the states are irrelevant,
Qk is a diagonal matrix. Taking the elements of the
principal diagonal matrix Qk as the slave KF’s state
vector, qk = vdiag(Qk), where vdiag(·) denotes the
vector of principal diagonal elements. The process model
of qk is defined as a random walk dynamic model:

qk = qk−1 + wq,k, (23)

where wq,k ∈ R
n is the process noise which is assumed

to be a Gaussian white noise.
The measurement vector is defined as follows:

Sq = vdiag

(
1

N

k∑

i=k−N+1

eke
T
k

)
. (24)
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In the UKF, Pk’s measurement update rule is defined
as
⎧
⎪⎪⎨

⎪⎪⎩

Pk = Pk|k−1 −KkPȳkȳk
KT

k ,

Pk|k−1 =

2n∑

i=0

wc
i (χ

∗
i,k|k−1 − x̄k|k−1)

2 +Qk.
(25)

Then the observation equation can be defined as

Sq = vdiag(Pȳk ȳk
) = qkHPk

+BPk
, (26)

where BPk
is a vector and HPk

is a matrix, both updated
by the covariance matrix Pk recursively. A detailed
description of BPk and HPk is given by Qi et al. (2008;
2012).

The process and measurement model of qk can be
established as follows:

{
qk+1 = qk + wq,k,

Sq = qkHPk
+BPk

.
(27)

The KF can be utilized based on this model for qk
estimation recursively; the UKF will then take Qk =
diag(qk) as the process noise covariance matrix in the
UKF process update step. The estimated Qk can converge
to the real Q̂k, with a slower convergence rate compared
with MIT-UKF (Qi et al., 2008).

4.2. Set-membership based approach. Set-mem-
bership based estimation represents the random variable
as a set with the true value in it. There exist many
kinds of description for this set, such as ellipsoid,
orthotope, zonotope (Ingimundarson et al., 2009) and
paralleltope (Zhou et al., 2008). Here the algorithms
are based on an ellipsoid description which demands
fewer parameters to represent the feasible set, with some
very extraordinary characteristics, such as being more
insightful for analogizing the covariance, invariant to
linear transformations, and convenient for optimization
(Zhou et al., 2008). Since a random variable with
a bound is more reasonable compared with Gaussian
approximation, set-membership based estimation is
supposed to be more practical in real applications
(Kotecha and Djuric, 2003; Campbell et al., 2007).

4.2.1. Extended set-membership filter. An ellipsoi-
dal set description is defined as (Zhou et al., 2008)

E (x̄, P ) =
{
x ∈ R

n|(x− x̄)
T
P−1 (x− x̄) ≤ 1

}
,

(28)
where x̄ is the center of the ellipsoid set, P is a
positive-definite matrix representing the shape of the
ellipsoid set. In order to propagate the ellipsoid set, we

need to linearize the nonlinear system equation around x̄k:

xk+1 = f (x)|x=x̄k
+
∂f (x)

∂x

∣∣∣∣
x=x̄k

(x− x̄k)

+ Δf + ωk,

(29)

Δf = (x− x̄k)
T ∂f

2 (x)

∂x2

∣∣∣∣
x=x̃k

(x− x̄k) , (30)

where Δf is the linearization error, x̃k ∈ E(x̄k, Pk) and
x̃k is chosen as the value to get the maximum Δf . In
the ESMF, process noise wk and measurement noise vk
are assumed to obey wk ∈ E(0, Qk) and vk ∈ E(0, Rk).
Through interval analysis we can derive the linearization
error bound Q̄k, and update the process noise bound as
Q̂k = Qk ∪ Q̄k. In the same way, the measurement noise
bound can be revised as R̂k = Rk ∪ R̄k.

The estimation procedure is defined as follows (Zhou
et al., 2008):

• time update equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄k,k−1 = f (x̄k−1) ,

Ak =
∂f (x)

∂x

∣∣∣∣
x=x̄k−1

,

βk =

√
tr(Q̂k)

√
tr(Q̂k) +

√
tr(AkPkAT

k )
,

Pk,k−1 = Ak
Pk

1− βk
AT

k +
Q̂k

βk
,

(31)

• measurement update equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ck =
∂h (x)

∂x

∣∣∣∣
x=x̄k,k−1

,

ρk =

√
max(eig(R̂k))

√
max(eig(CkPk,k−1CT

k )) +

√
max(eig(R̂k))

,

Wk = Ck
Pk,k−1

1− ρk
CT

k +
R̂k

ρk
,

Kk =
Pk,k−1

1− ρk
CT

k W
−1
k ,

x̄k = x̄k,k−1 +Kk [yk − h (x̄k,k−1)] ,

P̂k =
Pk,k−1

1− ρk
− Pk,k−1

1− ρk
CT

k W
−1
k Ck

Pk,k−1

1− ρk
,

δk = 1− [yk − h(x̄k,k−1)]
T
W−1

k [yk − h(x̄k,k−1)] ,

Pk = δkP̂k.
(32)

In the regular ESMF update process, Qk and Rk are
assumed to be constant. As mentioned in Section 4.2.1,
Qk is not suitable to be considered a constant because
of the modeling error as well as the time-varying
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characteristics of AHCs. An adaptive algorithm, which
can update Qk on-line, will improve the estimation
accuracy of AHCs. An MIT-ESMF is proposed for this
purpose.

4.2.2. MIT rule based adaptive extended set-
membership filter. The same updating MIT rule is
adapted for Qk in MIT-ESMF as in MIT-UKF. Since the
propagation of a random variable is done by the ellipsoid
set process, a new loss function Jk needs to be defined
which is different from Jk in Eqn. (21).

The loss function used in MIT-ESMF is defined as
follows (Song et al., 2012):

Jk = (1− δk)tr{Pk}. (33)

As shown in Eqn. (32), (1−δk) is the representation of the
deviation of the measurement output from the estimated
output, tr{Pk} is the representation of the estimated state.
The loss function Jk is defined as shown in Eqn. (33)
because the accurate estimation of Qk will minimize
tr{Pk} and (1 − δk) at the same time. Since δk < 1 and
tr{Pk} > 0, Jk is positive-definite.

The update rule of Qk is the same as for the
MIT-UKF in Eqn. (22), except the detailed presentation of
∂Jk/∂q

i
k and the choice of the tuning ratio η. A detailed

equation for optimization and the convergence proof of
this update rule can be found in the work of Song et al.
(2012).

5. Simulation results

The nonlinear estimation algorithms introduced in
Section 4 will be implemented for simultaneous state
and AHC estimation based on the unmanned helicopter
dynamic and kinematic model introduced in Section 3.
The scheme for actuator FDD was introduced in Section 2.
Here emphasis will be on the comparison of these
algorithms with respect to the estimation accuracy.

5.1. Simulation conditions. The simulation platform
is built in the Matlab/Simulink environment. Based on
the UH’s dynamic model established in Section 3, a
linearized model is derived for the hovering condition,
and a linear-quadratic regulator (LQR) is designed as the
flight controller. With the LQR flight controller, the UH
can finish the basic flight mission such as hovering at a
fixed point or forward flight at a fixed speed. There is
an additional actuator fault module which can be used to
specify various kinds of actuator faults. The process and
measurement noise can be added in a different manner to
compare the performance of these algorithms. In such
a way, we can establish a full simulation platform for
actuator FDD and FTC to validate various FDD and FTC
methods.

The variation in an elevator servo’s AHCs (γe and δe)
is designed to simulate the corresponding actuator fault
on the unmanned helicopter. Other actuator AHCs can
be estimated in the same way and will not be detailed
in the simulation. Since three-axis angular velocities can
reflect the influence of the elevator servo completely and
are independent of other flight states, x = [p, q, r, γe, δe]

T

is selected as the system state, y = [p, q, r]T is selected as
the measurement, and u = [θM , θlat, θlon, θT ]

T is selected
as the system input.

5.2. Comparison of the UKF and the ESMF. A
different representation of noise characteristics and a
different way of handling noise in the estimation step are
the main differences between the UKF and the ESMF.
Here, in this simulation, comparison of their performances
in different noise conditions is made.

Two types of process noise are added in the
simulation: Gaussian noise and uniformly distributed
noise. The bound of Gaussian noise is defined as the
triple square root of the diagonal element of covariance
matrix, which is referred to as a three-sigma bound.
Uniformly distributed noise is designed in the same bound
as Gaussian noise for comparison.

In this simulation, the UH is supposed to fly at
a forward speed of 10 m/s. An abrupt actuator fault
is designed at 10 s with γe = 0.5 which means a
50% loss in the effectiveness of the actuator. Different
noise signals are added: Gaussian noise is designed as
N(0, 10−4), and uniformly distributed noise is designed
as U(−0.03, 0.03).

The estimation result is shown in Fig. 5. The bound
of the UKF estimation result is defined as the triple square
root of the diagonal element of the covariance matrix. The
true value of γe can be estimated by both the UKF and
the ESMF. The ESMF estimation shifts result the near the
true value but with the true value lying on the estimation
bound. Since x̂ is just the center of the ellipsoidal
set in the ESMF, the ESMF has no comparability with
the UKF the with respect to the estimation accuracy.
On the other hand, the ESMF’s performance is almost
the same under these two kinds of noise, but the UKF
performance is quite different between these two kind of
noise. This demonstrates that the system with bounded
noise characteristics is suitable to apply the ESMF, and
the system with Gaussian noise is suitable to apply the
UKF.

The forward speed and the corresponding elevator
control input are shown in Fig. 6. Because LQR can partly
compensate for such a kind of actuator fault, the forward
speed can be finally maintained at 8 m/s. A specified FTC
would be needed to guarantee the flight performance and
keep the forward speed at 10 m/s.

In another simulation, a sine actuator fault is
designed at 10 s with δe = 0.02 sin(10(t− 10)/2π),
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(a)

(b)

Fig. 5. Comparison of the UKF and the ESMF: estimation re-
sults for different noise characteristics (a), estimation of
bounds (b).

Fig. 6. System response to an actuator fault.

which means a sine bias of the actuator. The estimation
result is shown in Fig. 7. Since we assume AHCs to be a
slow-changing random-walk variable that cannot describe
the sine actuator fault, the estimated δ̂e is in a phase delay
and with a magnitude decrease compared with real δe.

5.3. Comparison of MIT-ESMF, MIT-UKF and KF-
UKF. Because Kalman filter based methods and set
membership based methods are quite different with their
own advantages, as shown in Fig. 5, the performance of

Fig. 7. Estimation result under a sine actuator fault of δe.

MIT-UKF, KF-UKF and MIT-ESMF will not be compared
in the following.

In the first simulation, the UH is supposed to fly at
a forward speed of 10 m/s. An abrupt actuator fault is
designed at 10 s with γe = 0.5. Gaussian noise is added
for the comparison of the UKF, KF-UKF and MIT-UKF.
The noise is designed as N(0, 10−4) firstly, with an
abrupt change of N(0, 10−3) at 20 s to validate the UKF,
KF-UKF and KF-UKF performance under time-varying
noise conditions.

The results are shown in Fig. 8. At the beginning,
the estimation results are almost the same with proper
selection of Qk; as the actuator fault occurred at 10 s,
MIT-UKF and KF-UKF can update the Qk to quickly
follow the real γe, and MIT-UKF has a faster convergence
rate compared with KF-UKF, the UKF can follow the real
γe very slowly. As the Qk changed at 20 s, MIT-UKF and
KF-UKF can update the real Qk to derive a more accurate
estimation of γe compared with the UKF.

Fig. 8. Comparison of the UKF, MIT-UKF and KF-UKF under
an abrupt change in γe and time-varying process noise.

Uniformly distributed noise is added for the
comparison of the ESMF and MIT-ESMF. The noise is
designed as U(−0.03, 0.03) firstly, with an abrupt change
characterized by U(−0.06, 0.06) at 20 s to validate the
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MIT-ESMF performance under time-varying noise. The
estimation result is shown in Fig. 9. Better performance
can be obtained for MIT-ESMF with the bound to the state
estimated adaptively on-line.

Fig. 9. Comparison of the ESMF and MIT-ESMF under an
abrupt change in γe.

In the second simulation, an abrupt actuator fault is
designed at 10 s with δe = 0.02. The corresponding
estimation result is shown in Fig. 10. The computational

Fig. 10. Estimation result under an abrupt change of δe and
time-varying process noise.

time for these algorithms is shown in Table 2. The
adaptive schemes can make estimation of AHCs more
accurate and faster at the expense of execution time.

Table 2. Time of computations for the whole simulation with
2000 steps.

UKF KF-UKF MIT-UKF ESMF MIT-ESMF

4.3 s 4.7 s 9.5 s 5.2 s 7.1 s

6. Conclusion

Simultaneous state and parameter estimation based fault
detection and diagnosis for a UH was reviewed in
this paper, which can transform the actuator FDD into

a nonlinear estimation problem. Common nonlinear
estimation methods, the UKF and the ESMF, were
introduced firstly, followed with three adaptive nonlinear
estimation methods, KF-UKF, MIT-UKF and MIT-ESMF,
which were proposed by our team for the purpose of
improving estimation accuracy and convergence rate.
Based on the UH’s dynamic model and an actuator fault
model, a comparison of the different algorithms was made
via simulation.

Simulation results demonstrate the effectiveness of
the simultaneous state and parameter estimation approach
in actuator FDD. Some conclusions can be made based
on the simulation results: the ESMF can give an accurate
bound for estimation which can further be used for robust
controller design, and it can give an explicit indication
of an actuator fault, which makes it superior to the UKF
in fault detection; MIT-UKF is superior to KF-UKF in
estimation accuracy but with longer execution times, and
both of these two methods are significantly superior to the
UKF in estimation accuracy; MIT-ESMF is superior to the
ESMF with a fast convergence rate.

Even though the simulation results are encouraging,
these estimation performances are still limited when
implemented in real flight test validation. The main
gaps between simulation and real flight tests include the
modeling error and numerous disturbances exerted on the
UH in real flight. These factors exceed the tolerable
bound of the above mentioned estimation methods. In
the next step, the estimation method should be improved
towards the ability to manage strong modeling errors and
disturbances.
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