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A mathematical model for fluid and solute transport in peritoneal dialysis is constructed. The model is based on a three-
component nonlinear system of two-dimensional partial differential equations for fluid, glucose and albumin transport with
the relevant boundary and initial conditions. Our aim is to model ultrafiltration of water combined with inflow of glucose
to the tissue and removal of albumin from the body during dialysis, by finding the spatial distributions of glucose and
albumin concentrations as well as hydrostatic pressure. The model is developed in one spatial dimension approximation,
and a governing equation for each of the variables is derived from physical principles. Under some assumptions the model
can be simplified to obtain exact formulae for spatially non-uniform steady-state solutions. As a result, the exact formulae
for fluid fluxes from blood to the tissue and across the tissue are constructed, together with two linear autonomous ODEs
for glucose and albumin concentrations in the tissue. The obtained analytical results are checked for their applicability for
the description of fluid-glucose-albumin transport during peritoneal dialysis.

Keywords: fluid transport, transport in peritoneal dialysis, nonlinear partial differential equation, ordinary differential equ-
ation, steady-state solution.

1. Introduction

Peritoneal dialysis is a life saving treatment for chronic
patients with end-stage renal disease (Gokal and Nolph
1994). The peritoneal cavity, an empty space that
separates bowels, abdominal muscles and other organs
in the abdominal cavity, is applied as a container for
the dialysis fluid, which is infused there through a
permanent catheter and left in the cavity for a few hours.
During this time small metabolites (urea, creatinine) and
other uremic toxins diffuse from blood that perfuses the
tissue layers close to the peritoneal cavity to the dialysis
fluid, and finally are removed together with the drained
fluid. The treatment cycle (infusion, dwell, drainage) is
repeated several times every day. The peritoneal transport
occurs between the dialysis fluid in the peritoneal cavity

and blood passing down the capillaries in the tissue
surrounding the peritoneal cavity. The capillaries are
distributed within the tissue at different distances from
the tissue surface in contact with the dialysis fluid. The
solutes, which are transported between blood and the
dialysis fluid, have to cross two transport barriers: the
capillary wall and a tissue layer (Flessner 2006).

Typically, many solutes are transported from blood
to dialysate, but some solutes such as, for example, an
osmotic agent (typically glucose), which is present in
high concentration in dialysis fluid, are transported in the
opposite direction, i.e., to the blood. This kind of transport
system appears also in other medical treatments, such
as local delivery of anticancer medications, and in some
experimental and natural physiological phenomena (see
below). Typically a distributed approach is applied to take
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into account spatial properties of these systems. The first
applications of the distributed model were limited to the
diffusive transport of gases between blood and artificial
gas pockets within the body (Piiper et al., 1962), between
subcutaneous pockets and blood (Van Liew, 1968; Collins,
1981), and transport of heat and solutes between blood
and the tissue (Perl, 1963; 1962).

Applications of the distributed approach to the
modeling of diffusive transport of small solutes include
the description of transport from the cerebrospinal fluid
to the brain (Patlak 1975), delivery of drugs to the
human bladder during intravesical chemotherapy, and
drug delivery from the skin surface to the dermis in normal
and cancer tissue (Gupta et al., 1995; Wientjes et al.,
1993; 1991). Finally, the distributed approach was also
proposed for a theoretical description of fluid and solute
transport in solid tumors (Baxter and Jain, 1989; 1990;
1991). The mathematical descriptions of these systems
were obtained using partial differential equations based
on the simplification that capillaries are homogeneously
distributed within the tissue. Experimental evidence
confirmed the good applicability of such models (see, for
example, the papers of Waniewski et al. (1996a; 1996b;
2007), Smit et al. (2004a), Flessner (2006), Parikova et
al. (2006), Stachowska-Pietka et al. (2012), Guest et al.
(2012) and the references therein).

An important objective of peritoneal dialysis is to
remove excess water from the patient (Gokal and Nolph,
1994). Typical values of water ultrafiltration measured
during peritoneal dialysis are 10–20 mL/min (Heimbürger
et al., 1992; Waniewski et al., 1996a, 1996b; Smit et
al., 2004a; 2004b). This is achieved by inducing osmotic
pressure in the dialysis fluid by adding a solute (called the
osmotic agent) in high concentration. The most frequently
used osmotic agent is glucose. This medical application
of high osmotic pressure is unique for peritoneal dialysis.
The flow of water from blood across the tissue to the
dialysis fluid in the peritoneal cavity carries solutes
of different size, including large proteins, and adds a
convective component to their diffusive transport.

The mathematical description of fluid and solute
transport between blood and dialysis fluid in the peritoneal
cavity has not been fully formulated yet, in spite of the
well-known basic physical laws for such transport. The
complexity of peritoneal fluid transport modelling comes
mainly from the fact that, whereas diffusive transport
of small solutes is linear, the process of water removal
during peritoneal dialysis by osmosis is nonlinear. A first
formulation of the general distributed model for combined
solute and fluid transport was proposed by Flessner et
al. (1984) and applied later for the description of the
peritoneal transport of small molecules (Flessner et al.,
1985).

The next attempt to model fluid and solute transport
did not result in a satisfactory description. It was assumed

in that model that the mesothelium is a very efficient
osmotic barrier for glucose with the same transport
characteristics as the endothelium (Seams et al., 1990).
The assumption resulted in negative interstitial hydrostatic
pressures during osmotically driven ultrafiltration from
blood to the peritoneal cavity during peritoneal dialysis
(Seams et al., 1990). This contradicted the experimental
evidence on positive interstitial hydrostatic pressure
during the ultrafiltration period of peritoneal dialysis
(Flessner 1994). Moreover, the mesothelium, being a
highly permeable layer, cannot provide enough resistance
to small solute transport to be an osmotic barrier for
solutes such as glucose (Flessner, 1994; 2006; 2009;
Czyzewska et al., 2000).

Recent mathematical, theoretical and numerical
studies have introduced new concepts on peritoneal
transport and yielded a better description of particular
processes such as pure water transport, a combined
osmotic fluid flow and small solute transport, and
transport of water and proteins (Flessner, 2001; Cherniha
and Waniewski, 2005; Stachowska-Pietka et al., 2006;
2007; Cherniha et al., 2007; Waniewski et al., 2007;
2009). A recent study by Stachowska-Pietka et al. (2012)
addresses again the combined transport of fluid (water)
and several small solutes.

However, the problem of a combined description of
osmotic ultrafiltration to the peritoneal cavity, absorption
of the osmotic agent from the peritoneal cavity and leak
of macromolecules (e.g., albumin) from blood to the
peritoneal cavity has not been addressed yet. Therefore,
we present here an extended model for these phenomena
and investigate its mathematical structure. In particular,
we investigate fundamental questions concerning the role
of various transport components, such as osmotic and
oncotic gradients and the hydrostatic pressure gradient.
It should be stressed that the oncotic gradient leading
to the leak of macromolecules from blood to the
peritoneal cavity has the opposite sign to the osmotic
gradient; hence, their combination may lead to new
effects, which cannot arise in the case of the simplified
models mentioned above. The model addresses also the
disputed problem of the values of the Staverman reflection
coefficients for glucose and albumin in the tissue, which
cannot be directly measured and need to be indirectly
derived from clinical data (Katchalsky and Curran, 1965;
Waniewski, 2013).

The paper is organized as follows. In Section 2, a
mathematical model of glucose and albumin transport
in peritoneal dialysis is constructed. In Section 3,
non-uniform steady-state solutions of the model are
constructed and their properties are investigated.
Moreover, these solutions are tested using real parameters
that represent clinical treatments of peritoneal dialysis.
The results are compared with those derived by numerical
simulations for simplified models (Cherniha et al.,
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2007; Waniewski et al., 2007). Finally, we present some
conclusions and discussion in the last section.

2. Mathematical model

Here we present a new model of fluid and solute transport
in peritoneal dialysis. The model is developed in one
spatial dimension with x = 0 representing the boundary
of the peritoneal cavity and x = L representing the end of
the tissue surrounding the peritoneal cavity (see the work
of Stachowska-Pietka et al. (2012) for a discussion of the
assumptions involved in this approach).

The mathematical description of transport processes
within the tissue consists of the local balance of the fluid
volume and solute mass. For incompressible fluid, the
change of volume may occur only due to elasticity of the
tissue. The fractional fluid void volume, i.e., the volume
occupied by the fluid in the interstitium (the rest of the
tissue being cells and macromolecules forming the solid
structure of the interstitium) expressed per unit volume
of the whole tissue, is denoted by ν(t, x), and its time
evolution is described as

∂ν

∂t
= −∂jU

∂x
+ qU − ql, (1)

where jU (t, x) is the volumetric fluid flux across the tissue
(ultrafiltration), qU (t, x) is the density of the volumetric
fluid flux from blood capillaries to the tissue, and ql is the
density of the volumetric fluid flux from the tissue to the
lymphatic vessels (hereafter we assume that it is a known
positive constant: nevertheless, it can also be a function
of hydrostatic pressure (Stachowska-Pietka et al., 2006;
2012).

Similarly to many distributed models, our model
involves the spreading of the source within the whole
tissue as an approximation to the discrete structure of
blood and lymphatic capillaries.

The independent variables are time t and distance
x within the tissue from the tissue surface in contact
with the dialysis fluid in the direction perpendicular to
this surface (flat geometry of the tissue is here assumed
with a finite width, see below). The solutes, glucose and
albumin, are distributed only within the interstitial fluid
(or part of it, see below), and their concentrations in this
fluid are denoted by CG(t, x) and CA(t, x), respectively.
The equation that describes the local changes of glucose
amount in the tissue, νCG, is

∂(νCG)
∂t

= −∂jG

∂x
+ qG, (2)

where jG(t, x) is the glucose flux through the tissue, and
qG(t, x) is the density of the glucose flux from blood.
The cellular uptake of absorbed glucose is not taken into
account in Eqn. (2) because this process leads to a small
correction in bulk absorption of glucose to the capillaries.

So, we neglect these intracellular changes that have been
observed experimentally (Zakaria et al., 2000).

Similarly, the equation that describes the local
changes of albumin amount in the tissue, ανCA, is

∂(ανCA)
∂t

= −∂jA

∂x
+ qA, (3)

where jA(t, x) is the albumin flux through the tissue,
qA(t, x) is the density of the albumin flux from blood. The
coefficient α < 1 takes into account that only a part of the
fractional fluid void volume ν that is available for fluid is
accessible for albumin because of its large molecular size
(Flessner, 2001; Stachowska-Pietka et al., 2007). In other
words, the inclusion of the term αν in (3) implies that
CA(t, x) is the concentration of albumin in that part of the
interstitium across which the albumin molecules can pass.

In the general case, Eqn. (3) involves a new fluid
void volume function νA(t, x), which depends on the
hydrostatic pressure similarly to the function ν (see
below) and satisfies the inequality νA < ν. Hereafter we
set νA = αν for simplicity.

The flows of fluid and solutes through the
tissue are described according to linear non-equilibrium
thermodynamics. Osmotic pressure of glucose and
oncotic pressure of albumin are described by van’t Hoff
law, i.e., assuming that the corresponding pressures are
proportional to the relevant concentrations.

The fluid flux across the tissue is generated by
hydrostatic, osmotic, and oncotic (i.e., osmotic pressure
of large proteins) pressure gradients according to the
extended Darcy law (Katchalsky and Curran 1965):

jU = −νK
∂P

∂x
+ σTGνKRT

∂CG

∂x

+ σTAνKRT
∂CA

∂x
, (4)

where K is the hydraulic conductivity of the tissue that
is assumed constant for simplicity (K may also depend
on the pressure P ), R is the gas constant, T is absolute
temperature, and σTG and σTA are the Staverman
reflection coefficients for glucose and albumin in the
tissue, respectively. The Staverman reflection coefficient
σ is a thermodynamic parameter and describes the
effectiveness of osmotic pressure in selectively permeable
membrane: if σ = 0, then no osmotic pressure can be
induced by this solute across the membrane, and if σ =
1, the maximal theoretically possible osmotic effect is
induced (ideal semi-permeable membrane).

The fluid flows along the hydrostatic pressure
gradient (i.e., from higher to lower pressure) and up the
concentration gradient of the osmotic agent (i.e., from
solution of lower concentration to solution of higher
concentration, osmosis), and therefore there is a difference
in signs at the gradients in Eqn. (4). Intermediate values
of σ represent non-ideal semipermeable membranes.
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Katchalsky and Curran (1965) thoroughly address the
problem of Staverman reflection coefficients.

The density of the fluid flux from blood to the
tissue is generated, according to the Starling law, by
the hydrostatic, osmotic and oncotic pressure differences
between blood and the tissue:

qU = Lpa(PB − P ) − LpaσGRT (CGB − CG)

−LpaσART (CAB − CA),
(5)

where P (t, x) is the hydrostatic pressure, Lpa is the
hydraulic conductance of the capillary wall, PB is the
hydrostatic pressure of blood, CGB and CAB are the
glucose and albumin concentrations in blood, and σG

and σA are Staverman reflection coefficients for glucose
and albumin in the capillary wall, respectively. Contrary
to other parameters, there is an unsolved problem of
the values of σG and σA. In particular, the values of
σG were found low (about 0.005 − 0.03) in many
experiments in contrast to some newer experimental data
that suggest the values close to 0.5 (see the discussion
of this controversy in the works of Waniewski et al.
(2009) and Stachowska-Pietka et al. (2012)). We also
assume that blood concentrations of glucose and albumin
are constant according to clinical and experimental
data that demonstrate only negligible variation of these
concentrations during peritoneal dwell of dialysis fluid
(Heimburger et al. 1992). This observation is related
to the quasi-continuous mode of continuous ambulatory
peritoneal dialysis with fluid exchanges every few hours
and was applied in most previous theoretical and
numerical studies on peritoneal dialysis.

The glucose flux across the tissue is composed
of a diffusive component (proportional to the glucose
concentration gradient) and a convective component
(proportional to glucose concentration and the fluid flux)

jG = −νDG
∂CG

∂x
+ STGCGjU , (6)

where DG is the diffusivity of glucose in tissue, STG is the
sieving coefficients of glucose in the tissue. According to
non-equilibrium thermodynamics, STG = 1 − σTG for a
homogenous membrane (Katchalsky and Curran 1965).

The density of the glucose flux between blood and
tissue describes the number of moles of glucose per
unit total volume of tissue per unit time that move
between blood and the tissue. It has a diffusive component
(proportional to the difference of glucose concentration
in blood, CGB , and glucose concentration in the tissue,
CG), a convective component (proportional to the density
of the fluid flow from blood to the tissue, qU ) and a
component that represents lymphatic absorption of solutes
(proportional to the density of the volumetric lymph flux,
ql):

qG = pGa(CGB − CG) + SGqUCG − qlCG. (7)

where pGa is the diffusive permeability of the capillary
wall for glucose.

In a similar way, the albumin flux across the tissue,
jA(t, x), and the density of the albumin flux to the tissue,
qA(t, x), can be described as

jA = −ανDA
∂CA

∂x
+ STACAjU , (8)

qA = pAa(CAB − CA) + SAqUCA − qlCA, (9)

where STA = 1 − σTA is the sieving coefficient of
albumin in the tissue, SA = 1 − σA is the sieving
coefficient of glucose and albumin in the capillary wall,
DA is the diffusivity of albumin in the tissue, and pAa
is the diffusive permeability of the capillary wall for
albumin. Typical values of the model parameters are listed
in Table 1.

Equations (1)–(3), together with Eqns. (4)–(9)
for flows, form a system of three nonlinear partial
differential equations with four variables: ν, P, CA, and
CG. Therefore, an additional, constitutive, equation is
necessary, and this is the equation describing how
fractional fluid void volume, ν, depends on interstitial
pressure, P . This dependence can be established using
data from experimental studies (Stachowska-Pietka et al.,
2006). It turns out that

ν = F (P ), (10)

where F is a monotonically non-decreasing bounded
function with the limits F → νmin if P → Pmin

and F → νmax if P → Pmax (particularly, one may
take Pmin = −∞, Pmax = ∞). Here νmin < 1
and νmax < 1 are empirically measured constants. An
example of the function F based on experimental data
taken from the work of Zakaria et al. (1999) was presented
by Stachowska-Pietka et al. (2006) and Cherniha et al.
(2007).

Boundary conditions for a tissue layer of width L
impermeable at x = L and in contact with the dialysis
fluid at x = 0 are

x = 0 : P = PD, CG = CGD, CA = CAD, (11)

ex = L :
∂P

∂x
= 0,

∂CG

∂x
= 0,

∂CA

∂x
= 0. (12)

Generally speaking, intraperitoneal pressure PD, glucose
CGD and albumin CAD concentrations in the peritoneal
cavity may depend on time. However, experimental data
and theoretical studies suggest that they change at a low
rate compared to the rate of transport processes in the
tissue (Stachowska-Pietka et al., 2006; 2007; Waniewski,
2007). Therefore, we may assume that PD , CGD and
CAD are constant for some time period and assess
the steady-state solution for these particular boundary
conditions that may be considered an approximated quasi
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steady-state solution for the full model of peritoneal
dialysis with time-dependent boundary conditions. This
approximation was applied to previous models with
variable boundary conditions for small solutes (as
glucose) and water transport (but without proteins, as
albumin) (see Dedrick, 1981; Flessner, et al., 1984; 1985;
Seames et al., 1990; Stachowska-Pietka et al., 2006; 2007;
Waniewski, 2001; 2002; Waniewski et al., 2009).

The initial conditions describe an equilibrium within
the tissue without any contact with the dialysis fluid:

t = 0 : P = P ∗, CG = C∗
G, CA = C∗

A, (13)

where P ∗, C∗
G, and C∗

A are some non-negative values,
which will be estimated below.

Note that Eqns. (1)–(10) can be united into
three nonlinear partial differential equations (PDEs)
for hydrostatic pressure P (t, x), glucose concentration
CG(t, x) and albumin concentration CA(t, x). Thus,
these three PDEs, together with the boundary and initial
conditions (11)–(13), form a nonlinear boundary-value
problem. Possible values of the parameters arising in
this problem are presented in Table 1 (see the relevant
comments in Section 4).

The fluid flux jU (t, x) at x = 0 describes the net
ultrafiltration flow, i.e., the exchange of fluid between
the tissue and the peritoneal cavity across the peritoneal
surface, and therefore directly the efficiency of water
removal during peritoneal dialysis. The assessment of
ultrafiltration flow is important from a practical point of
view because low values of this flow in some patients
indicate that some problems with osmotic fluid removal
have occurred, which may finally result in a failure of the
therapy (Parikova, 2006).

3. Steady-state solutions of the model and
their applications

The time needed to approach the steady state is of
the order of minutes for small solutes, as glucose, but
increases for larger solutes, and for albumin may be
expected to be a few hours (Waniewski, 2007; 2008;
Stachowska-Pietka et al., 2006). Thus, the transport of
small solutes is close to the steady state even during a
single exchange of the dialysis fluid. We should, however,
take also into account that patients are in continuously
repeated treatment with several hours of fluid dwell
in the peritoneal cavity and 10–20 minutes of fluid
exchange, and there are typically four exchanges every
day (Stachowska-Pietka et al., 2006). Thus, the transport
system for large molecules after many exchanges is
also close to the steady state. Hence, solutions for the
steady state of the system may be considered good
approximations for real conditions in the tissue in this
clinical setting.

First of all, we consider the special case of tissue
in its physiological state without dialysis, and, therefore,
no transport to the peritoneal cavity occurs. In this
case the boundary conditions at x = 0 given by
Eqn. (11) are replaced by zero Neumann conditions, and
the steady-state solution can be easily found because it
does not depend on x. In fact, by solving the algebraic
equations

qU − ql = 0, qG = 0, qA = 0, (14)

one easily obtains the spatially uniform steady-state
solution

C∗
G =

pGa

pGa + σGql
CGB ,

C∗
A =

pAa

pAa + σAql
CAB,

P ∗ = PB − ql

Lpa

− qlRT
( σ2

GCGB

pGa + σGql
+

σ2
ACAB

pAa + σAql

)
.

(15)

In the case ql = 0, i.e., the zero flux from the tissue
to the lymphatic vessels, the formulae (15) produce

C∗
G = CGB, C∗

A = CAB, P ∗ = PB, (16)

otherwise

C∗
G < CGB, C∗

A < CAB, P ∗ < PB. (17)

This uniform solution describes the system in
equilibrium if no dialysis is performed, and therefore we
may use the values P ∗, C∗

G, and C∗
A calculated above as

the initial profile for simulation of the transport processes
after the initiation of dialysis (see the formulae (13)).

To find spatially non-uniform steady-state solutions,
we reduce Eqns. (1)–(3) to an equivalent form by
introducing scaled non-dimensional independent
and dependent variables (except for ν, which is a
non-dimensional variable),

x∗ =
x

L
, t∗ =

KPDt

L2
, (18)

p(t∗, x∗) =
P

PD
,

u(t∗, x∗) =
CG − CGB

CGD − GGB
,

w(t∗, x∗) =
CA

CGD − GGB
.

(19)

Here we consider only the case with CGD > CGB ,
and therefore variables u and w are well defined and
positive, if the appropriate initial conditions, Eqns. (13),
(16) and (17), are assumed. For alternative methods of
scaling, see the works of Waniewski (2001; 2002).
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Thus, taking into account Eqns. (4), (6), and (8), and
after rather simple calculations, one obtains Eqns. (1)–(3)
in the form (hereafter the upper index ∗ is omitted)

∂ν

∂t
=

∂

∂x

(ν∂p

∂x

)
− t0σ1

∂

∂x

(ν∂u

∂x

)

− t0σ2
∂

∂x

(ν∂w

∂x

)
+ t0(qU − ql),

(20)

∂

∂t

(
ν(u + u0)

)

= d1t0
∂

∂x

(ν∂u

∂x

)
+ STG

∂

∂x

(uν∂p

∂x

)

− STGt0σ1
∂

∂x

(uν∂u

∂x

)
− STGt0σ2

∂

∂x

(uν∂w

∂x

)

− STGu0
∂

∂x

(ν∂p

∂x

)
− STGu0t0σ1

∂

∂x

(ν∂u

∂x

)

+ STGu0t0σ2
∂

∂x

(ν∂w

∂x

)

+ t0SG(u + u0)qU − t0b1u − t0u0ql,

(21)

∂(ανw)
∂t

= d2t0
∂

∂x

(ν∂w

∂x

)
+ STA

∂

∂x

(wν∂p

∂x

)

− STAt0σ1
∂

∂x

(wν∂u

∂x

)
− STAt0σ2

∂

∂x

(wν∂w

∂x

)

+ t0SAwqU − t0b2w − t0w0(b2 − ql),
(22)

where

qU = β
( 1

t0
(p0 − p) +

σGσ1

σTG
u +

σAσ2

σTA
w∗

)
,

σ1 = σTGKRT
CGD − GGB

L2
, d1 =

DG

L2
,

σ2 = σTAKRT
CGD − GGB

L2
, d2 =

αDA

L2
,

b1 = pGa + ql, b2 = pAa + ql, β =
LpaL2

K
,

u0 =
CGB

CGD − GGB
, w0 =

CAB

CGD − GGB
,

p0 =
PB

PD
, t0 =

L2

KPD
.

(23)

Since Eqns. (21)–(22) have essentially a different
structure, we modify them using Eqn. (20) and the
notation w∗ = w − w0; hence, the system of governing

equations consisting of Eqn. (20) and the equations

∂(νu)
∂t

+ σTGu0
∂ν

∂t

= d1t0
∂

∂x

(ν∂u

∂x

)
+ STG

∂

∂x

(uν∂p

∂x

)

− STGt0σ1
∂

∂x

(uν∂u

∂x

)
− STGt0σ2

∂

∂x

(uν∂w

∂x

)

+ t0(SGu + u0(SG − STG))qU − t0b1u

− t0σTGu0ql,

(24)

∂(ανw)
∂t

− STAw0
∂ν

∂t

= d2t0
∂

∂x

(ν∂w

∂x

)
+ STA

∂

∂x

(w∗ν∂p

∂x

)

− STAt0σ1
∂

∂x

(w∗ν∂u

∂x

)
− STAt0σ2

∂

∂x

(w∗ν∂w

∂x

)

+ t0(SAw − STAw0))qU − t0b2w
∗ − t0σTAw0ql

(25)

is obtained.
We want to find the steady-state solutions of

Eqns. (20), (24)–(25) satisfying the boundary conditions
(11)–(12). They take the form

x = 0 : p = 1, u = 1, w =
CAD

CGD − GGB
, (26)

x = 1 :
∂p

∂x
= 0,

∂u

∂x
= 0,

∂w

∂x
= 0. (27)

for the non-dimensional variables.
Note that, to find the steady-state solutions,

Eqns. (20), (24)–(25) can be reduced to the system of
ordinary differential equations (ODEs)

1
t0

d
dx

(νdp

dx

)
− σ1

d
dx

(νdu

dx

)
− σ2

d
dx

(νdw

dx

)

= ql − qU , (28)

d1
d
dx

(νdu

dx

)
+

STG

t0

d
dx

(uνdp

dx

)

− STGσ1
d
dx

(uνdu

dx

)
− STGσ2

d
dx

(uνdw

dx

)

+ (SGu + u0(SG − STG))qU − b1u − σTGu0ql = 0,

(29)

d2
d
dx

(νdw

dx

)
+

STA

t0

d
dx

(w∗νdp

dx

)

− STAσ1
d
dx

(w∗νdu

dx

)
− STAσ2

d
dx

(w∗νdw

dx

)

+ (SAw − STAw0)qU − b2w
∗ − σTAw0ql = 0.

(30)
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The non-linear system of ODEs (28)–(30) is still
very complex and cannot be integrated in the case
of arbitrary coefficients. Thus, we look for correctly
specified coefficients, for which this system can be
simplified. It can be noted that the relations

SA = STA, SG = STG (31)

lead to an essential (this means that automatically σG =
σTG, σA = σTA) simplification of this system. This
assumption is introduced for mathematical reasons only:
a specific symmetry of the equations allows much easier
rigorous analysis. On the other hand, it is shown in the
next section that even in this special case the solutions of
the model are qualitatively/quantitatively similar to those
obtained via other simplified models, which do not use
this assumption.

So, using the assumption (31), expressions for qU

from (23) and jU from (4), rewritten in non-dimensional
variables

jU = Lν
(
− 1

t0

∂p

∂x
+ σ1

∂u

∂x
+ σ2

∂w

∂x

)
, (32)

we obtain the relation

jU =
Kν

LpaL

dqU

dx
(33)

allowing jU to be found provided the function qU is
known. Using the formulae (31)–(33), the nonlinear ODE
system (28)–(30) can be simplified to the form

1
β

d

dx

(
ν

dqU

dx

)
− qU + ql = 0, (34)

d1
d
dx

(
ν

du

dx

)
− SG

β

d
dx

(
νu

dqU

dx

)

+ SGuqU − b1u − σGu0ql = 0,

(35)

d2
d
dx

(
ν

dw

dx

)
− SA

β

d
dx

(
νw

dqU

dx

)

+ SAwqU − b2(w − w0) − w0ql = 0.

(36)

The linear semi-coupled system of ODEs (33)–(34)
can be extracted to find the functions qU and jU provided
the function ν is known. However, ν depends on pressure,
which is also an unknown function, and therefore we need
to assume additional restrictions on the function F from
the formula (10).

Let us consider the first case, in which we assume
that F is a constant function. This assumption was
applied in many studies, especially for the description
of small solute transport (Dedrick, 1981; Flessner, 1984;
Waniewski, 2001; 2002). In this case,

ν(x) = νm, (37)

where νm is a positive constant. Substituting (37) into the
system (33)–(34), its general solution can be found:

qU = C1e
−λx + C2e

λx + ql, (38)

jU =
L

λ
(−C1e

−λx + C2e
λx), λ =

√
LpaL2

Kνm
. (39)

The arbitrary constants C1 and C2 can be specified using
the boundary conditions (26)–(27) since the functions qU

and jU are expressed via p, u, w and its first-order
derivatives (see the formulae (23) and (32)). Making
rather simple calculations, we obtain

C1 = (q0− ql)
e2λ

1 + e2λ
, C2 = (q0 − ql)

1
1 + e2λ

, (40)

where

q0 = β
( 1

t0
(p0 − 1) + σ1 + σ2

CAD − CAB

CGD − GGB

)
. (41)

Having the explicit formulae for qU and jU ,
Eqns. (35) and (36) can be reduced to two linear
autonomous ODEs:

d1νm
d2u

dx2
+

SG

λ
(C1e

−λx−C2e
λx)

du

dx
−κ1u = u01 (42)

and

d2νm
d2w

dx2
+

SA

λ
(C1e

−λx − C2e
λx)

dw

dx
− κ2(w − w0) = w01 (43)

with unknown functions u(x) and w(x). Hereafter the
notation

κ1 = pGa + σGql, u01 = σGu0ql,
κ2 = pAa + σAql, w01 = σAw0ql

(44)

is used. Note the similarities in the structure of Eqns. (42)
and (43) However, to the best of our knowledge, the
general solutions of the ODEs (42) and (43) are unknown.
On the other hand, since the unknown functions u(x) and
w(x) should satisfy the boundary conditions (26)–(27),
the corresponding linear problems can be numerically
solved using, e.g., the Maple program package. Finally,
using two expressions for qU from (23) and (38), we
obtain the function

p(x) = p0 + t0σ1u + t0σ2(w − w0)

− t0
β

(
C1e

−λx + C2e
λx + ql

)
. (45)

In the next section, the numerical non-uniform
steady-state solutions based on realistic parameter values
arising in the formulae derived above will be presented for
this case, i.e., with the restrictions (31) and (37).
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Let us now consider the second type of restriction
on the function ν. Instead of the rather restrictive
assumption (37), we examine the case when the
function ν is non-constant and satisfies the general
conditions described after the formula (10). According
to the experimental data, the hydrostatic pressure during
peritoneal dialysis is a decreasing function with respect to
the distance x from the peritoneal cavity (Flessner, 1994;
Zakaria et al. 1999; 2000). Hence, function F (p(x)) is
decreasing (with respect to x) provided p(x) is a spatially
non-uniform steady-state solution. The simplest case of
such a pattern occurs when ν is the linear, monotonically
decreasing function of x:

ν(p(x)) ≡ ν(x) = νmax − (νmax − νmin)x, (46)

where x ∈ [0, 1]. Substituting (46) into (34), we obtain the
linear ODE

(νmax − (νmax − νmin)x)
d2qU

dx2

− (νmax − νmin)
dqU

dx
− β(qU − ql) = 0. (47)

It can be shown by substitution

y2 = 4δ∗(ν∗ − x), qV = qU − ql,

ν∗ =
νmax

νmax − νmin
> 1,

δ∗ =
β

(νmax − νmin)
> 0

(48)

that the linear ODE (Eqn. (47)) reduces to the modified
Bessel equation of the zero order (see, e.g., Polyanin and
Zaitsev, 2003)

y2 d2qV

dy2
+ y

dqV

dy
− y2qV = 0. (49)

The general solution of Eqn. (49) is well known.
Hence, using the formulae (48), we obtain the solution of
Eqn. (47):

qU = C1I0(2
√

δ∗(ν∗ − x))

+ C2K0(2
√

δ∗(ν∗ − x)) + ql, (50)

where I0 and K0 are modified Bessel functions of the first
and third kinds, respectively.

Substituting the obtained function qU into Eqn. (33)
and using the well-known relations between the Bessel
functions (Bateman, 1974), we find the function

jU = −L

√
ν∗ − x

δ∗

(
C1I1(2

√
δ∗(ν∗ − x))

− C2K1(2
√

δ∗(ν∗ − x))
)
,

(51)

where I1 and K1 are modified Bessel functions. Note that,
similarly to the previous case, the constants C1 and C2 can
be determined from the boundary conditions. Omitting
rather simple calculations, we present only the result:

C1 =
(q0 − ql)K1(2

√
δ∗(ν∗ − 1))

Δ
, (52)

C2 =
(q0 − ql)I1(2

√
δ∗(ν∗ − 1))

Δ
, (53)

where

Δ ≡ I0(2
√

δ∗ν∗)K1(2
√

δ∗(ν∗ − 1))

+ K0(2
√

δ∗ν∗)I1(2
√

δ∗(ν∗ − 1))

and q0 is defined by (41).
Thus, we have found the explicit formulae for qU

and jU . Having the formulae (50)–(51), the system of
ODEs (35)–(36) can be reduced to two linear autonomous
ODEs with the unknown functions u(x) and w(x). These
equations have the form

d1(νmax − νmin)
(
(ν∗ − x)

d2u

dx2
− du

dx

)

+
SG√
δ∗

d
dx

(√
ν∗ − xΔ1(x)u

)

+
(
SGΔ0(x) − κ1

)
u − u01 = 0

(54)

and

d2(νmax − νmin)
(
(ν∗ − x)

d2w

dx2
− dw

dx

)

+
SA√
δ∗

d
dx

(√
ν∗ − xΔ1(x)(w − w0)

)

+
(
SAΔ0(x) − κ2

)
(w − w0) − w01 = 0,

(55)

where

Δ1(x) ≡ C1I1(2
√

δ∗(ν∗ − x))

− C2K1(2
√

δ∗(ν∗ − x))

and

Δ0(x) ≡ C1I0(2
√

δ∗(ν∗ − x))

+ C2K0(2
√

δ∗(ν∗ − x)).

Although both the equations are linear second order
ODEs with the same structure, we could not find their
general solutions because of their awkwardness. Thus,
we solve them numerically together with the boundary
conditions (26)–(27) using the Maple program package.
In the next section, realistic values of the parameters
for the formulae (50)–(55) will be selected and applied
in numerical simulations to calculate the non-uniform
steady-state solutions.
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4. Numerical results and their biomedical
interpretation

Here we present numerical results based on the formulae
derived in Section 3. Our aim is to check whether they
are applicable for describing the fluid-glucose-albumin
transport in peritoneal dialysis. The parameter values
in these formulae were derived from experimental
and clinical data and have been applied in previous
mathematical studies (Van Liew, 1968; Imholz et al.,
1998; Zakaria et al., 1999; Flessner, 2001; Smit et al.
2004a; 2004b; Waniewski, 2001; Stachowska-Pietka et
al., 2006; 2007; Cherniha et al., 2007; Waniewski et
al., 2009 ). Most of the parameters, especially those for
water and glucose, were derived from experimental data
or obtained by fitting the distributed model to clinical
data, and are discussed in detail in a recent paper of
Stachowska-Pietka et al. (2012).

Some phenomena, such as vasodilatation and change
of the parameters of interstitial transport with the change
of tissue hydration, were not included in our model
because our objective was the mathematical analysis
of the model, so its structure had to remain not too
complicated. Nevertheless, the model covers all basic
transport phenomena and provides a good background
for further modifications. However, only numerical
studies are available for such extended models (see
Smit et al., 2004a; 2004b; Stachowska-Pietka et al.,
2006). Furthermore, those parameters without firmly
established experimental values (i.e., Staverman reflection
coefficients), were varied to check their impact on the
results of modelling . The diffusivity of albumin in the
interstitium is not well known, but it is much lower
than interstitial diffusivity of glucose (see the works of
Waniewski (2001) and Stachowska-Pietka et al. (2012)
for more details). The values of parameters and absolute
constants applied in numerical simulations are listed in
Table 1.

Let us consider the first case of a constant fractional
fluid void volume, i.e., with the restrictions (31) and (37).
We remind the reader that the assumption that F is a
constant was applied in many studies and this implies
that ν(x) is also a constant. It seems to be reasonable
to set νm = (νmax + νmin)/2 = 0.26, i.e., we assume
that the fractional fluid void volume at the steady-state
stage of the peritoneal transport is an intermediate value
between its maximum and minimum. In order to compare
the numerical results obtained here with those for osmotic
peritoneal transport obtained in earlier models, in which
albumin transport was not considered, we neglect the
oncotic pressure as a driving fluid force across the tissue,
i.e., we set the Staverman reflection coefficients for
albumin σTA = σA = 0. This means that the fluid
flux across the tissue, jU , and the fluid flux from blood
to the tissue, qU (see the formulae (4) and (5)), do not

depend on the albumin concentrations. The Staverman
reflection coefficients for glucose in the tissue and in the
capillary wall are equal to σTG = σG = 0.001. Hereafter,
the values of other parameters and absolute constants are
taken from Table 1.

Figure 1 presents the spatial distributions of the
steady-state density of the fluid flux from blood to
the tissue qU and the fluid flux across the tissue jU ,
calculated using the formulae (38)–(41). The negative sign
of jU indicates the net fluid flux occurs across the tissue
towards the peritoneal cavity. Therefore, it corresponds
to the water removal by ultrafiltration. The monotonically
decreasing (with the distance from the peritoneal surface)
function qU (x) and the monotonically increasing function
jU (x) are in agreement with experimental data and
previously obtained numerical results for the models that
took into account only the glucose transport (Cherniha et
al., 2007; Waniewski et al., 2007). It should be stressed
that in those previous models albumin transport was not
considered and the restrictions (31) and (37) were not
used.

Using the value of the fluid flux jU at the point x = 0,
one may calculate the reverse water flow (i.e., out of the
tissue to the cavity). The total fluid outflow from the tissue
to the cavity (ultrafiltration), calculated assuming that the
surface area of the contact between the dialysis fluid and
the peritoneum is equal to 5 · 103 cm2 (this surface area
measured in 10 patients on peritoneal dialysis was found
to be within the range from 0.41 to 0.76 m2 (Chagnac
et al., 2002)), is about 0.90 mL/min. Note that a similar
value was obtained previously by Cherniha et al., (2007)
using numerical simulations. Moreover, it comes from the
formula (4) for x = 0 that the ultrafiltration increases
with growing σTG. For example, if one sets σTG = 0.01
into Eqn. (4) then the total fluid outflow from the tissue
to the cavity is 5.2 mL/min, which is very close to the
value obtained by Cherniha et al. (2007) for the same
parameters.

Figure 2 presents the spatial distributions of the
glucose concentration in the tissue for σTG = 0.001
and σTG = 0.01 (see Fig. 2, the top panel). The
interstitial glucose concentration CG decreases rapidly
with the distance from the peritoneal surface to the
constant steady-state value of C∗

G (see the formula (15))
in the deeper tissue layer independently of the σTG values
and is practically C∗

G for x > 0.3 (see Fig. 2, the bottom
panel, where both curves coincide). Thus, the width of
the tissue layer with the increased glucose concentration
(that is around 0.3 cm) does not depend on σTG. This
remains in agreement with the previous results obtained
by Cherniha et al. (2007).

We may conclude that, although the restriction
in the form of the assumption (37) is rather artificial
from physiological point of view, the analytical formulae
derived in Section 3 lead to results which are similar to
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those obtained earlier with numerical simulations of pure
glucose and water peritoneal transport (Cherniha et al.,
2007), where this assumption was not used.

Let us now consider the second case, which is more
realistic, i.e., hereafter the restrictions (31) and (46) apply.

Remark 1. In the case σTA = 0.0 the results obtained
via the formulae (50)–(53) and the ODEs (54)–(55)
practically coincide with those presented above (see
Fig. 1).

Now we assume that the Staverman reflection
coefficient for albumin is non-zero and equal to σA =
σTA = 0.5, i.e., the maximum value of σTA (see Table
1) is taken. In other words, we assume that the oncotic
pressure plays an important role, contrary to the previous
case. Here the fluid flux across the tissue jU and the fluid
flux from blood to the tissue qU (see the formulae (4) and
(5)) depend on the interstitial concentrations of glucose
and albumin. We performed many calculations using the
formulae (50)–(53) and ODEs (54)–(55) for a wide range
of values of the parameter σTG, from very small (0.001)
to large (0.03) values. Of course, other parameters can
also be varied; however, we restricted ourselves to this
parameter because it is included in assumption (31).

The results obtained for σTG = 0.001, σTG = 0.002
and σTG = 0.01 are presented in Figs. 3 and 4. It is quite
interesting that the profiles for functions qU (x) and jU (x)
shown in Fig. 3 are very similar to those in Fig. 1, although
the relevant formulae are essentially different (the reader
may compare (50)–(53) with (38)–(41)) and σTA = 0.5.
Moreover, the form of these profiles are the same for a
wide range of the values of σTG.

Using the value of the fluid flux jU at the point x = 0,
one may again calculate the ultrafiltration flow to the
peritoneal cavity that can be obtained under the assumed
restrictions on the model parameters. In the case σTG =
0.01 the total fluid outflow from the tissue to the cavity
is approximately equal to 4.8 mL/min, while it is very
small (0.06 mL/min) for σTG = 0.001. To obtain values
of the ultrafiltration that correspond to those measured
during peritoneal dialysis, we need to set σTG ≥ 0.02. For
example, setting σTG = 0.02 and σTG = 0.03, we obtain
the ultrafiltration rates of 10 mL/min and 15 mL/min,
which are close to those measured in clinical conditions
for similar boundary concentration of glucose (Smit et al.,
2004a; 2004b; Waniewski et al., 1996a; 2009; Stachowska
et al., 2012). The initial values of ultrafiltration remain in
agreement with those obtained by our group in clinical
studies (Waniewski et al., 1996b; Waniewski, 2007). The
initial rates of ultrafiltration for 3.86% glucose solution
were found to be of 15 mL/min, which was much higher
than those for 2.27 and 1.36% glucose solutions, 8 and
6 ml/min, respectively (Waniewski et al. 1996a; 1996b).
Similar values in the range of 14–18 mL/min were
measured during the initial minute and much lower values

of 4-8 mL/min at the end of a 4 h dwell study with 3.86%
glucose solution (Smit et al. 2004a; 2004b).

Table 1. Parameters of the model used for numerical analysis of
peritoneal transport.

Parameter name Parameter symbol,
value and unit

Minimal fractional void volume νmin = 0.17
Maximal fractional void volume νmax = 0.35
Staverman reflection coefficient 0 < σTG ≤ 0.03
for glucose
Sieving coefficient of glucose STG = 1 − σTG

in the tissue
Staverman reflection coefficient 0.05 ≤ σTA ≤ 0.5
for albumin
Sieving coefficient of albumin STA = 1 − σTA

in the tissue
Hydraulic permeability of the tissue K = 5.14 · 10−5

cm2/min /mm Hg
Gas constant times temperature RT = 18 · 103

mm Hg · mL/ mmol
Width of the tissue layer L = 1.0 cm
Hydraulic permeability of LP a = 7.3 · 10−5

capillary wall times density 1/min / mm Hg
of capillary surface area
Volumetric fluid flux to ql = 0.26 · 10−4

lymphatic vessels min−1

Diffusivity of glucose in the tissue DG = 12.11 · 10−5

divided by νmin cm2/min
Diffusivity of albumin in the tissue DA = 0.2 · 10−5

divided by νmin cm2/min
Permeability of the capillary wall pGa =
for glucose times density 3.4 · 10−2 min−1

of capillary surface area
Permeability of the capillary wall pAa =
for albumin times density 6 · 10−5 min−1

of the capillary surface area
Glucose concentration in blood CGB = 6 · 10−3

mmol / mL
Albumin concentration in blood CAB = 0.6 · 10−3

mmol / mL
Glucose concentration in dialysate CGD = 180 · 10−3

mmol / mL
Albumin concentration in dialysate CAD = 0
Hydrostatic pressure of blood PB = 15 mm Hg
Hydrostatic pressure of dialysate PD = 12 mm Hg
Non-dimensional parameter α = 0.8

The spatial distributions of the glucose and albumin
concentrations for different values of σTG are displayed
in Fig. 4. Note that the glucose concentration in the
tissue, CG, again decreases rapidly with the distance
from the peritoneal cavity to the constant steady-state C∗

G

in the deeper tissue layer. The glucose concentration is
practically equal to C∗

G for any x > 0.1 cm if σTG is
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Fig. 1. Fluid fluxes from blood to tissue qU (in min−1) and
across the tissue jU (in min−1 · cm ) as a function of di-
stance from peritoneal cavity x (in cm) for ν = (νmax +
νmin)/2, σTG = 0.001 (dot curves), σTG = 0.01 (solid
curves), and σTA = 0.0.

large (≥ 0.01). The tissue layer with non-constant CG is
slightly wider if σTG is small (≤ 0.002). For such values
of σTG, the glucose concentration is equal to C∗

G for all
x > 0.2 cm.

The albumin concentration in the tissue, CA, is
decreased (in the direction to the peritoneal cavity) in a
thin layer, whereas it remains unperturbed in the deeper
tissue layers (Fig. 4). This decrease corresponds to the
transport of albumin to the peritoneal cavity, and is most
pronounced close to the peritoneal surface. We found
that the albumin concentration essentially depends on
the parameter σTG. In fact, three curves presented in
Fig. 4 show that the tissue layer with decreased CA is
wide for σTG = 0.001, whereas it is much smaller for
σTG = 0.002 and almost vanishes for σTG = 0.01. In
the case σTG = 0.001, the tissue layer of decreased CA

is about 0.3 cm, indicating the removal of albumin from
this part of the tissue. In the case of high σTG, the albumin
concentration in the tissue is decreased only in a very thin
layer, while it remains at a physiological level and equal
to C∗

A (see the formula (15)) beyond this layer. Thus,
the high ultrafiltration flow contributes to fast inflow of
albumin from blood to the tissue and drags albumin from
deep to subsurface layers. However, the diffusive leak of
albumin from the tissue to the peritoneal cavity is faster
with high ultrafiltration because of a higher concentration
gradient (Fig. 4).

Fig. 2. Profiles of glucose concentration in the tissue CG (in
mmol · mL−1) as a function of distance from the pe-
ritoneal cavity x (in cm) for ν = (νmax + νmin)/2,
σTG = 0.001 (dot curves) and σTG = 0.01 (solid cu-
rves). Upper panel for 0 ≤ x ≤ 1, bottom panel: zoom
for 0.2 ≤ x ≤ 0.6.

5. Conclusions

In this paper, a new mathematical model for fluid
transport in peritoneal dialysis was constructed. The
model is based on a three-component nonlinear system
of two-dimensional partial differential equations and the
relevant boundary and initial conditions. To analyze
the non-uniform steady-state solutions, the model was
reduced to a non-dimensional form. Under additional
assumptions the problem was simplified in order to obtain
analytical solutions in an explicit form. As a result, the
exact formulae for the density of the fluid flux from blood
to the tissue and the fluid flux across the tissue were
constructed, together with two linear autonomous ODEs
for glucose and albumin concentrations in the tissue.

The analytical results were checked for their
applicability to describe the fluid-glucose-albumin
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Fig. 3. Fluid flux from blood to the tissue qU (in min−1) and
the fluid flux across the tissue jU (in min−1 · cm ) as
a function of distance from the peritoneal cavity x (in
cm) for ν = νmax − (νmax − νmin)x, σTA = 0.5, and
σTG = 0.001 (dot curves), 0.002 (dash curves), 0.01
(solid curves).

transport in peritoneal dialysis. The selected values of
the parameters were based on previous experimental
and clinical studies or estimated from the data using the
distributed model. Some of the parameters (Staverman
reflection coefficients) were varied to check their impact
on the model predictions. The model presented in the
current study was extended, compared with previous
models, by including the transport of water and the two
most important solutes related to water transport: glucose,
which is used as an osmotic agent, and albumin, which is
the primary determinant of oncotic pressure.

These two solutes differ greatly in molecular mass
(by a factor of 300) and therefore also differ in their
transport parameters. The other studies include mostly
only one of these two solutes into the model (Flessner et
al., 1984; Baxter and Jain, 1989; 1990; 1991; Cherniha
and Waniewski 2005; Flessner 2006; Cherniha et al.,

Fig. 4. Glucose concentration profiles, CG (in mmol · mL−1),
and albumin concentration profiles, CA (in mmol ·
mL−1), in the tissue as a function of distance from the
peritoneal cavity, x (in cm), for ν = νmax − (νmax −
νmin)x, σTA = 0.5, and σTG = 0.001 (dot curves),
0.002 (dash curves), 0.01 (solid curves).

2007; Waniewski et al., 2007; 2009; Stachowska-Pietka
et al., 2007; 2012). On the other hand, our investigations
are restricted to the steady state solutions, whereas in real
dialysis the fluid and solute transport changes because of
the change in boundary conditions (Stachowska-Pietka et
al., 2006). We did not include in the model the phenomena
of vasodilation and change in tissue hydration that yield
spatially non-uniform structure of the tissue (however,
our x-dependent fractional volume of the interstitial
fluid ν partially accounts for this non-uniform structure)
and contribute to the details of numerical solutions as
compared to clinical data (see Smit et al., 2004a). Only
some of the model predictions can be compared directly
with clinical data. The most important output is the
rate of ultrafiltration of water to the peritoneal cavity
that is induced by glucose. With the concentration of
glucose applied in our calculations, the ultrafiltration rate
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of about 15 mL/min is expected (Heimbürger et al., 1992;
Waniewski et al., 1996a; 1996b; Smit et al 2004a; 2004b).

Our results demonstrate that this value can be
obtained if the reflection coefficient for glucose is high
(0.02–0.03). This general observation is in agreement
with early measurements of this coefficient, but differs
from much higher values of the coefficient estimated by
previous numerical simulations (Stachowska-Pietka et al.,
2006; Waniewski, 2007; Waniewski et al., 2007). The
difference might be explained by that between glucose
reflection coefficients for the tissue (low) and the capillary
wall (high) obtained from previous numerical simulations,
whereas these two coefficients were equal (with a medium
value to yield the demanded ultrafiltration rate, for the
sake of mathematical tractability) in our predictions (see
below).

The glucose and albumin profiles obtained from our
model are similar to those found in experimental studies
(although no such data are available for humans, they
are for rats) and to the previous numerical simulations
of clinical dialysis (Flessner et al., 2006; Waniewski et
al., 2009; Stachowska-Pietka et al, 2012). The glucose
interstitial concentration sharply decreases within 2 mm
from the peritoneal surface and is equal to its blood
concentration in deeper tissue layers (see Figs. 2 and
4) as found in other numerical studies (Waniewski et
al. 2009; Stachowska-Pietka et al., 2012). A similar
profile was found in experiments performed in rats with
manitol, which has identical transport characteristics to
glucose (Flessner et al., 2006). In contrast, the interstitial
concentration of albumin is high within the deep layers
of the tissue and decreases sharply in a thin layer close
to the peritoneal tissue, as shown in Figs. 2 and 4. This
low subperitoneal protein concentration (and therefore
low oncotic pressure) was confirmed experimentally
(Rosengren et al., 2004) and in numerical simulations
(Stachowska-Pietka et al., 2007). Other results, such as
the profiles of the flux from blood to the tissue qU and
the flux across the tissue, jU (see Figs. 1 and 3), do not
have experimental counterparts and are rarely presented
as results of numerical studies.

Thus, our model, although aimed at the investigation
of its mathematical structure with specific coefficient
conditions, also yielded interesting predictions, in spite
of the simple approximations for the fractional interstitial
fluid volume ν that were applied. Even the simplest
approximations of ν by a constant or a linear function
yielded predictions in agreement with the models based
on nonlinear dependence of ν on interstitial hydrostatic
pressure. In fact, the monotonically decreasing (with the
distance from the peritoneal surface) function qU (x),
describing the fluid flux from blood to the tissue, and
the monotonically increasing function jU (x), describing
the fluid flux across the tissue, are in agreement with
experimental data and previously obtained numerical

results. Moreover, we calculated the fluid flux jU (t, x) at
x = 0, which describes the net ultrafiltration flow, i.e., the
efficiency of removal of water during peritoneal dialysis,
because it is important from a practical point of view.
The results show that the Staverman reflection coefficient
for glucose σTG plays a crucial role for ultrafiltration.
To obtain the values of the ultrafiltration corresponding
to experimental data, 10-20 mL/min, measured during
peritoneal dialysis, we need to set σTG ≥ 0.02 in the
formulae obtained.

The finding that high ultrafiltration flow rates
measured in clinical studies may be obtained with a
relatively low σG of 0.01 − 0.03 and at the same
time rather high σTG = σG (which is the assumption
necessary to get the presented above analytical solutions)
is interesting. In fact, much higher values of σG (about
0.5) and lower values of σTG (about 0.005) were used by
(Waniewski et al., 2009; Stachowska-Pietka et al., 2012)
to obtain similar flow rates. Our solutions constructed
above add a new perspective to the unsolved problem
of the values of σG (see the detailed discussion by
Waniewski et al. (2009) and Stachowska-Pietka et al.
(2012)). Thus, these new results should be further pursued
not only because of mathematical interest but also of their
potential practical applications.

The differences between the present analytical
solutions and the previous simulations also include the
profile of the fluid void volume (approximated due to
the linear function), which is an input to our model
equations, and not an outcome of the simulations. Other
approximations of the fractional fluid volume ν may in
future result in similar exact formulae. In the particular
case, the preliminary calculations show that such exact
formulae can be obtained when ν is a decreasing
exponential function. However, the assumption about
the equality of the reflection coefficients in the tissue
and in the capillary wall, which demonstrates an
interesting specific symmetry in the equations, can be
too restrictive for practical applications of the derived
formulae (Waniewski et al., 2009). Therefore, other
approaches to find the analytical solutions of the model
need to be looked for.
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Joanna Stachowska-Piętka received her M.Sc. degree in mathematics
from the Faculty of Mathematics, Informatics and Mechanics, Universi-
ty of Warsaw, in 2000, and in economics from the Faculty of Economic
Sciences, University of Warsaw, in 2002. She obtained a Ph.D. degree
in biomedical engineering from the Institute of Biocybernetics and Bio-
medical Engineering of the Polish Academy of Sciences in 2011. Her
research is focused on local fluid balance in the human body, fluid and
solute transport through the tissue and across the blood capillary wall.
Her topics of current research are related to fluid and solute transport in
patients on dialysis.

Jacek Waniewski received his M.Sc. degree in physics from the Fa-
culty of Physics, Warsaw University, in 1973. He obtained a Ph.D. de-
gree in physics in 1983 from the same faculty and in medicine in 2001
from Karolinska Institutet, Stockholm. His D.Sc. degree in biomedical
engineering was granted to him by the Institute of Biocybernetics and
Biomedical Engineering of the Polish Academy of Sciences in 1995. He
obtained the professorial title (technical sciences) in 2012. His research
is currently focused on the applications of mathematical modelling in
medicine and biomedical research with emphasis on clinical problems
related to patients with kidney failure.

Received: 7 October 2013
Revised: 6 May 2014


