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Remarkable improvements in the stability properties of discrete system zeros may be achieved by using a new design of the
fractional-order hold (FROH) circuit. This paper first analyzes asymptotic behaviors of the limiting zeros, as the sampling
period T tends to zero, of the sampled-data models on the basis of the normal form representation for continuous-time
systems with a new hold proposed. Further, we also give the approximate expression of limiting zeros of the resulting
sampled-data system as power series with respect to a sampling period up to the third order term when the relative degree
of the continuous-time system is equal to three, and the corresponding stability of the discretization zeros is discussed
for fast sampling rates. Of particular interest are the stability conditions of sampling zeros in the case of a new FROH
even though the relative degree of a continuous-time system is greater than two, whereas the conventional FROH fails
to do so. An insightful interpretation of the obtained sampled-data model can be made in terms of minimal intersample
ripple by design, where multirate sampled systems have a poor intersample behavior. Our results provide a more accurate
approximation for asymptotic zeros, and certain known results on asymptotic behavior of limiting zeros are shown to be
particular cases of the ideas presented here.
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1. Introduction

Zeros, along with poles, are fundamental characteristics
of linear time-invariant systems, and stability of zeros
is one of the most important issues in model matching
and adaptive control problems. When a continuous-time
system is discretized by the use of a sampler and a hold,
the mapping between the discrete-time poles and their
continuous-time counterparts is very simple, namely, the
stability of poles is reserved. There is unfortunately no
simple transformation between the discrete-time zeros and

their continuous-time counterparts because the zeros of
discrete-time systems depend on the sampling period T
(Åström et al., 1984; Zeng et al., 2013). Thus, it is
generally impossible for a continuous-time system with
zeros in the left-half plane to be able to be transformed to
a discrete-time system with zeros inside the unit circle.
In other words, the stability of zeros is not necessarily
preserved except in special cases. Therefore, the limiting
case when the sampling period T tends to zero has
attracted considerable attention (Åström et al., 1984;
Hagiwara et al., 1993; Ishitobi, 1996b; Liang and Ishitobi,
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2004a; Kaczorek, 1987; 2010; 2013; Tokarzewski, 2009;
Ugalde et al., 2012; Ostalczyk, 2012).

Perhaps the first attempt to study the zeros was given
by Åström et al. (1984), who described the asymptotic
behavior of the discrete-time zeros for a fast sampling
rate when the original continuous-time plant is discretized
with a zero-order hold (ZOH), and further the zeros in this
case are called limiting zeros, which are composed of the
intrinsic zeros and the sampling zeros (Hagiwara et al.,
1992). The former have a counterpart in the underlying
continuous-time system, and go to unity (Hagiwara,
1996), while the latter which have no continuous-time
counterparts and are generated in the sampling process,
go toward roots of a certain polynomial (Hagiwara et al.,
1993; Weller et al., 2001) determined by the relative
degree of the continuous-time system.

In many discussions about the properties of
discrete-time zeros, the ZOH has been mainly employed
as a hold circuit since it is used most commonly in
practice (Åström et al., 1984; Hagiwara, 1996; Błachuta,
1999; Hayakawa et al., 1983; Weller, 1999; Ishitobi, 2000;
Liang et al., 2007; Ruzbehani, 2010; Karampetakis and
Karamichalis, 2014). Taking into account the fact that the
type of hold circuit used critically influences the position
of zeros, it is an interesting problem to investigate the
zeros in the case of various holds. Hagiwara et al. (1993)
carried out a comparative study and demonstrated that
the first-order hold (FOH) provides no advantage over
the ZOH as far as the stability of zeros of the resulting
discrete-time systems is concerned. Further results on
the behavior of the FOH have been reported (Błachuta,
1998; Zhang et al., 2011). Passino and Antsaklis
(1988) considered the fractional-order hold (FROH) as an
alternative to the ZOH and showed that it can locate the
zeros of a discrete-time system inside the unit circle by
some examples while the ZOH fails to do so.

In a very motivating work by Ishiboti (1996), the
asymptotic properties of limiting zeros with a FROH have
been analyzed, and corresponding stability conditions
have been also derived when the continuous-time systems
have a relative degree up to five for sufficiently small
sampling periods. Further, Bàrcena et al. (2000; 2001),
Liang et al. (2003) as well as Liang and Ishitobi (2004b)
respectively extended Ishitobi’s results (Ishitobi, 1996)
from different angles and with methods by investigating
the limiting zeros in the case of a FROH.

In addition, the results of limiting FROH zeros
(Ishitobi, 1996) were also extended by Błachuta (2001),
who described the accuracy of the asymptotic results for
both the intrinsic and the sampling zeros in terms of
Bernoulli numbers and parameters of the continuous-time
transfer function for sufficiently small sampling periods.
However, the FROH does yield better discretization zeros,
but only within a limited margin, mainly because it has
just one tuning parameter, which does not allow to place

the limiting zeros as one wishes. In particular, it can
be seen that the sampling zeros with a ZOH or a FROH
always lie strictly outside the unit circle when the relative
degree of a continuous-time system is greater than or
equal to three (Åström et al., 1984; Ishitobi, 1996; 2000;
Liang et al., 2003). In many engineering applications, fast
sampling rates and the continuous-time relative degree
more than two commonly occur.

These facts sparked interest in other holds such
as multirate sampling control and digital control with
the generalized sampled-data hold function (GSHF)
(Kabamba, 1987; Chan, 1998; 2002; Liang and Ishitobi,
2004a; Yuz et al., 2004; Liang et al., 2010; Ugalde
et al., 2012). Though some deficiencies such as poor
intersample behavior in the case of a GSHF cannot be
avoided, the GSHF can be used to solve many more
ambitious control problems for linear systems as long as it
is formulated exclusively in intersample terms. Moreover,
it is well known that the GSHF can be also used to shift the
zeros of sampled-data models for linear continuous-time
systems because intersample ripples can be suppressed by
using a linear-quadratic optimization (Chan, 1998) or can
be alleviated efficiently by minimizing the variation the
control input (Liang and Ishitobi, 2004a).

However, in contrast with a ZOH or a FROH, rather
poor intersample behavior is often unavoidable. Although
this can be alleviated as mentioned above, the fact is
that for a sampled-data model with a discrete integrator
to be able to reject step disturbances in continuous
interval, and the impulse response of the hold in question
it must have continuous-time zeros where a ZOH and
a FROH have theirs, while a GSHF does not (Feuer
and Goodwin, 1996; Middleton and Freudenberg, 1995).
Hence, we present a new design of the FROH which is
composed of the polynomic function instead of simple
design parametrization. Our new hold characterization
merges two interesting features: conventional FROH
behavior under constant input together with as many
tuning parameters as desired. On the one hand, the former
provides a very simple way to minimize the intersample
issue; on the other, the latter allows the discretization
zeros to be placed wherever desired.

The aim of this paper is first to analyze the
asymptotic behaviors of the limiting zeros of discrete-time
models on the basis of the normal form representation
of continuous-time systems, and also derive their
approximate expression in the case of a new FROH
as power series with respect to a sampling period up
to the third order term when the relative degree of
the continuous-time system is equal to three. Besides
the obvious differences in terms of the technique in
researching our FROH and other hold circuits, we
can deeply feel that this study is important owing to
the complexity and importance of discretization zeros,
especially for the sampled-data model and stability of
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sampling zeros.
More importantly, we also show how our new hold,

irrespectively of whether the continuous-time relative
degree is greater than two or not, can be designed to
remove only the effects of the sampling process by
placing the sampling zeros of the discrete-time system
asymptotically to the stable regions at will. One of
the principal contributions in this paper, in particular,
would consequently propose an analytical method to
obtain the limiting zeros as stable as possible for a wider
class of continuous-time plants. Moreover, an insightful
interpretation of the resulting sampled-data model can be
made in terms of minimal intersample ripple by design,
where the multirate sampled systems have usually a poor
intersample behavior. Finally, we further obtain the
stability condition of the sampling zeros for sufficiently
small sampling periods.

2. Sampled-data model with a new FROH

Consider an n-th order continuous-time system with
relative degree r = n − m described by the transfer
function

G(s) = K
N(s)
D(s)

, K �= 0, (1)

where

N(s) = sm + bm−1s
m−1 + bm−2s

m−2 + · · · + b0, (2)

D(s) = sn + an−1s
n−1 + an−2s

n−2 + · · · + a0. (3)

The normal form of (1) with the relative degree r =
n − m is represented with an input u and an output y
(Isidori, 1995; Khalil, 2002) as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξ̇ =
[

0r−1 Ir−1

0 0T
r−1

]

ξ +
[

0r−1

1

]

× (Ku − ω − d0ξ1 − d1ξ2 − · · · − dr−1ξr),
η̇ = Pη + qξ1,

y =
[

1 0
]
ξ,

(4)
where

ξ =
[

ξ1 ξ2 · · · ξr

]T
,

η =
[

η1 · · · ηn−r

]T
,

ω = cT η, c =
[

c0 c1 · · · cn−r−1

]T
,

P =

⎡

⎢
⎢
⎢
⎣

0 1 O
. . .

O 1
−b0 · · · −bn−r−2 −bn−r−1

⎤

⎥
⎥
⎥
⎦

,

q =
[

0 · · · 0 1
]T

,

and the scalars di (i = 0, . . . , r−1) and ci (i = 0, · · · , n−
r − 1) are obtained from

D(s) = Q(s)N(s) + R(s), (5)

Q(s) = sr + dr−1s
r−1 + · · · + d1s + d0, (6)

R(s) = cn−r−1s
n−r−1 + · · · + c0, (7)

where

dr−1 = an−1 − bn−r−1,

dr−2 = an−2 − bn−r−2 − bn−r−1dr−1,

dr−3 = an−3 − bn−r−3 − bn−r−2dr−1,

...

d0 = an−r − bn−2r − bn−2r+1dr−1,

ci = ai − bi−r − bi−r+1dr−1 − · · · − bi−1d1 − bid0

i = 0, . . . , n − r − 1.

We are interested in the sampled-data model for the
linear system (4) when the input is a piecewise continuous
signal generated by a new FROH reconstruction, i.e.,

u(t) = u(kT ) +
N−1∑

�=0

β�(t − kT )�

×
[
u(kT )− u((k − 1)T )

T

]

,

β� ∈ R, N > 1,

kT ≤ t < (k + 1)T, k = 0, 1, . . . , (8)

where β� is a real coefficient and T is a sampling
period. In particular, our new hold (8) with a polynomial
can be regarded as a generalization of the conventional
FROH. In contrast to a simple linear pattern, the
polynomial approach not only turns out to provide
minimal intersample ripple issues, but also places limiting
zeros of the discretized model at will with as many tuning
parameters as desired.

Given the complexity of calculation, we assume the
condition N = 2 while guaranteeing the desired control
performance for our new hold (8). Moreover, a new FROH
is used and the relations

u̇(t) = β1

[
u(kT ) − u((k − 1)T )

T

]

,

ü(t) = · · · = 0 (9)

are noticed. Furthermore, the normal form (4) leads to the
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derivatives of the output

y = ξ1, ẏ = ξ2, . . . , y(r−1) = ξr (10)

y(r) = Ku − cT η − d0ξ1 − · · · − dr−1ξr, (11)

y(r+1) = (d0dr−1 − cT q)ξ1 + (d1dr−1 − d0)ξ2

+ · · · + (dr−2dr−1 − dr−3)ξr−1

+ (d2
r−1 − dr−2)ξr + (dr−1cT − cT P )η

− dr−1Ku + Ku̇, (12)

y(r+2) = (d0dr−2 − d0d
2
r−1 + dr−1cTq − cT Pq)ξ1

+ (d1dr−2 − d1d
2
r−1 + d0dr−1 − cT q)ξ2

+ · · · + (2dr−1dr−2 − d3
r−1 − dr−3)ξr

+ (d2
r−1 − dr−2)Ku − dr−1Ku̇

+
{
(dr−2 − d2

r−1)c
T

+ dr−1cT P − cT P 2
}
η. (13)

Further, the derivatives of η are also represented as

η̇ = Pη + qξ1, (14)

η̈ = P (Pη + qξ1) + qξ̇1

= P (2)η + Pqξ1 + qξ̇1, (15)

η(3) = P (2)(Pη + qξ1) + Pqξ̇1 + qξ̈1

= P (3)η + P (2)qξ1 + Pqξ̇1 + qξ̈1, (16)

...

η(r) = P (r−1)(Pη + qξ1) + P (r−2)qξ̇1 + qξ
(r−1)
1

= P (r)η+P (r−1)qξ1+P (r−2)qξ̇1+qξ
(r−1)
1 ,

(17)

η(r+1) = P (r)(Pη+qξ1)+P (r−1)qξ̇1+· · ·+qξ
(r)
1

=
[
P (r)q − qd0

]
ξ1+

[
P (r−1)q − qd1

]
ξ2+· · ·

+ (Pq−qdr−1)ξr+
[
P (r+1) − qcT

]
η+qku,

(18)

η(r+2) = P (r+1)(Pη + qξ1) + P (r)qξ̇1 + P (r−1)qξ̇1

+ · · · + qξ
(r+1)
1

=
[
qd0dr−1 − Pqd0 + P (r+1)q − qcT q

]
ξ1

+
[
P (r)q − d0q − Pqd1 + qd1dr−1

]
ξ2 + · · ·

+
[
qd2

r−1 − Pqdr−1 + P 2q− qdr−2

]
ξr

+ (Pq − qdr−1)ku + qku̇

+
[
qcT dr−1 − PqcT + P (r+2) − qcT P

]
η.

(19)

Hence, substituting (10)–(19) into the right-hand side

of

yk+1 =
∞∑

i=0

T i

i!
y
(i)
k , (20)

ẏk+1 =
∞∑

i=0

T i

i!
y
(i+1)
k , (21)

...

y
(r−1)
k+1 =

∞∑

i=0

T i

i!
y
(i+r−1)
k , (22)

ηk+1 =
∞∑

i=0

T i

i!
η

(i)
k , (23)

and defining the state variables

xk =
[

yk ẏk · · · y
(r−1)
k ηT

k

]T
, (24)

the discrete-time state equations in the case of a new
FROH are definitely obtained.

Now, the zeros of the discrete-time system
(20)–(23) are analyzed using the explicit expressions of
yk, ẏk, · · · , y

(r+2)
k and ηk, η̇k, · · · , η

(r+2)
k as follows:

yk+1

=
r+2∑

i=0

T i

i!
y
(i)
k + O

(
T r+3

)

=
{

1 − d0

r!
T r +

d0dr−1 − cT q
(r + 1)!

T r+1

+
dr−1cT q + d0dr−2 − d0d

2
r−1 − cT Pq

(r + 2)!
T r+2

}

yk

+
{

T − d1

r!
T r +

d1dr−1 − d0

(r + 1)!
T r+1

d1dr−2 − d1d
2
r−1 + d0dr−1 − cT q
(r + 2)!

T r+2

}

ẏk

+ · · · +
{

T r−1

(r − 1)!
+

dr−1

r!
T r

+
d2

r−1 − dr−2

(r + 1)!
T r+1

+
2dr−1dr−2 − d3

r−1 − dr−3

(r + 2)!
T r+2

}

y
(r−1)
k

+
{[

1 + β0 + β1

r!
+

β1

(r + 1)!

]

T r

−
[

dr−1β1

(r + 2)!
+

(1 + β0 + β1)dr−1

(r + 1)!

]

T r+1

+
[
β1(d2

r−1 − dr−2)
(r + 3)!

+
(1 + β0 + β1)(d2

r−1 − dr−2)
(r + 2)!

]

T r+2

}

Kuk
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−
{[

β0 + β1

r!
+

β1

(r + 1)!

]

T r

−
[
(β0 + β1)dr−1

(r + 1)!
+

β1dr−1

(r + 2)!

]

T r+1

}

Kuk−1

+
{

−cT

r!
T r +

dr−1cT − cT P

(r + 1)!
T r+1

dr−1cT P − cT P 2 + (dr−2 − d2
r−1)cT

(r + 2)!
T r+2

}

ηk

+ O
(
T r+3

)
, (25)

ẏk+1

=
r+1∑

i=0

T i

i!
y
(i+1)
k + O

(
T r+2

)

=
{

− d0

(r−1)!
T r−1+

d0dr−1−cTq
r!

T r

+
d0dr−2 + dr−1cT q − d0d

2
r−1 − cT Pq

(r + 1)!
T r+1

}

yk

+
{

1− d1

(r − 1)!
T r−1+

d1dr−1 − d0

r!
T r

+
d1dr−2−d1d

2
r−1+d0dr−1−cTq
(r + 1)!

T r+1

}

ẏk

+ · · ·+
{

T r−2

(r−2)!

+
dr−1

(r−1)!
T r−1+

d2
r−1−dr−2

r!
T r

+
2dr−1dr−2 − d3

r−1 − dr−3

(r + 1)!
T r+1

}

y
(r−1)
k

+
{[

1 + β0 + β1

r − 1!
+

β1

r!

]

T r−1−
[
dr−1β1

(r + 1)!

+
(1 + β0 + β1)dr−1

r!

]

T r +
[
β1(d2

r−1 − dr−2)
(r + 2)!

+
(1 + β0 + β1)(d2

r−1 − dr−2)
(r + 1)!

]

T r+1

}

Kuk

−
{[

β0+β1

(r − 1)!
+

β1

r!

]

T r−1 −
[
(β0+β1)dr−1

r!

+
β1dr−1

(r + 1)!

]

T r

}

Kuk−1

+
{

− cT

(r − 1)!
T r−1 +

dr−1cT − cT P

r!
T r

+
dr−1cT P + (dr−2 − d2

r−1)cT − cT P 2

(r + 1)!
×T r+1

}
ηk + O

(
T r+2

)
, (26)

...

y
(r−1)
k+1 =

3∑

i=0

T i

i!
y
(i+r−1)
k + O

(
T 4

)

=
{

−d0T +
d0dr−1 − cT q

2!
T 2

+
dr−1cT q + d0dr−2 − d0d

2
r−1 − cT Pq

3!
T 3

}

yk

+
{

−d1T +
d1dr−1 − d0

2!
T 2

+
d1dr−2 − d1d

2
r−1 + d0dr−1 − cT q

3!
T 3

}

ẏk

+ · · ·+
{

dr−1T +
d2

r−1 − dr−2

2!
T 2

+
2dr−1dr−2 − d3

r−1 − dr−3

3!
T 3

}

y
(r−1)
k

+
{[

1 + β0 +
3β1

2

]

T −
[
dr−1β1

3!

+
1 + β0 + β1)dr−1

2!

]

T 2 +
[
β1(d2

r−1 − dr−2)
4!

+
(1 + β0 + β1)(d2

r−1 − dr−2)
3!

]

T 3

}

Kuk

−
{[

β0 +
3β1

2

]

T −
[
(β0 + β1)dr−1

2!

+
β1dr−1

3!

]

T 2

}

Kuk−1 +
{
cT T

+
dr−1cT − cT P

2!
T 2

+
dr−1cT P − cT P 2 + (dr−2 − d2

r−1)cT

3!
T 3

}

ηk

+ O
(
T 4

)
, (27)

ηk+1

=
r+2∑

i=0

T i

i!
η

(i)
k + O

(
T r+3

)

=
(
qT +

Pq
2!

T 2 +
P 2q
3!

T 3 + · · · + P r−1q
r!

T r

+
P rq − qd0

(r + 1)!
T r+1

+
P r+1q − qcT q + qd0dr−1 − Pqd0

(r + 2)!
T r+2

)
yk

+
( q

2!
T 2 +

Pq
3!

T 3 + · · · + P r−2q
r!

T r

+
P r−1q − qd1

(r + 1)!
T r+1

+
P rq − Pqd1 + qd1dr−1 − qd0

(r + 2)!
T r+2

)
ẏk

+· · · +
( q

r!
T r +

Pq − qdr−1

(r + 1)!
T r+1
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+
P 2q − Pqdr−1 + qd2

r−1 − qdr−2

(r + 2)!
T r+2

)
y
(r−1)
k

+
{( (1 + β0 + β1)q

(r + 1)!
+

qβ1

(r + 2)!
)
T r+1

1 + β0 + β1)(Pq − qdr−1)
(r + 2)!

T r+2
}

Kuk

−
{[ qβ1

(r + 2)!
+

(1 + β0 + β1)q
(r + 1)!

]
T r+1

}
Kuk−1

+
(
I + PT +

P 2

2!
T 2 +

P 3

3!
T 3 + · · · + P r

r!
T r

+
P r+1 − qcT

(r + 1)!
T r+1

+
P r+2 − PqcT dr−1qcT − qcT P

(r + 2)!
T r+2

)

ηk + O
(
T 5

)
. (28)

Similarly, the reason why the explicit expressions of
yk, ẏk, · · · , y

(r+2)
k and ηk, η̇k, · · · , η

(r+2)
k are used is to

obtain the approximate expansion of the limiting zeros
of the discrete-time system with the order T 3 when the
relative degree of continuous-time systems is r = n − m.

3. Main results

In the following, a more accurate approximate model of
the sampled-data system is considered by neglecting the
higher order terms, and the approximate expression of the
limiting zeros is further calculated in this section. When a
continuous-time system is discretized, unstable zeros may
appear in the discrete-time model due to the existence of
unstable sampling zeros even though the continuous-time
system is of minimum phase (Åström et al., 1984; Ishitobi
et al., 2013).

For example, it is noticed that unstable discretization
zeros may be generated by a ZOH or a FROH when we
sample continuous-time systems having relative degree
greater than or equal to three (Åström et al., 1984;
Hayakawa et al., 1983; Ishitobi, 1996; Liang et al., 2003).
In this work we propose to use a new kind of FROH to
place sampling zeros at will. To avoid the complexity
of its calculation, we mainly consider the case when
the relative degree of a continuous-time system is three
without loss of generality.

When a continuous-time system with relative degree
three is sampled at a fast rate, the corresponding
discrete-time model arising from a ZOH or a FROH may
have unstable zeros. On the other hand, though such
multirate sampling control and digital control schemes
have the clear advantages over the conventional control
systems, several authors have pointed out that the
unexpected drawbacks occur, such as intersample ripples.
In particular, our new hold can alleviate intersample
issues, and well exhibit minimal intersample ripple by

design. An approximate expression of limiting zeros of
a discrete-time model for a continuous-time system with
relative degree three is derived from (25)–(28). The first
result is given by the following theorem.

Theorem 1. The zeros of a discrete-time system corre-
sponding to a continuous-time transfer function (4) with
a new FROH are given for T � 1 approximately by the
roots of

Q1Q2Q3Q4 = 0, (29)

where

Q1 =
[

−z − 1 +
12β0 + 16β1

4β0 + 5β1
+
(

1 + β0 +
β1

2

)

T

− 3d1 − 3 − 3β0 − 4β1

6
T 2

+
d1d2 − d0 + 5d2β1 + 4d2β0 + 4d2

24
T 3

]

,

Q2 =
[

−z−1+
12β0 + 18β1

4β0 + 5β1
−
(

d2−1−β0− 3β1

2

)

T

+
3d2

2 − 3d1 + 4d2β1 + 3d2β0 + 3d2

6
T 2

+
−d3

2+2d1d2−d0+(4+4β0+5β1)(d2
2−d1)

24
T 3

]

,

Q3 =
[

−z − 1 +
4 + 4β0 + 5β1

4β0 + 5β1
+ (1 − d1)T

+
d1d2 − d0 + d2

2
T 2

+
d2
1 − d1d

2
2 + d0d2 − cT q + d2

2 − d1

6
T 3

]

,

Q4 =
∣
∣(1 − z)I + PT +

P 2

2
T 2 +

P 3

6
T 3

∣
∣.

Proof. The limiting zeros of a discrete-time system
(20)–(23) are equivalent to zeros in (25)–(28), which are
given by substituting yk = yk+1 = 0 into (25)–(28) as
follows:

M

⎡

⎢
⎢
⎢
⎢
⎣

Yd1

Yd2

KUk

KUk−1

H

⎤

⎥
⎥
⎥
⎥
⎦

= 0n, (30)

where Yd1, Yd2, Uk, Uk−1 and H are the Z-transforms of
ẏk, ÿk, uk, uk−1 and ηk, respectively, and the matrix M
is defined by

M =

⎡

⎢
⎢
⎢
⎢
⎣

m11 m12 m13 m14 mT
15

m21 m22 m23 m24 mT
25

m31 m32 m33 m34 mT
35

0 0 −z 1 0T

m51 m52 m53 m54 M55

⎤

⎥
⎥
⎥
⎥
⎦

, (31)
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with

m11 = Tm11 + O(T 6),

m12 = Tm12 + O(T 6),

m13 = T 2m13 + O(T 6),

m14 = T 2m14 + O(T 5),

mT
15 = TmT

15 + O(T 6),

m11 = 1 − d1

6
T 2 +

d1d2 − d0

24
T 3

+
d2
1 − d1d

2
2 + d0d2 − cn−4

120
T 4,

m12 =
T

2
+

d2

6
T 2 +

d2
2 − d1

24
T 3

+
2d1d2 − d3

2 − d0

120
T 4,

m13 =
(

1 + β0 + β1

6
+

β1

24

)

T−
[
(1 + β0 + β1)d2

24

+
d2β1

120

]

T 2 +

[
β1

(
d2
2 − d1

)

720

+
(1 + β0 + β1)(d2

2 − d1)
120

]

T 3,

m14 = −
(

β0 + β1

6
+

β1

24

)

T +
[
d2β1

120

+
(β0 + β1)d2

24

]

T 2,

mT
15 = −cT

6
T 2 +

d2cT − cT P

24
T 3

+
−(d2

2 − d1)cT + d2cT P − cT P 2

120
T 4,

m21 = −z + 1 − d1

2
T 2 +

d1d2 − d0

6
T 3

+
d2
1 − d1d

2
2 + d0d2 − cn−4

24
T 4 + O(T 5),

m22 = T +
d2

2
T 2 +

d2
2 − d1

6
T 3

+
2d1d2 − d3

2 − d0

24
T 4 + O(T 5),

m23 =
(

1 + β0 + β1

2
+

β1

6

)

T 2−
[
(1 + β0 + β1)d2

6

+
d2β1

24

]

T 3 +

[
β1

(
d2
2 − d1

)

120

+
(1 + β0 + β1)(d2

2 − d1)
24

]

T 4 + O(T 5),

m24 = −
(

β0 + β1

2
+

β1

6

)

T 2 +
[
d2β1

24

+
(β0 + β1)d2

6

]

T 3 + O(T 4),

mT
25 = −cT

2
T 2 +

d2cT − cT P

6
T 3 +

−cT P 2

+(d1 − d2
2)c

T + d2cT P

24
T 4 + O(T 5),

m31 = −d1T +
d1d2 − d0

2
T 2

+
d2
1 − d1d

2
2 + d0d2 − cn−4

6
T 3 + O(T 4),

m32 = −z + 1 − d2T +
d2
2 − d1

2
T 2

+
2d1d2 − d3

2 − d0

6
T 3 + O(T 4),

m33 =
(

1 + β0 +
3
2
β1

)

T −
[
(1 + β0 + β1)d2

2

+
d2β1

6

]

T 2 +

[
β1

(
d2
2 − d1

)

24

+
(1 + β0 + β1)(d2

2 − d1)
6

]

T 3 + O(T 4),

m34 = −
(

β0 +
3
2
β1

)

T +
[
d2β1

6

+
(β0 + β1)d2

2

]

T 2 + O(T 3),

mT
35 = −cT T +

d2cT − cT P

2
T 2 +

−cT P 2

+(d1 − d2
2)c

T + d2cT P

6
T 3 + O(T 4),

m51 =
q
2

T 2 +
Pq
6

T 3 +
P 2q− qd1

24
T 4 + O(T 5),

m52 =
q
6

T 3 +
Pq− qd2

24
T 4 + O(T 5),

m53 =
[
(1 + β0 + β1)q

24
+

qβ1

120

]

T 4 + O(T 5),

m54 = −
[
(1 + β0 + β1)q

24
+

qβ1

120

]

T 4 + O(T 5),

M55 = (−z + 1)I + PT +
P 2

2
T 2 +

P 3

6
T 3

+
P 4 − qcT

24
T 4 + O(T 5).

Thus, the zeros are derived from

|M | = 0. (32)

The matrix (31) is divided into several submatrices
by using the partitioning technique as described below:

M =
[

M11 M12

M21 M22

]

, (33)
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where

M11 =

⎡

⎢
⎢
⎣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

0 0 −z 1

⎤

⎥
⎥
⎦ ,

M12 =
[

mT
15 mT

25 mT
35 0T

]T
,

M21 =
[

m51 m52 m53 m54

]
,

M22 = M55.

Simple calculation yields

|M | = |M22||M11 − M12M
−1

22 M21| (34)

and

M12M
−1

22 M21

≈[mT
15 mT

25 mT
35 0T

]T 1
1 − z

×
[

I − 1
(1 − z)

(

PT +
P 2

2
T 2 +

P 3

6
T 3

)]

× [
m51 m52 m53 m54

]

=

⎡

⎢
⎢
⎣

O(T 10) O(T 10) O(T 10) O(T 10)
O(T 10) O(T 10) O(T 10) O(T 10)
O(T 9) O(T 9) O(T 9) O(T 9)

O

⎤

⎥
⎥
⎦ .

Note here that the order of each block matrix
of the first three lines in M11 is lower than that in
M12M

−1

22 M21, so we have

|M11 − M12M
−1

22 M21| ≈ |M11|. (35)

Further, consider a matrix M11,α which is defined by
neglecting the higher order terms O(.) with respect to T
in the matrix M11 because the interests lie in the case of
T � 1.

Postmultiplying M by

R = diag

(

1, 1,
1
T

,
1
T

)

(36)

and premultiplying the result by

L =

⎡

⎢
⎢
⎢
⎣

1
T

0 0 0

�1 1 0 0
�2 0 1 0
�3 0 0 1

⎤

⎥
⎥
⎥
⎦

, (37)

where

�1 = − 1
m0

{(
β0 + β1

2
+

β1

6

)

T 2

+
[
d2β1

24
+

(β0 + β1)d2

6

]

T 3

}

,

�2 = − 1
m0

{(

β0 +
3
2
β1

)

T

+
[
d2β1

6
+

(β0 + β1)d2

2

]

T 2

}

,

�3 = − 1
m0

,

m0 = −
(

β0 + β1

6
+

β1

24

)

T

+
[
d2β1

120
+

(β0 + β1)d2

24

]

T 2,

and further premultiplying the result by

L =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 �̃1

0 0 1 �̃2

0 0 0 1

⎤

⎥
⎥
⎦ , (38)

where

�̃1 = − 1
m0

{(
1 + β0 + β1

2
+

β1

6

)

T 2−
[
d2β1

24

+
(1 + β0 + β1)d2

6

]

T 3 +

[
β1

(
d2
2 − d1

)

120

+
(1 + β0 + β1)(d2

2 − d1)
24

]

T 4

}

,

�̃2 = − 1
m0

{(

1 + β0 +
3
2
β1

)

T −
[
(1 + β0 + β1)d2

2

+
d2β1

6

]

T 2 +

[
β1

(
d2
2 − d1

)

24

+
(1 + β0 + β1)(d2

2 − d1)
6

]

T 3

}

,

m0 = −z + 1 − 4 + 4β0 + 5β1

4β0 + 5β1
+ (1 − d1)T

+
d1d2 − d0 + d2

2
T 2

+
d2
1 − d1d

2
2 + d0d2 − cT q + d2

2 − d1

6
T 3

yields

LLM11,αR =

⎡

⎢
⎢
⎣

m11 m12 m13 m14

m21 m22 0 0
m31 m32 0 0
# # m0 0

⎤

⎥
⎥
⎦ , (39)
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where # denotes an appropriate vector which does not
affect the result and

m21 =−z + 1 − 12β0 + 16β1

4β0 + 5β1
− d1

2
T 2

+
d1d2 − d0

6
T 3 + O(T 4),

m22=
(

1− 6β0 + 8β1

4β0 + 5β1

)

T +
d2

2
T 2+

d2
2 − d1

6
T 3+O(T 4),

m31 =2d2 − d1T +
d1d2 − d0

2
T 2

+
d2
1 − d1d

2
2 + d0d2 − cn−4

6
T 3 + O(T 4),

m32 =−z + 1 − 12β0 + 18β1

4β0 + 5β1
− d2T +

d2
2 − d1

2
T 2

+
2d1d2 − d3

2 − d0

6
T 3 + O(T 4).

Noting here that

|R| =
1

T 2
, |L| =

1
T

, |L| = 1

leads to

|M11| = −T 3|LLM11,αR|
= −T 3m14m0(m21m32 − m22m31), (40)

where

Δ
= m21m32 − m22m31

=
[

−z − 1 +
12β0 + 16β1

4β0 + 5β1
+
(

1 + β0 +
β1

2

)

T

− 3d1 − 3 − 3β0 − 4β1

6
T 2

+
d1d2 − d0 + 5d2β1 + 4d2β0 + 4d2

24
T 3

]

×
[

−z−1+
12β0 + 18β1

4β0 + 5β1
−
(

d2−1−β0− 3β1

2

)

T

+
3d2

2 − 3d1 + 4d2β1 + 3d2β0 + 3d2

6
T 2

+
−d3

2+2d1d2−d0+(4+4β0 + 5β1)(d2
2−d1)

24
T 3

]

.

(41)

Hence, the approximate values of the zeros of the
discrete-time system are obtained as the roots of (29).

As a result, the proof is complete. �

Remark 1. Equation (29) implies that an approximation

of the sampling zeros is expressed as

z1 = −1 +
12β0 + 16β1

4β0 + 5β1
+
(

1 + β0 +
β1

2

)

T

− 3d1 − 3 − 3β0 − 4β1

6
T 2

+
d1d2 − d0 + 5d2β1 + 4d2β0 + 4d2

24
T 3, (42)

z2 = −1+
12β0 + 18β1

4β0 + 5β1
−
(

d2−1−β0− 3β1

2

)

T

+
3d2

2 − 3d1 + 4d2β1 + 3d2β0 + 3d2

6
T 2

+
−d3

2+2d1d2−d0+(4+4β0+5β1)(d2
2 − d1)

24
T 3,

(43)

z3 = −1 +
4 + 4β0 + 5β1

4β0 + 5β1
+ (1 − d1)T

+
d1d2 − d0 + d2

2
T 2

+
d2
1 − d1d

2
2 + d0d2 − cT q + d2

2 − d1

6
T 3, (44)

and the approximate values of the intrinsic zeros are
derived from

z =
∣
∣I + PT +

P 2

2
T 2 +

P 3

6
T 3

∣
∣. (45)

Remark 2. When the relative degree of a
continuous-time system is greater than two, at least one
of the limiting zeros of the resulting sampled-data model
is unstable for sufficiently small sampling periods in the
case of a ZOH or a FROH. Nevertheless, our contribution
of the discretization zeros (29) shows that the discrete
system zeros can be arbitrarily assigned inside the unit
circle by choosing design parameters β0 and β1 so that
the sampling zero asymptotic polynomial (42)–(44) is
identical to a desired stable region.

Remark 3. An insightful observation in Theorem 1 is
that it has the form of a correction to the asymptotic result
of the previous results (Åström et al., 1984; Hagiwara
et al., 1993; Ishitobi, 1996; Liang and Ishitobi, 2004a)
in the form of a power term of T . The reason is that
our new FROH design is built as a generalization of
well-known hold devices. Moreover, our achievements of
both the intrinsic zeros, and sampling zeros as shown in
Theorem 1, are also clarified in a more precise manner and
a higher-order of accuracy than the corresponding results.

Remark 4. Generally speaking, notice here that the
relative degree of many linear or nonlinear mechanical
systems in the practical field is two. In the case of
the relative degree two, the asymptotic expression of
discretization zeros can be simply derived owing to the
special choices of the following scalars and vectors in our
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equation (29) in Theorem 1, and it can be also obtained
using a similar idea.

Remark 5. Based on the similarity method in the proof
of Theorem 1, the asymptotic expansion expression of
discretization zeros can also be represented in the case
of a continuous-time relative degree greater than or equal
to four for sufficiently small sampling periods, though it
seems difficult to derive directly.

Remark 6. Explicit asymptotic characterization of these
discrete-time zeros plays an important role in the design
and analysis of controlled systems. The reason is that
the explicit asymptotic behavior of the limiting zeros is
an interesting issue because the limiting zeros are stable
for sufficiently small sampling periods if they approach
the unit circle from inside as the sampling periods goes
to zero. More importantly, many techniques for design of
control systems are based on the cancellation of process
zeros. Such methods will not work when the process has
unstable zeros. For example, several adaptive algorithms
that are currently investigated belong to this category.

Equation (45) demonstrates that the limiting zeros
corresponding to continuous-time zeros, i.e., intrinsic
zeros, are located in the unit circle. In particular, if
the corresponding continuous system zeros are stable,
the intrinsic zeros approach unity from inside the unit
circle as the sampling period tends to zero. But for
sampling zeros we can find that their stability is related
to the design parameters β0 and β1 of the new FROH
hold circuit. From Theorem 1, it is easy to obtain the
following corollary which shows a stability condition of
the sampling zeros with a new FROH when the relative
degree of a continuous-time system is three.

Corollary 1. Assume that the relative degree of a
continuous-time system is three. For a sufficiently small
sampling period T all the limiting zeros of the discrete-
time model (25)–(28) are stable if all the zeros of the orig-
inal continuous-time system (4) are stable and

{
β1 > 0,

β0 < − 5
4β1,

(46)

or
{

β1 < 0,

β0 > − 3
2β1.

(47)

Remark 7. When the new FROH signal reconstruction
device is used, we propose to place sampling zeros of
the discretized model to the stable region with as many
tuning parameters as desired. Meanwhile, we propose
a constructive solution to the intersample ripples with
a polynomial instead of a simple linear pattern. In
other words, the appropriate β0 and β1 are determined to

obtain our hold that provides sampling zeros as stable as
possible, or with improved stability properties even when
unstable, for a wider class of continuous-time plants.

Remark 8. If the relative degree of a continuous-time
transfer function is three, the corresponding discrete-time
model must have unstable zeros in the case of a ZOH or
a conventional FROH, at least one. Thus, the limiting
zeros of the discrete-time system with a new FROH of
the conditions (47) stay definitely inside the unit circle
while those with a ZOH or a FROH may lie outside or
on the unit circle. In other words, the new FROH with
the conditions (47) will produce all stable sampling zeros
for a wider class of continuous-time plants than a ZOH
or a conventional FROH. Further, on a controlled system
which has a relative degree three, the closed-loop system
becomes unstable when we obtain the discrete-time model
with a ZOH or a FROH , and design a feedback controller
which requires the stability of the zeros. However, from
Corollary 2, in such a case, we can get a stable feedback
control system when a new FROH with the conditions (47)
is used for a hold.

4. Numerical example

This section presents an interesting example to show
the stability of sampling zeros for discretized systems
with a new FROH. It shows that the stability of limiting
zeros can be improved by using a new FROH instead
of other conventional holds. Both kinds of the limiting
zeros are determined with the use of MATLAB, and in
the simulation figures below, the solid and dotted lines
indicate the exact and approximate values, respectively.

Example 1. Consider a transfer function of a
vertical-takeoff airplane for roll angle control with relative
degree three (Filatov et al., 1996),

G(s) =
6.84

s2(s + 3.02)
. (48)

It is clear that the corresponding discretized system has
an unstable zero when a ZOH or a FROH is used for
the sampling period T = 0.01 s. Now we use our new
FROH to place limiting zeros of the discrete-time system
proposed in the case of the relative degree three. The
approximate values (29) and the exact values of sampling
zeros of the sampled-data system for the transfer function
(48) are shown in Tables 1–3 and Figs. 1–3.

When the transfer function (48) of a continuous-time
system has relative degree three, the corresponding
discrete-time system has no intrinsic zeros and three
sampling zeros in the case of a new FROH. In particular,
the stability of a sampling zero with our FROH depends
on the design parameters β0 and β1. When these two
parameters satisfy one of the conditions (47), then the
sampling zeros of the discrete-time model are stable in
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the case of a new FROH for small sampling periods T , and
vice versa. There exists a set of solutions β1 = 1.2938035
and β2 = −1.6041123 such that the discretization zeros
of our new FROH at the stable region.

Table 1. Absolute values of the sampling zero of a discrete-time
model with relative degree three.

T Approximate values (29) Exact values

0.01 0.633507563 0.636319933
0.02 0.634339729 0.639258964
0.05 0.636624858 0.641146285
0.1 0.638193888 0.643047943
0.2 0.640146658 0.646131263
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Fig. 1. Absolute values of the sampling zero of a discrete-time
model with relative degree three.
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Fig. 2. Absolute values of the sampling zero of discrete-time
model with relative degree three.

From Tables 1–3 and Figs. 1–3, Eqn. (29) yields a
good approximation also for the case of a continuous-time
transfer function (48) with the new FROH. �

5. Conclusions

This paper analyzes the asymptotic behavior of limiting
zeros of a discrete-time system when, on the basis of the

Table 2. Absolute values of the sampling zero of a discrete-time
model with relative degree three.

T Approximate values (29) Exact values

0.01 0.633015522 0.636029257
0.02 0.634962901 0.639977015
0.05 0.636635742 0.641876959
0.1 0.638115478 0.643513566
0.2 0.640215369 0.646015125

Table 3. Absolute values of the sampling zero of a discrete-time
model with relative degree three.

T Approximate values (29) Exact values

0.01 0.329717854 0.329667743

0.02 0.327136589 0.327023114
0.05 0.315367825 0.315131842
0.1 0.302515546 0.294528929
0.2 0.283673871 0.248067657

normal form representation of the continuous-time system
with relative degree three, it is discretized using our new
FROH circuit hold. It also proposes an approximate
asymptotic expression of limiting zeros as power series
expansions with respect to the sampling periods up to the
third-order term. Moreover, an insightful interpretation is
given in terms of an explicit characterization of the linear
sampling zeros for the obtained model.

Further, the stability of the sampling zeros is
discussed when the sampling periods tend to zero, while
giving a constructive solution to the intersample issue.
As a result of this work, it has been shown that a new
FROH offers an advantage over a ZOH or a conventional
FROH with stability of the limiting zeros of sampled-data
systems. For a future study, an extension of the approach
to multivariable systems is planned.
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Fig. 3. Absolute values of the sampling zero of a discrete-time
model with relative degree three.
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Bàrcena, R., de la Sen, M. and Sagastabeitia, I. (2000).
Improving the stability properties of the zeros of sampled
systems with fractional order hold, IEE Proceedings: Con-
trol Theory and Applications 147(4): 456–464.
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