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TREE TO IMPROVE THE ECG SIGNAL RECOGNITION ACCURACY
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The paper presents a new system for ECG (ElectroCardioGraphy) signal recognition using different neural classifiers and
a binary decision tree to provide one more processing stage to give the final recognition result. As the base classifiers, the
three classical neural models, i.e., the MLP (Multi Layer Perceptron), modified TSK (Takagi–Sugeno–Kang) and the SVM
(Support Vector Machine), will be applied. The coefficients in ECG signal decomposition using Hermite basis functions
and the peak-to-peak periods of the ECG signals will be used as features for the classifiers. Numerical experiments will
be performed for the recognition of different types of arrhythmia in the ECG signals taken from the MIT-BIH (Massa-
chusetts Institute of Technology and Boston’s Beth Israel Hospital) Arrhythmia Database. The results will be compared
with individual base classifiers’ performances and with other integration methods to show the high quality of the proposed
solution.

Keywords: neural classifiers, integration of classifiers, decision tree, arrhythmia recognition, Hermite basis function de-
composition.

1. Introduction

The paper proposes the application of a decision tree
to integrate a number of neural classifiers to perform
the task of the recognition of ECG signals. This task is
based on the detection of irregularities (or the arrhythmia)
of heart beats from the recorded signals, in which the
QRS segments are the most important parts (de Chazal
et al., 2004; Lagerholm et al., 2000). The main idea
of the integration mechanism is the fact that, for the
same problem and data samples, different classifiers may
give different answers according to their data processing
algorithms. Since no classifier is perfect, each still has
some recognition errors, but among the classifiers these
errors usually are not the same. In this situation, a
combination of different classifiers will help to integrate
the knowledge acquired by the component classifiers to
improve the overall accuracy of the final classification.

The mechanism of combining multiple classifiers to
improve the overall performance has been used not only
in ECG beat classification but also in pattern recognition
tasks (Troć and Unold, 2010). There are different ways
to integrate the individual classifiers, which can be
grouped using criteria like (Kuncheva, 2004; Woźniak and
Krawczyk, 2012) integrating classifiers of the same types

vs. integrating classifiers of different types, integrating
using the majority voting scheme vs. integrating using
weighted votes or using performance-based measures,
etc. For example, in the work of Ying et al. (2004),
as recommended by Vapnik (1999), to get a better
performance of ECG signal classification than in the
case of each individual classifier, a number of SVMs
are combined by one additional SVM. In the works of
Huifang et al. (2010) and Zellmer et al. (2009), SVMs
are integrated in a simpler way, using the majority vote
strategy. Another example of integrating classifiers of the
same type is that given by Sajedin et al. (2011), who
used a number of diverse MLP networks acting as base
classifiers to be combined using the so-called decision
templates. Hu et al. (1997) used two types of classifiers:
the global expert (trained with the same database of
ECG beats of all possible types of arrhythmias) and
the local expert (trained with data taken from a specific
patient), and the final answer is weighted from individual
classifiers’ outputs.

The method of using different types of classifiers
is more popular than the one of using classifiers of
the same type (but with different parameters). In this
way, we can enhance the advantages of each individual
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Fig. 1. General scheme of classification using many classifiers.

classifier to approach the goal. As in the work of Melgani
and Bazi (2008), two types of classifiers (SVMs and a
particle swarm optimization based system) are used in
parallel to increase the accuracy by about 4% in ECG
signal classification. In the work of Can Ye et al. (2012),
two classifiers, one of the multi-class type and one of
the two-class type, are combined to correct the final
classification results by 1.4% and 2.7% for the class V
and the class S beats, respectively. Ramirez et al. (2010)
use fuzzy k-nearest neighbors and an MLP network
combined by a Mamdani fuzzy inference system, which
has an accuracy of 98% compared with 97.33% as the
best individual result. Some articles already used the
Decision Tree (DT) for ECG signal classification. But
as a base classifier, the classical DT has quite limited
performance due to its simplicity (the binary model
usually has only simple splitting conditions like xi > c),
so direct application is not recommended. An example
of DT modification is presented by Yujin et al. (2011),
where in each decision node of the tree, instead of using
simple decision rules like xi > c, there can be an external
classifier (of any type), which is used to divide the data
into subgroups under the given node. This hybrid DT may
boost up the accuracy in selected applications by 10%.

As mentioned earlier, combinations of classifiers
can be found also in other types of pattern recognition
tasks. Huan and Pan (2011) use this idea to get a
better decision in SAR (Synthetic Aperture Radar) image
target recognition, while Pagano et al. (2012) present
an algorithm for a face recognition problem. Another
example is the popular application of classifier integration
in multi-sensor network problems (Chi-Hwa et al., 2008).

As base ECG signal classifiers this paper will use the
three classical neural models, such as the MLP, TSK and
the SVM. The binary tree will take the outputs from these
models to perform the final processing stage. All the four
models (the three neural networks and the decision tree)
are trained from the learning data sets and later tested on
new data sets to check the generalization capability of
the trained system. The data sets (learning and testing)
are generated from QRS segments extracted from the
ECG signals. These QRS segments are decomposed into
Hermite basis functions (HER) in order to compose
the feature vectors of the signals. The models also use

two time-based features such as the actual R-R peaks
distance and the average of the last R-R peaks distances.
The results of numerical experiments concerning the
recognition of six types of arrhythmia and the normal
sinus rhythm will be presented and discussed.

2. Integration methods

Figure 1 presents a general scheme of integration of
many classifiers into one ensemble system (Lagerholm
et al., 2000), where M is the number of base classifiers,
Xin is the input signal, Pi are preprocessing and feature
generating blocks, Ci are classifying blocks, zi are output
signals indicating the group to which Xin is classified
into. In general, Pi may be different for each classifiers,
but in this paper we will use the same algorithm of signal
preprocessing and feature extraction for all classifiers. The
details of this block will be presented in Section 4.

Each classifier Ci has N outputs (corresponding to
N classes), and the output signals of each classifier are
arranged in the form of vectors yi for i = 1, 2, . . . , M .
An ideal output vector yi should have one position ‘1’ and
all other positions equal ‘0’, but usually its values vary in
[0, 1]. In this paper, the output vectors from base classifiers
are concatenated to form one long input vector (of the
length N×M ) to the integrating unit. The integrating unit
will process the concatenated input vector and generate
the final output vector z of the classifier (z ∈ R

N ).
The integration of many classifiers into one ensemble

of networks may be done using different methods. We
will apply here the model of a decision tree. This choice
was selected as a balance of of the model complexity.
Since the base classifiers are already nonlinear and highly
complex, the integrator can be a simpler model. On the
other hand, popular methods of integration like majority
voting, weighted voting, etc. usually calculate a single
measure and base on in to make the final recognition.
The decision tree is a classical model for data recognition
and classification (Monson, 1997; Quinlan, 1993). It is
simpler than neural networks but still performs multi-step
comparison, and there are effective methods for training
the parameters of the tree to adapt it to given data sets.
Consequently, in our experiments we hope that the DT
can have better performance than methods of integration
like majority voting, weighted voting, etc. Among various
models of decision trees, we will apply in this paper the
linear model of a binary tree. This means the tree will use
only simple single conditions such as “if xi op A” at its
nodes, where “op” includes comparing operators such as
=, >, <, ≥, ≤.

A general structure of the binary decision tree is
given in Fig. 2. This is the most popular type of decision
tree, since any higher order tree can be transformed into an
equivalent binary form, in which each node has maximally
two subnodes. An example of node transformation is
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shown in Fig. 3.
For the selected type of trees, our task of tree training

(or tree building) is to find a tree structure and the
splitting conditions of each tree non-leaf nodes to get the
best performance on the given data samples. There are
a number of algorithms to train this type of tree. In this
paper we will use a popular algorithm, so-called ID3 (Ite-
rative Dichotomiser 3) (Monson, 1997; Quinlan, 1993),
which use nodes’ entropy gain function to optimize the
structure of the tree and the splitting conditions for each
node of the tree. According to that, if at a node V we have
N samples x1, x2, . . . ,xN belonging to M classes C1,
C2, . . . , CM , then the entropy of the node is given as

E(V ) =
M∑

i=1

−pi log2(pi), (1)

where

pi =
|{xj : xj ∈ Ci}|

N

is the probability that a sample xj of the node belongs to
the class Ci. Now with a splitting condition S, the samples
from node V are classified to K (for binary tree K =
2) subnodes SVi (i = 1, 2, . . . , K), with the appropriate
numbers of samples being Ni (

∑K
i=1 Ni = N). Then the

entropy gain for node V with splitting condition S is given
as

Gain(V, S) = E(V ) −
K∑

i=1

Ni

N
E(SVi). (2)

A good splitting condition is the one with a
maximum value of entropy gain for a given node.

3. Neural classifiers

Various classifier solutions can be applied in practice.
In this paper we will consider only neural classifiers
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Fig. 2. Example of a binary decision tree.
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Fig. 3. Example of transformation of a third-order node into an
equivalent binary subtree.

of different types. They include the Multi-Layer
Perceptron (MLP), neuro-fuzzy networks of a modified
Takagi–Sugeno–Kang (TSK) structure and the Support
Vector Machine (SVM). In the next subsections we will
just briefly discuss these models, though they are already
very well known and thoroughly presented in many other
articles.

3.1. MLP. The multilayer perceptron (Haykin, 1999) is
the most popular neural network, which consists of layers
of many simple neuron-like processing units. An example
of an MLP network with one hidden layer is presented in
Fig. 4. With a fixed structure (the number of layers, the
number of neurons in each layer, the activation function
of each neuron) the weights between neurons of the MLP
can be adapted during the learning process to give the
desired output signals. The learning algorithm used for the
MLP in this paper was the one proposed by Levenberg and
Marquardt (Haykin, 1999).

3.2. TSK neuro-fuzzy network. The second
neural classifier used in this paper is a
modified Takagi–Sugeno–Kang network (Jang
et al., 1997; Łęski, 2003; Osowski and Linh, 2003).
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It is implemented in the neuro-like structure realizing
the fuzzy inference rules with the crisp TSK conclusion,
described by the linear function. The structure of this
model is shown in Fig. 5.

The TSK network can be associated with the
approximation function y(x):

y(x) =
K∑

i=1

W (x ≈ Ai)fi(x), (3)

where W (x ≈ Ai) is the activation level of the inference
rule given as the product of fuzzifiers’ Gaussian
membership functions (Osowski and Linh, 2003),

W (x ≈ Ai) =
N∏

j=1

Wj (xj ≈ Aij), (4)

and fi(·) are linear TSK functions (Jang et al., 1997;
Osowski and Linh, 2003),

fi(x) = pi0 +
N∑

k=1

pikxk. (5)

The parameters of the premise part of the inference
rules (the membership values Wj (xj ≈ Aij) and the
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Fig. 4. MLP network with one hidden layer.
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Fig. 5. Structure of a modified TSK network.

parameters pij of the linear TSK functions are trained
by using a hybrid algorithm containing two repeating
stages: learning linear parameters and learning nonlinear
parameters (Osowski and Linh, 2003).

3.3. SVM classifier. The last base classifier used in this
paper is the support vector machine network (Scholkopf
and Smola, 2002; Vapnik, 1998; 1999). It is known as
an efficient tool for classification problems, of a very
good generalization ability. The SVM is a linear machine
working in a high-dimensional feature space formed by
the nonlinear mapping of the N -dimensional input vector
x into a K-dimensional feature space (K > N ) through
the use of a nonlinear function ϕ(x). The equation of the
hyperplane separating two classes is defined in terms of
these functions,

y(x) =
K∑

j=1

wjϕj (x) + b = 0,

where b is the bias and wj the synaptic weight of the
network. The parameters of this separating hyperplane
are adjusted in such a way as to maximize the distance
between the closest representatives of both classes. In
practice, the learning problem of the SVM can be solved
in two stages involving the solution of the primary and
dual problems (Scholkopf and Smola, 2002; Vapnik,
1998).

The most distinctive fact about the SVM is that the
learning task is simplified to quadratic programming by
introducing the Lagrange multipliers αi. All operations
in learning and testing modes are done in the SVM
using kernel functions K(x,xi), satisfying the Mercer
conditions (Osowski and Linh, 2003; Osowski et al.,
2004). The best known kernels are Gaussian, polynomial,
linear or spline functions. The output signal y(x) of the
SVM network is finally determined as

y(x) =
p∑

i=1

αidiK(xi,x) + b, (6)

where di = ±1 is the binary destination value associated
with the input vector xi. The positive value of the
output signal means membership of the vector x to the
particular class, while the negative one—to the opposite
one. Although the SVM separates the data into two classes
only, the recognition of more classes is straightforward
by applying either one-against-one or one-against-all
methods (Hsu and Lin, 2002). The more powerful is one
against-one approach, in which many SVM networks are
trained to recognize between all combinations of two
classes of data. For N classes, we have to train N(N −
1)/2 individual SVM networks. In the retrieval mode, the
vector x belongs to the class of the highest number of
winnings in all combinations of classes.
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Fig. 6. Typical ECG signal and its characteristic peaks P-Q-R-
S-T.

4. ECG signals and the feature extraction
method

4.1. Hermite representation of ECG. An important
step in building the efficient classifier system is diagnostic
features extraction. In our approach to the problem, we
applied the QRS complex decomposition into Hermite
basis functions and used the decomposition coefficients
as the features of the ECG signals. These coefficients,
together with two classical time-based features: the
instantaneous R-R interval of the beat (the time span
between two consecutive R peaks) and the average R-R
interval of 10 preceding beats, form the feature vector x
applied to the input of the classifier (Osowski and Linh,
2003; Osowski et al., 2004; 2006).

In the Hermite basis function expansion method, we
have Hermite polynomials defined by a recurrent formula:

Hn+1(t) = 2t · Hn(t) − 2n · Hn−1(t), (7)

for n ≥ 1, where H0(x) ≡ 1, H1(x) = 2x. The Hermite
basis functions are

φn(t) =
(√

π · 2n · n!
)− 1

2 e−
t2
2 Hn(t). (8)

Denote by s(t) the QRS complex of the ECG curve.
Its expansion for given time points t0, t1, . . . , spread on
the signals duration into a Hermite series may be written
as

s(ti) ≈
N−1∑

n=0

cnφn(ti), (9)

where cn are the expansion coefficients, φn(ti) are the
Hermite basis functions of the n-th order (Lagerholm
et al., 2000; Osowski et al., 2006), N is the number of
Hermite basis functions used in the decomposition. As
can be seen in Fig. 7, the Hermite basis function of higher
order contains more higher frequency components.

In this paper, N = 16 was selected because the
15-th order Hermite basis function contains frequency
components high enough to approximate sudden changes
in the ECG signals (Osowski and Linh, 2003; Osowski
et al., 2006). The coefficients cn of a Hermite basis
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Fig. 7. Hermite basis functions of different orders.

function expansion may be treated as features used in the
recognition process. They may be obtained by minimizing
the sum squared error

E =
∑

i

[
s(ti) −

N−1∑

n=0

cnφn(ti, σ)
]2

(10)

by using singular value decomposition (Lagerholm et al.,
2000).

In numerical computations, we used the QRS
segments of the ECG signals, whose length was 91 data
points around the R peak (45 points before and 45 ones
after) (Osowski and Linh, 2003). At the data sample rate
of 360 Hz, this gives a window of 250 ms, which is long
enough to cover most of QRS signals. The data were also
additionally zero-padded by adding 45 zeros to each end
of the QRS segment in order to make the signal look
more similar to the Hermite basis function (Osowski and
Linh, 2003).

4.2. ECG signal database. For comparison purposes,
we use similar signals taken from the popular MIT-BIH
Arrhythmia Database (Moody and Mark, 2001) like in
the work of Osowski et al. (2006). The recognition of
arrhythmia proceeds on the basis of the QRS segments
of the registered ECG waveforms of 19 patients (records
number 100, 105, 106, 109, 111, 114, 116, 118, 119,
124, 200, 202, 207, 208, 209, 212, 214, 221 and 222).
From all the selected records, only the waveforms from
the lead number of 1 were used. Some patients have
more than one arrhythmias in their records. The worst
case is the patient number 207, which has all seven
types of arrhythmia. An important difficulty in accurate
recognition of the arrhythmia type is the large variability
of the morphology of the ECG rhythms belonging to the
same class (Moody and Mark, 2001). Moreover, the beats
belonging to different classes are also morphologically
alike. Hence confusing different classes is very likely.
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Table 1. Number of learning and testing samples of each beat
type.
Beat type Learn samples Test samples

N 1065 935
L 639 561
R 515 485
A 504 398
V 549 451
I 271 201
E 68 37

In our numerical experiments, like in the work
of Osowski et al. (2006), we considered six types of
arrhythmia: left bundle branch block (L), right bundle
branch block (R), atrial premature beat (A), ventricular
premature beat (V), ventricular flutter wave (I), ventricular
escape beat (E), and the waveforms corresponding to the
normal sinus rhythm (N). 3611 data pairs were generated
for the purpose of learning and 3068 were used for testing
purposes.

Table 1 presents the number of representatives
of the beat types used in learning and testing. The
limited number of representatives of some beat types
(for example, E or I) is a result of the limitation of the
MIT-BIH database (Moody and Mark, 2001). The original
number of normal beats is very high, but as we consider
the normal beats to be the “easy” ones to classify and in
order to make the overall results more independent of the
number of samples of each groups, we limited the number
of normal beats used in the experiments to a reasonable
level of about 1000 beats (Osowski et al., 2006).

The set of all samples was split into learning
and testing sets using the following method. First,
we randomly select about 50% of samples of each
arrhythmia’s type into the learning set, the rest belongs
to the testing set. Then we iteratively update the two sets
with the following method:

• Train the nets (using the learning set) and test them
(with the testing set).

• After that, randomly select a small subset (from 3 to
5) of learning samples, which were correctly learned
to move to the testing set. Then randomly select a
small subset (from 3 to 5) of testing samples which
failed the test to move back to the learning set.

This iterative process is done when we cannot achieve
better testing performance for 20 consecutive trials. After
that, the two sets corresponding to the best testing
performance are selected for further application.

5. Numerical experiments and results

With three base classifiers, the MLP, the SVM and
modified TSK, their parameters were trained separately

on the same sets of features of the beats from the same
learning data set. The MLP needed only one hidden
layer with 20 neurons, 7 output neurons (corresponding
to 7 types of arrhythmia). The structure of the MLP was
selected by the trial-and-test method, in which we started
with a network with a small number of hidden neurons
and we increased the hidden neurons until a good testing
error was achieved. The SVM learning parameters were
selected as in the work of Osowski et al. (2004). With 7
classes and the one-against-one method to find the winner
class in the SVM, a total number of 21 SVMs were
trained. The TSK network’s structure was selected as in
the work of Osowski and Linh (2003); the final model
had 21 rules and 7 outputs. After that their results formed
the input (by concatenation) for the DT, and there will
be one more training process of the parameters of the
DT to map the outputs of base classifiers to the desired
result of classification. In this way the integration of 3
base classifiers was created. The trained model is later
verified using new testing data sets, not containing the
samples used in the training process. From the practical
point of view, the testing results are more important than
those of learning because they present the capability of
generalization of the trained model. We will present the
results of the testing mode and compare them with those
from previous works.

Table 2 presents the results of testing all individual
classifiers and the integrated system. All classifier
networks were first learned on the same learning data set
and then tested on another testing data set, the same in all
cases. The best results of single classifiers were achieved
by the SVM network. The MLP network generated the
worst results. The relative difference between the accuracy
of the best and the worse classifier is very large (almost
250%). It can be seen that the integration mechanism (by
using the trained decision tree) gave better results, which
were improved to the level of 1.24%.

These results once again proved that integration of
many classifiers significantly improves the recognition
results. The improvement rate depends on the integration
scheme applied and the quality of the individual
classifiers. The quality of results can be assessed in detail
on the basis of the error distribution within different beat
types. Table 3 presents the distribution of classification
errors for the testing data in the form of a confusion matrix

Table 2. Testing errors of the individual base classifiers and in-
tegration of classifiers.

Classifier system No. of errors % of errors

MLP 148 4.82%
TSK 100 3.26%
SVM 60 1.96%

Integrated with the DT 38 1.24%
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Table 3. Detailed classifying results for 7 types of rhythms of
testing data.

N L R A V I E

N 928 1 1 10 0 0 0
L 1 557 0 2 3 1 0
R 1 0 481 1 0 2 0
A 5 0 3 383 1 0 0
V 0 2 0 1 446 0 0
I 0 0 0 1 1 198 0
E 0 1 0 0 0 0 37

Total 935 561 485 398 451 201 37

divided into beat types. The diagonal entries of this matrix
represent right recognition of the beat type and the off
diagonal—the misclassifications. The column presents the
original type. The row presents the results given by the
integrated classifiers.

The analysis of the error distribution shows
that some classes are confused more frequently than
others. It is evident that most misclassifications were
committed between two classes: N and A (5 N-rhythms
were classified as A-rhythms and 10 A-rhythms were
recognized as N-rhythms). This confusion is a result of a
high similarity of ECG waveforms for these two rhythms.
The other confusions are minor (≤ 3 errors for the whole
datasets).

In addition, we will present a comparison with other
results done on the same data set. As presented by
Osowski et al. (2006), four popular integration methods
used to compare are majority voting, weighted voting,
Kullback–Leibler and modified Bayes. Each of these
methods integrate not only results from the same three
base classifiers and feature sets used in this work, but also
the same three classifiers with features generated based
on Higher-Order Statistics (HOS) measures (Moody
and Mark, 2001; Osowski and Linh, 2001; Osowski
et al., 2006). The misclassification rates are shown as
performances in Table 4.

As can be seen, all the integrated systems have better
performance than single classifiers (the worst integrated
system has a testing error of 1.63% vs. the best single
classifier the SVM with a testing error 1.96%), and the
proposed method using the decision tree has the lowest
error rate for testing data.

We checked also the quality of the combined

Table 4. Errors of different classifier integration methods.
No Integration method Testing error

1 Majority voting 1.63%
2 Weighted voting 1.37%
3 Kullback–Leibler 1.47%
4 Modified Bayes 1.56%
5 Decision tree 1.24%

Table 5. Results of classifying ECG beats into normal and ab-
normal classes.

Normal Abnormal

Normal (classified) 928 12
Abnormal (classified) 7 2121

classifiers with the statistics: sensitivity and specificity.
To do that, we let all 6 types of arrhythmia be “abnormal
type”. We also let the abnormal beats be the positive cases
and the normal beats the negative ones of Table 5 presents
the results of classifying beats into normal vs. abnormal.

From Table 5, we have

Sens =
TP

TP + FN
=

2121
2121 + 21

= 99.02%, (11)

Spec =
TN

TN + FP
=

928
928 + 7

= 99.25%. (12)

The high values of the two statistics help to confirm
the quality of the solution proposed in this paper.

6. Conclusions

An application of the decision tree to integrate the
results of a set of individual neural classifiers working in
parallel into one classification system was presented and
discussed in the paper. The base classifiers applied include
the multi layer perceptron, the modified neuro-fuzzy
TSK network and support vector machine classifiers.
The classifiers use features consisting of the coefficient
of ECG signal decompositions using Hermite basis
functions and R-R peak-to-peak periods. The experiments
performed for seven heart beat types taken from MIT-BIH
AD showed that, in general, integration of the results
of many classifiers improves the quality of the final
classification system. In particular, for the presented
datasets, the method proposed in this paper achieved the
best performance with the testing error equals to 1.24%.
This error is about 9.5% better than in the case of the
runner-up method of integration using the weighted voting
mechanism (with the testing error equal to 1.37%).
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