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We propose a new linkage learning genetic algorithm called the Factor Graph based Genetic Algorithm (FGGA). In the
FGGA, a factor graph is used to encode the underlying dependencies between variables of the problem. In order to learn
the factor graph from a population of potential solutions, a symmetric non-negative matrix factorization is employed to
factorize the matrix of pair-wise dependencies. To show the performance of the FGGA, encouraging experimental results on
different separable problems are provided as support for the mathematical analysis of the approach. The experiments show
that FGGA is capable of learning linkages and solving the optimization problems in polynomial time with a polynomial
number of evaluations.
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1. Introduction

The importance of linkage learning in optimizing hard
problems in the context of genetic algorithms was
revealed a long times ago. Probabilistic Model Building
GAs (PMBGAs) and/or Estimation of Distribution
Algorithms (EDAs) emerged as the extension of genetic
algorithms (Mühlenbein and Paaß, 1996; Pelikan et al.,
2002; Larrañaga and Lozano, 2001) to optimize functions
that the GA (with no linkage learning capability)
has difficulties in optimizing. EDAs are population
based search algorithms that incorporates probability
distributions to exploit the correlation of variables and
generate new potential solutions. The key idea in EDAs
is identification of variable dependencies and conducting
the search toward the optimum, based on the information
of variable dependencies.

There are many EDAs, each of which uses different
approaches to learn and encode the distribution and
sample new potential solutions (Mahnig and Mühlenbein,
1999; Pelikan, 2005; Sastry and Goldberg, 2000; Yu
and Goldberg, 2006; Miquelez et al., 2004). Most of
these approaches are population based and generation
search processes. Among all the methods used to
learn and encode the distribution, graphical models are
employed and investigated in many studies. Bayesian

networks, which are acyclic directed graphical models,
and Markov random fields, which are undirected and may
be cyclic, are used in several EDAs. There are pros
and cons for using each of these graphical models in
EDAs. On the one hand, learning a Bayesian network
from data is a computationally costly task (Mendiburu
et al., 2007); on the other, sampling from undirected
graphical models is difficult and requires Gibbs sampling,
which is computationally expensive (Mühlenbein, 2008).

Factor graphs are another type of undirected
graphical models and subsume both Bayesian networks
and Markov networks in that every Bayesian network or
Markov network can be converted to its corresponding
factor graph of the same size (Kschischang et al.,
2001). These graphical models are the most natural
graphical representations for the structure of Additively
Decomposable Functions (ADFs) (Kschischang et al.,
2001). Learning factor graphs for an ADF is more
representative than learning Bayesian networks because
they match the ADF structure better (Mühlenbein,
2012). A factor graph clearly shows the underlying
structure of the problem and is readable for experts.
This is an important property for the expert, when
optimizing problems with an unknown dependency
structure. But learning the structure of these kinds of
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graphical models and sampling using these distributions
is difficult. Abbeel et al. (2006) proved the first
polynomial time and polynomial sample complexity
structure learning algorithm and parameter learning
algorithm for factor graphs, although the proposed
structure learning algorithm is still exponential in the
maximum factor scope size and the maximum Markov
blanket size, but polynomial in the number of variables,
n. Here, we introduce a factor graph structure learning
approach in the context of an evolutionary algorithm,
which is polynomial in the number of variables and the
number of Building Blocks (BBs).

There are EDAs that utilize factor graphs to encode
the distribution of the problem. Mühlenbein (2008)
proposed using factor graphs as the model to represent
the distribution of the problem in EDAs. He proposed
using the algorithm introduced by Abbeel et al. (2006) to
learn factor graphs and factor graph distributions based
on the product of local probabilities. Santana et al.
(2008) introduced an adaptive EDA approach. They learn
the structure of the factor graph using the chi-square
independence test. Then Kikuchi approximation of the
distribution is used and finally Gibbs sampling is applied
to sample new potential solutions. In the work of
Mendiburu et al. (2007), to search for the optimum, Loopy
Belief Propagation (LBF) is used to find the most probable
configuration of the distribution. They first learn a
Bayesian network from a population of potential solutions
and then convert it to its corresponding factor graph to
apply the LBF, and find the most probable configuration
of the distribution.

In this paper, we propose an algorithm based on
Symmetric Non-negative Matrix Factorization (SNMF)
(Kuang et al., 2012) to learn the structure of factor graph
from a population of potential solutions. To the best of
our knowledge, SNMF has never been used before for a
learning factor graph structure or in any EDA algorithm.
The factor graph clearly shows the variable correlations
for ADFs.

We show the capability of our linkage learning
approach for learning the factor graph for problems with
overlapping factors, but as we are introducing a genetic
algorithm capable of linkage learning (rather than an
EDA), we limited this paper to investigate the FGGA
only for optimizing the ADFs with non-overlapping
linkage groups. This limitation arises as a result of
applying genetic operators for searching for an optimum
configuration of the variables in each building block.
BB-wise genetic operators are shown to be ineffective
in finding the optimum configuration of the variables in
problems with overlapping building blocks (Yu, 2006).

Applying a sampling approach, like the one
presented by Abbeel et al. (2006), for finding the best
configuration of variables in problems with overlapping
BBs using the learned factor graph seems to be

straightforward, but since our concentration in this paper
is on the linkage learning part of the algorithm, it is
reserved for future work. In this paper, we assume
variables of a factor node as BBs and we apply BB-wise
crossover and BB-wise mutation to search for the
optimum.

BB-wise mutation was first introduced by Sastry and
Goldberg (2004) under the name of competent mutation.
It is a local search in the BB neighborhood. This
operator is investigated in the aforementioned paper and
its effectiveness and scalability are shown. We employ
the same mutation operator as proposed in (Sastry and
Goldberg, 2004).

There are also other approaches that use
recombination operators instead of sampling the
distribution in the process of generating new potential
solutions. Dependency Structure Matrix Genetic
Algorithms (DSMGAs) (Yu and Goldberg, 2006),
the Extended Compact Genetic Algorithm (ECGA)
(Sastry and Goldberg, 2000) and Linkage Identification
based on Non-linearity Check (LINC) (Munetomo and
Goldberg, 1999) are some of these approaches. All of
these and the FGGA can be categorized in the class of
genetic algorithms capable of linkage learning.

In the proposed approach, we only need to calculate
bivariate statistics. The input to our SNMF based
algorithm to learn the factor graph structure is the
matrix of pair-wise dependencies. There are other
approaches that only use bivariate statistics to learn
the model of the problem, which encode multivariate
dependencies between variables of the problem. Gámez
et al. (2008) introduce an approach to approximate
multivariate dependency networks by using statistics of
order two. The DSMGA (Yu and Goldberg, 2006) is
another approach that only uses pair-wise dependencies
to find the structure of the fitness function and solve the
optimization problem. The original version of the Linkage
Tree Genetic Algorithm (LTGA) (Thierens, 2010) uses
multivariate statistics, but in the work of Pelikan et al.
(2011), the algorithm is changed to use only bivariate
statistics.

By applying the proposed algorithm, one can
escape the computationally expensive task of learning
the Bayesian network using the fit-to-data approaches
and the costly task of computing multivariate statistics.
We are proposing an approach to learn the factor graph,
which is identical to additive decomposition using only
bivariate statistics with less computational effort, in order
to make the approach more feasible for the ultimate goal
of optimizing real-world problem.

The paper is organized as follows. In the next
section, background information on factor graphs and
SNMF is presented. The relation between SNMF, the
factor graph and linkage learning is explained in Section
3. In Section 4, the proposed algorithm is discussed in
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detail. The algorithm is more thoroughly investigated in
Section 5. In Section 6, the complexity of the algorithm is
analyzed in terms of function evaluations as well as time
and space requirements. Section 7 presents experimental
results on some benchmark problems. Finally, the paper
is concluded in Section 8.

2. Background

In this section, the background information on factor
graphs and symmetric non-negative matrix factorization
is reviewed.

2.1. Factor graph. A factor graph is a bipartite graph
that encodes a distribution and expresses how variables
of a problem factor into a product of local functions.
Factor graphs subsume other graphical models such as
Bayesian networks and Markov random fields. Many
algorithms in various areas of artificial intelligence and
machine learning use factor graphs and sum-product
algorithms. But in most of them, the structure of the
factor graph is supposed to be known in advance and
the sum-product algorithm is used to compute marginal
functions by distributed message-passing in the graph.

Suppose a function F of seven variables can be
factored in three functions fA, fB and fC :

F (x1, x2, x3, x4, x5, x6, x7)
= fA(x1, x5, x7) × fB(x1, x2, x6)
× fC(x2, x3, x4, x7).

(1)

The corresponding factor graph is shown in Fig. 1.
There is a variable node (circular node) for each variable
and there is a factor node (rectangular node) for each
function. A variable node xi is connected to the factor
node fI only if xi is an argument of fI .
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Fig. 1. Factor graph corresponding to Eqn. (1).

2.2. Symmetric non-negative matrix factorization.
Given a nonnegative matrix X , Non-negative Matrix

Factorization (NMF) consists in finding a lower-rank
matrix approximation. The rank of a matrix is the number
of linearly independent rows or columns of the matrix. So,
NMF is formalized as

X ≈ CGT , (2)

which can be achieved by calculating,

min ||X − CGT ||, (3)

where || · || denotes a distance metric like a divergence
distance and X ∈ R

m×n
+ , C ∈ R

m×k
+ , G ∈ R

n×k
+ .

NMF can be applied to a similarity matrix. In this
case, matrix factorization is a symmetric non-negative
matrix factorization problem with the formulation

min
H≥0

||A − HHT ||2F , (4)

where A is a similarity matrix of size n × n and H is a
non-negative matrix of size n × m. The largest entry in
the i-th row of H indicates the assignment of the i-th data
point due to the non-negativity of H .

Symmetric non-negative matrix factorization is
developed specially for soft clustering in data sets
with non-linear clusters. There are algorithms for
symmetric non-negative matrix factorization which
guarantee producing stationary point solutions. The
uniqueness of SNMF in terms of factorization quality, the
independence on the eigenspace of A, and the sensitivity
to fluctuation in the similarity matrix A for a soft
clustering application is shown by Kuang et al. (2012).

3. Symmetric non-negative matrix
factorization, the factor graph and
linkage learning

In SNMF, we are looking for a good factorization of a
symmetric matrix, so that the lower rank of the matrix
is approximated and the independent and dependent
columns (or rows) are identified. In linkage learning, the
goal is to find sets of dependent variables (linkage groups)
as well as the optimum value for these variables knowing
the dependency structure. The factor graph, on the other
hand, is a graphical model which shows how variables of
a problem factor into a product of local functions such
that the variables of a function are dependent. So, using
SNMF, we can learn linkage groups and utilize factor
graphs to show the dependency structure.

If we assume that we have a symmetric probability
affinity matrix A ∈ R

n×n such that Aij is a bivariate
relationship between the variable xi and xj , and the bigger
Aij is, the more probable it is that xi and xj are from the
same linkage group in the context of linkage learning (or
the some cluster in the context of clustering, or the some
factor in the context of the factor graph), then if we obtain
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A = HHT we have factorized the bivariate relationship
matrix into different groups (clusters or factors), which are
independent of other groups (clusters or factors).

This can also be seen as a soft clustering approach.
In soft clustering or fuzzy clustering each instance is
associated with different clusters with different weights.
This way, each instance can belong to more than one
cluster. Here we would like to cluster the variables into
different groups based on their dependencies.

The SNMF approach is depicted in Fig. 2. The
first matrix represents the symmetric probability affinity
matrix (An×n) of a problem with n = 10, which is
factorized into two matrices (Hn×m and HT

m×n). Darker
shades correspond to bigger values. The factor graph is
shown in Fig. 3. Each factor node corresponds to a linkage
group (variables of a factor node form a linkage group).

4. Factor graph based genetic algorithm

In this section, the proposed algorithm which uses SNMF
to learn a model of the data is introduced. The factor
graph is used as the model to show the dependency
structure. It is then employed to generate new potential
solutions. The proposed algorithm is called the Factor
Graph based Genetic Algorithm (FGGA). The FGGA
uses bivariate statistics to learn multivariate dependencies
between variables of the problem. The bivariate statistics
that the FGGA uses is the mutual information between
each pair of variables

MI(X ; Y ) =
∑

x,y

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)

= EPXY log
PXY

PXPY
.

(5)

Mutual information is used as the bivariate statistics
because it is one of the well-investigated metrics in the
EDA community. Other pair-wise metrics can also be
applied instead of mutual information.

After the calculation of MI for each pair of variables
from the selected portion of the randomly generated
population, the matrix of pair-wise dependencies E is
constructed

E = {eij = MI(i; j)}n×n. (6)

We then factorize En×n into a bipartite graph using
the SNMF approach. The resultant bipartite graph is a
factor graph which represents the model of the problem
and encodes multivariate dependencies between variables.
The process of learning the structure of the factor graph
will be explained in Section 4.1.

Having the factor graph and knowing the multivariate
dependencies, new candidate solutions can be created. To
sample those, one alternative is to use the Gibbs sampling
approach or to apply the loopy belief propagation

algorithm to find the most probable configuration. But
as we are introducing a GA, we apply building block-wise
operators to produce new potential solutions. Factor nodes
of the factor graph contain the linkage group information.
The set that contains all the neighbor nodes of each factor
node is considered a linkage group.

BB-wise mutation and BB-wise crossover are used
to sample new solutions. The former is used to make sure
that the initial supply for the optimum configuration of
each linkage group is adequate. The latter, on the other
hand, is used to recombine different building blocks to get
to the global optimum. These two operators are described
in Section 4.2. The pseudo-code of the FGGA is depicted
as Algorithm 1.

Algorithm 1. FGGA.
Output: Best solution found

1: Create random population.
2: repeat
3: Evaluate the population.
4: Select population by tournament selection.
5: for N do
6: for each variable i and variable j, do
7: Compute eij = MI(i, j)
8: end for
9: end for

10: Perform SNMF and find the factor nodes using
Algorithm 2.

11: Perform BB-wise mutation described in Section
4.2.1.

12: Perform BB-wise crossover.
13: Replace population.
14: until (maximum number of generations reached ||

population converged)

4.1. Factorization of the pair-wise dependencies ma-
trix. In this section the factorization of the matrix E
is explained. We first formulate the problem and then
describe the learning approach.

4.1.1. Formulating the problem. Let K(V, U, F ) be
a bipartite graph, where V = {vi}n

i=1 is a collection of
variables and U = {up : p}m

p=1 is a set of factor nodes
(V and U are disjoint sets) while F contains all the edges
connecting V and U . Let B = {bip} denote the n × m
adjacency matrix with bip ≥ 0 being the weight for edge
[vi, up]. To factorize the pair-wise dependencies graph
and find the corresponding bipartite graph, the similarity
between vi and vj (eij) can be formulated as

eij =
m∑

p=1

bipbjp

λp
= (BΛ−1BT )ij ,

Λ = diag(λ1, . . . , λm),

(7)
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Fig. 2. Symmetric non-negative matrix factorization for a problem with 10 variables.
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Fig. 3. Factor graph learned by SNMF for the above problem.

in the bipartite graph K (Zhou et al., 2005), where λp =∑n
i=1 bip is the degree of vertex up ∈ U .

The above equation can be interpreted based on the
random walks on graphs. Here eij is proportional to
the stationary probability of transition between vi and vj ,
p(vi, vj). All the paths between vertices in V must go
through vertices in U in the factor graph. Therefore

p(vi, vj) = p(vi)p(vj |vi)

= di

∑

p

p(up|vi)p(vj |up)

=
∑

p

p(vi, up)p(up, vj)
λp

,

(8)

where di = p(vi) is the degree of vi and p(vj |vi)
is the conditional transition probability from vi to vj .
With bip = p(vi, up), Eqns. (7) and (8) are the same.
p(up|vi) = bip/di is the conditional probability of
transitions from vi to up and indicates how likely variable
i belongs to factor nodes p.

The pair-wise dependency matrix and the
corresponding factor graph are depicted in Figs. 2
and 3.

4.1.2. Learning the factorization. Based on Eqn. (7),
the bipartite graph can be approximated by

min distance(E, BΛ−1BT ). (9)

To make the problem easy, we use H = BΛ−1/2. Then
we have

min
H∈R

n×m
+

distance(E, HHT ) s.t. hip ≥ 0. (10)

This problem is a symmetric non-negative matrix
factorization (Lee and Seung, 2001). There are different
numerical methods to find the local minima of this
problem. Here we use the gradient descent method to
minimize the divergence distance (Eqn. (11)) between the
two adjacency matrices,

DD(X, Y ) =
∑

ij

(xij log
xij

yij
− xij + yij). (11)

The following theorem (Yu et al., 2006) is used as the
optimization approach to find the minimum.

Theorem 1. (Yu et al., 2006) The distance is non-
increasing under the following update rule:

ĥip =
hip∑
j hjp

∑

j

eij

(HHT )ij
hjp. (12)

The distance is invariant under the update rule if and
only if H is at a stationary point of the distance.
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After H is calculated, B can be calculated using
B = HΛ1/2 and Λ = diag(λ1, . . . , λm) where λp =∑n

i=1 hip. The time complexity of Eqn. (12) is O(m2 ×
n×L), where L the number of nonzero entries in E. The
proof of the convergence of the algorithm is given by Yu
et al. (2006).

Based on the approach described above, we need to
provide an upper bound on the number of factor nodes to
the algorithm, which is not an uncommon task. We set this
parameter to n in all the runs of the algorithm. In Section 5
it is shown that the performance of the algorithm does not
depend on this parameter.

In order to provide an algorithmic scheme, we
present the pseudo-code in Algorithm 2.

Algorithm 2. Learning the factor graph via SNMF.

Input: E = {eij}n×n. maxFN = n
Output: Factor graph

1: Initialize: Start with an n × m matrix H , where m =
maxFN and Hi∈V,j∈U = [0, 1] is randomly set.

2: repeat
3: Update H based on Eqn. (12).
4: until H is invariant.
5: Construct Λ = diag(λ1, . . . , λm) using λp =∑n

i=1 hip.
6: Determine B using B = HΛ1/2.

After performing the factorization we need to process
the matrix B (or H). As explained before, the value Hi,j

indicates the weight with which the variable i is connected
to the factor node j. We used a threshold, discarded all
the elements of H less than 0.1 and constructed the factor
graph. After this post-processing on matrix H , as we set
maxFN = n, we have n-factor nodes. In these n factor
nodes, m-factor nodes are expected to have higher degrees
and other factor nodes are probably duplicates of the other
m high-degree factor nodes, or they are low-degree factor
nodes and are discarded.

4.2. BB-wise operators. In this section, the genetic
operators used for producing new potential solutions are
described. Various forms of BB-wise genetic operators in
different algorithms are used in the community. Here we
used BB-wise mutation and BB-wise crossover presented
by Sastry and Goldberg (2004).

4.2.1. BB-wise mutation. In the factorization phase,
for each factor node p, its degree is computed as λp. We
use the degree of each factor node as the certainty of
the corresponding building block. This certainty metric
shows the certainty of the algorithm about the correctness
of the BB.

BB-wise mutation is only applied to the best
individual of the population. Starting from the first

non-mutated BB with a larger degree of certainty,
all 2|BB| individuals that can be created by 2|BB|

configurations of the BB are created and evaluated while
the value of variables in the other BBs is kept constant.
The best individual out of all of 2|BB| individuals is
retained in the population and the mutation process is
continued on this individual until all the BBs are mutated.
The same BB-wise mutation is used and investigated by
Sastry and Goldberg (2004).

4.2.2. BB-wise crossover. Here we apply the uniform
BB-wise crossover as it is used in many other approaches
such as the ECGA and the DSMGA. In uniform BB-wise
crossover, two parents are randomly selected from the
mating pool and their building blocks in each partition are
exchanged with the probability of 0.5.

5. Macroscopic analysis

In this section, we look closely at the SNMF approach
by discussing the examples learned by this approach. In
Section 5.1, we see examples of SNMF performance for
learning linkage groups in decomposable problems in the
context of the genetic algorithm and linkage learning. We
analyze the matrix H with an example through different
generations. In the second subsection, Algorithm 2 is used
to find the linkage groups in problems with overlapping
building blocks to see if the approach is capable of finding
the building blocks for additively decomposable problems
with overlapping BBs or not. The final subsection is
dedicated to the analysis of the effect of the parameter
maxFN used in Algorithm 2 on the performance of the
algorithm.

5.1. SNMF for learning the linkage groups in
problems with non-overlapping BBs. In Fig. 4, the
An×n (n = 50) matrix of mutual information (or
the MI matrix), the matrix Hn×maxFN (SNMF resultant
matrix, maxFN = 50) and the linkage group matrix
for the concatenated Trap-5 problem with 50 variables
in different generations is depicted (a concatenated trap
function with tight linkage groups is used for better
visualization, so the algorithm is not sensitive to the
location of variables in the string). The population size
is set to 5600 and maxFN is set to n. The rows show the
information of the generations 1, 3, 4 and 10 from top to
bottom.

The MI matrix (the first column in the figure) is an
n × n matrix containing the mutual information between
each two variables. The intensity of each cell of the matrix
is relative to its value. Lighter cells have larger values and
darker cells smaller values. The matrix H (the second
column in the figure) is an n×maxFN matrix that shows
the value with which each variable (rows of the matrix)
is related to each factor node (columns of the matrix).
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Like in the MI matrix, the intensity of each cell of the
matrix is relative to its value. Lighter cells have larger
values and darker cells smaller values. The linkage group
matrix (third column in the figure) is an n × n matrix,
and each of its entries corresponds to memberships in the
linkage groups. If the value of the i-th row and the j-th
column is one (white), the i-th and j-th variables are in
the same linkage group, and if zero (black)—they are not.
Since we are solving a concatenated Trap-5 problem, we
expect the error-free MI matrix to have ten 5 × 5 white
squares along the main diagonal, while all other cells of
the matrix are expected to be zero (black). For the matrix
H , in the error-free case, for each of the linkage groups
there should be at least one factor node (corresponding to
the columns in the matrix H) with a light bar, without any
other disconnected light cells in the same column.

As is obvious in the figure, in the fourth generation
(third row, third column) all the linkage groups are
identified. But although the linkage groups are identified
in the fourth generation, the optimum of the problem is not
found up until the tenth generation (the forth row). This
is due to the fact that some more generations are required
after discovering the BBs, to search inside the BBs and
mix the BBs in different individuals, in order to find an
optimum solution. In this sample only BB-wise crossover
is used to find the optimum configuration.

It is obvious from the figure that some of the columns
(factor nodes) of the matrix H (the second column of
Fig. 4) have very low degree (λ) (the degree of the
factor nodes is defined in Section 4.1.1), so that their
corresponding cells are almost zero (dark cells of the
matrix). Along with the generations, the amount of noise
in the MI and H matrices is getting smaller. For the
first generation, the number of the factor nodes is set
to maxFN = n = 50. Along with the optimization
algorithm, the number of unique and high-degree factor
nodes approaches its actual value, which in this example
is 10. The excess factor nodes (other 40 factor nodes) are
either duplicates of the true factor nodes or have a very
low degree. For example, in the bottom row of Fig. 4, 43
out of 50 columns have visually distinguishable degrees,
and these 43 columns are duplicate and there are no false
factor nodes among them. Ten unique factor nodes out
of these 43 factor nodes are the actual factor nodes which
are utilized as the input to other steps of the algorithm.
Looking at the matrix H in the third row of the figure, it is
obvious visually from the figure that there are almost no
errors (disconnected light cells) at the columns with high
degrees (columns with light bars).

As shown in the figure, although we do not provide
the algorithm with the actual number of factor nodes of
the problem, our SNMF approach can find the necessary
number of factor nodes and thus the linkage groups.
Initially, the number of factor nodes is set equal to that
of variables of the problem. Again, it is shown that

the optimization search for the optimum value which
is performed by BB-wise crossover takes some more
generations after completely learning the linkage groups
(in the example, from generation 4 to generation 10 that
the optimum is found). We may be able to decrease the
necessary generations by applying some other sampling
method, instead of the simple BB-wise crossover. More
research on this issue is reserved for future work.

5.2. Parameter maxFN. In Fig. 5, the number of
identified unique factor nodes during the algorithm for
the Trap-5 problem with 50 variables is averaged over
100 runs and depicted as box plots. Here maxFN is set
equal to the number of variables. During the algorithm,
the number of identified unique factor nodes converges to
the actual number of BBs (Fig. 5).

In Fig. 6, the total running time of the algorithm and
the time spent on the factorization part of the algorithm
for a different initial value of the maxFN parameter is
depicted. As expected, the running time gets lower when
maxFN is set closer to the real m.

5.3. SNMF for learning linkage groups in overlap-
ping problems. In this subsection, the learned factor
graphs for problems with overlapping building blocks
are presented. In Fig. 7, the MI, H and linkage
group matrices of a concatenated Trap-5 problem with
32 variables and 10 building blocks is presented for the
population size 20000. Each two neighbouring BBs have
two variables in common (see Fig. 8 for the structure
of the problem). Here maxFN is set to n/2 in this
example. As can be seen, the SNMF approach identified
the linkage groups almost perfectly. As mentioned before,
because BB-wise genetic operators are unable to find
the optimum configuration for problems with overlapping
BBs, we applied the SNMF learning approach only for
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Fig. 5. Number of factor nodes for the concatenated Trap-5
problem with 50 variables over 100 runs.
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Fig. 4. Matrix of MI, SNMF and linkage groups (from left to right) in generations 1, 3, 4 and 10 (from top to bottom) for the Trap-5
problem with 50 variables.
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Fig. 7. 32 × 32 matrix of mutual information for the Trap 5 problem of size 32 with overlapping building blocks (2 variables overlap)
(left), matrix H (middle), linkage groups constructed using SNMF (right).
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Fig. 6. Effect of maxFN on the total run time and linkage learn-
ing time for Trap 5 problems with 50 variables.

one generation for this problem.

6. Complexity analysis

In this section, the number of function evaluations
and the time complexity of the FGGA algorithm are
discussed. The algorithm is comprised of three main
steps: (i) constructing the graph pair-wise dependencies,
(ii) learning the factor graph, (iii) finding the optimum
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Fig. 8. Problem with 32 variables and 10 overlapping BBs.

using BB-wise operators.

6.1. Number of evaluations. In the first step of the
algorithm, for constructing the pair-wise dependencies
graph E, and in the third step for BB-wise operators,
evaluation is performed. Each individual in the population
is evaluated exactly once in the first step. In the third step,
for a problem with m BBs and the maximum length of k
for each BB, at most m × 2k evaluations are done during
BB-wise mutation. Therefore, if the population size is N ,
the number of fitness evaluations in each iteration would
be m× 2k + N , and if the number of generations is g, the
overall number of evaluations of the algorithm would be
(m×2k +N)×g. As shown by Yu et al. (2007), methods
that use Shannons entropy to build models require a
population of size O(2kn log(n)) to accurately build the
model.

6.2. Time complexity. Pair-wise dependencies
(mutual information) are computed by a pass through all
the strings in the population. As MI values are determined
for each pair of variables, this computation is done in
O(n2 × N), where n is the problem size and N is the
population size.

In the process of learning the factor graph, using the
divergence distance for minimizing the distance between
the two adjacency matrices (Eqn. (11)), it is only needed
to sum over all non-zero terms of matrix E for each
update. So, if E is sparse, the time complexity of
Eqn. (12) is O(m2 × n × L), where L is the number of
nonzero entries in E, m is the number of factor nodes, and
n is the number of variables.

7. Comparison results

In order to evaluate the proposed algorithm under different
scenarios, we use different benchmark test functions,
which will challenge the algorithm under different
conditions.
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7.1. Test functions.

7.1.1. OneMax problem. The OneMax problem is a
simple problem consisting in maximizing the number of
ones of a string X = {x1, x2, . . . , xn} with xi ∈ {0, 1},
so that F (X) = Σn

i=1xi is maximized. In Fig. 9, the
population size required to solve this problem with the
FGGA is depicted in a plot.

7.1.2. Trap function. An additively separable
deceptive function of order k called k-deceptive is defined
as the sum of single deceptive functions of order k (shown
in Fig. 11) applied to non-overlapping k-bit partitions of
solution strings.

f(x) =
{

fHigh if u(x) = k,
1
k fLow − u(x) fLow otherwise,

(13)
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Fig. 9. Required population size to solve the OneMax problem
with different sizes.
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where u(x) returns the number of 1s in string x. Usually,
fHigh = 1 and fLow = 0.9. It has one global optimum in
individuals of all 1s and one local optimum in individuals
of all 0s. The function is difficult because the local
optimum has a larger basin of attraction.
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Fig. 11. Deceptive function for k = 5.

A concatenated deceptive function is a sum of
deceptive subfunctions. In this paper, concatenated
deceptive functions are used as the test function. A
concatenated deceptive function with m subfunctions has
one global optimum and 2m − 1 local optima.

7.1.3. Overlapping problems. As shown in Section 5,
the SNMF approach is capable of identifying the linkage
groups for overlapping problems, but BB-wise genetic
operators are shown to be ineffective for finding the
optimum values for overlapping BBs, although they have
the linkage information. Therefore, the results for issues
with overlapping problems are reserved for future work.
These cases can be optimized effectively by using a
probabilistic sampling approach.

7.2. Reference algorithms. Among all the EDAs or
probabilistic model building GAs, a few EDAs that use
the factor graph as their model to represent and encode
the multivariate dependencies (reviewed in Section 1) are
not good candidates to be used as reference algorithms.
For example, Santana et al. (2008) introduce an adaptive
framework for EDAs, in which the different parts of
the algorithm are not static and adapt based on different
parameters. As our algorithm is not an adaptive EDA, the
comparison of these two approaches would be between
the apple and the orange. In the other approach,
introduced by Mendiburu et al. (2007), a Bayesian
network is learned from the population and then sampling
is done using the corresponding factor graph and loopy
belief propagation algorithm. As this work does not
learn the factor graph structure, it is not used as the
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reference algorithm either. Besides, the two mentioned
approaches use computational costly methods of Gibbs
sampling and the belief propagation algorithm, which
makes them completely incomparable in complexity with
the introduced approach, which is polynomial in terms of
time and number of fitness evaluations.

Among all the EDA approaches, the hBOA (Pelikan,
2005) and the DSMGA (Yu and Goldberg, 2006) are
selected as reference algorithms. The former is used
because, first, it is a reputed and well-studied approach
in the community and, second, it also learns a graphical
model (Bayesian network) in order to represent the
variable dependencies, so comparing the results of these
two approaches may give the reader an evaluation on how
these two graphical models work in contrast to each other.

The DSMGA is used as the second reference
algorithm because, first, it uses a bivariate statistics to
unveil the multivariate dependencies between variables of
the problem and, second, it employs BB-wise operators
to sample new potential solutions. In all of the runs
of these algorithms, the parameters are set to their best
configuration.

7.3. Results and discussion. The number of fitness
evaluations for the hBOA, the DSMGA and the FGGA
to solve concatenated 3-deceptive and 5-deceptive is
depicted in Figs. 12 and 13. Comparing the results
visually, the FGGA needs a smaller number of fitness
evaluations and grows slower with regard to the problem
size. As both the DSMGA and the FGGA use the same
approach for searching for the optimum after finding
the linkage groups, it seems that the linkage learning
part of the two algorithms is the main reason for the
difference in the required number of fitness evaluations.
But this conclusion cannot be made about the hBOA,
because here both the linkage learning and sampling are
done differently. As can be seen, there is a difference
in the growth of the number of fitness evaluations with
the problem size between the hBOA and the other two
approaches, since the hBOA uses multivariate interactions
to build the model but the two other approaches use
bivariate interactions. That difference in the scaling
may be due to this difference in the model building
process. Other problems, like NK-Landscapes or Ising
spin glass cannot be efficiently optimized by the FGGA
because here, BB-wise genetic operators are used to
find the optimum. In order to solve these problems,
the BB-wise genetic operators should be replaced by a
sampling approach, which is reserved for future work.

8. Conclusion

This paper introduces a factor graph based genetic
algorithm. The factorization is done by learning a
factor graph using a symmetric non-negative matrix
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factorization approach. The matrix of pair-wise
dependencies between variables of the problem is used
to be factorized into a factor graph. The FGGA consists
of three main steps. First, a dependency graph is created
using a pairwise metric. Second, a matrix factorization
approach is employed to learn a factor graph. Third,
new potential solutions are created based on the factor
nodes using BB-wise mutation and BB-wise crossover.
The proposed approach uses the well-studied mutual
information as the measure of the pairwise dependencies
between variables. To demonstrate the performance of the
FGGA, the results on deceptive functions are reported.
It is shown that the FGGA can solve all the tested
problems with a polynomial number of fitness evaluations
in polynomial time with respect to the length of the
problem.

The results are compared with those of two
well-known reference approaches, and it is shown that
the performance of the three methods is comparable in
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terms of the number of function evaluations. One of
the advantages of the FGGA is that it learns the factor
graph, which is naturally an ideal model to encode the
variable dependencies in polynomial time. The algorithm
description is easy and there is no black-box part there.
The learned model is simple to understand for humans.
This can be a valuable property for the experts. The
learning process has strong mathematical background
and it is mathematically proved to converge. It is
expected that the FGGA has the potential of solving
hierarchical problems by hierarchically factorizing the
factor nodes. More analytical discussions on various
problems and different parameters of the algorithm as
well as experimental results on hierarchical problems are
reserved for future works.
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