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Effective, simulation-based trajectory optimization algorithms adapted to heterogeneous computers are studied with refe-
rence to the problem taken from alpine ski racing (the presented solution is probably the most general one published so
far). The key idea behind these algorithms is to use a grid-based discretization scheme to transform the continuous opti-
mization problem into a search problem over a specially constructed finite graph, and then to apply dynamic programming
to find an approximation of the global solution. In the analyzed example it is the minimum-time ski line, represented as a
piecewise-linear function (a method of elimination of unfeasible solutions is proposed). Serial and parallel versions of the
basic optimization algorithm are presented in detail (pseudo-code, time and memory complexity). Possible extensions of the
basic algorithm are also described. The implementation of these algorithms is based on OpenCL. The included experimental
results show that contemporary heterogeneous computers can be treated as μ-HPC platforms—they offer high performance
(the best speedup was equal to 128) while remaining energy and cost efficient (which is crucial in embedded systems,
e.g., trajectory planners of autonomous robots). The presented algorithms can be applied to many trajectory optimization
problems, including those having a black-box represented performance measure.
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1. Introduction

Many problems related to trajectory optimization
(e.g., in robotics, aerospace engineering or optimal
control) cannot be solved analytically. This is the case,
for instance, when the explicit formula of the cost
functional (i.e., performance measure) is unknown1

and its values can be obtained only from simulation.
In such problems, derivative-related information
is not available and, as a consequence, common
practice2 is to base the optimization process on one
of many existing (meta-)heuristics3 or on dynamic
programming. Irrespective of the selected solution
method, simulation-based optimization is practically
always computationally complex mainly because of
the cost of a single simulation, and for that reason it
is usually solved in an HPC infrastructure. Nowadays
this is usually a computer-cluster or cloud computing

1That is, it is opaque or black-boxed to the optimization routine.
2Especially if the global optimum is to be found.
3For example, evolutionary algorithms, simulated annealing, particle

swarm optimization, tabu search.

platform. However, in some situations this typical
approach cannot be applied. This is the case, for instance,
in many embedded systems4 like trajectory planners of
autonomous robots or, from a different category, tools
supporting alpine ski racing course setters.

The aim of this paper is to present an effective
approach to simulation-based continuous trajectory
optimization using the example of a minimum-time
problem taken from alpine ski racing. The presented
algorithms are adapted to heterogeneous computer
systems (i.e., composed of multiple processor types
like CPU and GPU) and, as a consequence, can be
the base for optimization tasks executed on both
large-scale HPC-platforms and modern embedded
multi-core/many-core systems5.

One of the most important aspects of the proposed
approach is the assumption that the algorithms
are implemented in OpenCL (Open Computing

4Also real-time embedded systems.
5That is to say, which are composed of CPUs and GPUs, but possibly

also of FPGAs and/or DSPs.
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Language)—a parallel programming framework which,
unlike CUDA (Compute Unified Device Architecture),
is defined by an open standard and, by definition, is
cross-platform. OpenCL implementations run now on
widely used computing units, including CPUs and GPUs
from Intel, AMD and NVIDIA, but also on DSPs and
FPGAs. The OpenCL standard also defines the OpenCL
Embedded Profile—a special version of the platform for
embedded systems and mobile devices.

At the conceptual level, the key idea behind the
presented algorithms is to use a grid-based discretization
scheme to transform the continuous optimization problem
into a search problem over a specially constructed finite
graph, and then to apply dynamic programming to
find the approximation of the global solution which, in
the analyzed example, is the minimum-time ski line,
represented as a piecewise-linear function. The cost of
each edge in the graph is obtained from simulation, taking
into account the corresponding boundary conditions
(related to the values of linear velocity). When designing
the algorithm, the main difficulty which had to be
overcome was related to the kinematic constraints of the
simulation model (the ski line has to be smooth).

The black-box represented performance measure and
the use of OpenCL make the presented approach very
general, both from the possible deployment point of
view (typical HPC-platforms, modern embedded systems,
mobile devices) and because of the scope of the
optimization problems it covers.

This paper is organized as follows. The next section
contains a review of related work. Following that, the
optimization problem is defined (including a description
of the simulation model). Next, the proposed solution
methods are described. After that, experimental results
are presented and discussed. The last section contains a
conclusion of the study.

2. Related work

Probably the first person who formulated (scientifically)
the trajectory optimization problem was Johan Bernoulli6.
In June 1696 in Acta Eruditorum he challenged the
“acutest mathematicians of the world” to solve the bra-
chistochrone problem7. Among the first who found the
solution was Johan’s brother Jakob. His solution is now
considered (Stillwell, 2010) to be a major step in the
development of the calculus of variations8—the field of
mathematics which has played a crucial role in trajectory
optimization (see, e.g., Stechert, 1963; Wuerl et al., 2003).

6Galileo may have been the first to consider the problem of finding
the path of quickest descent (Babb and Currie, 2008).

7This problem is discussed in a broad sense by Sussmann and Wil-
lems (1997; 2002).

8The others with great contributions in the calculus of variations are
Euler, Lagrange, Legendre, Hamilton and Weierstrass.

Significant progress in the field of trajectory
optimization was made in the 1950s thanks to the
development of the digital computer and introduction of
dynamic programming (Bellman, 1954), effective shortest
path algorithms (Dijkstra, 1959; Bellman, 1958) and
the Pontryagin maximum principle (Pontryagin et al.,
1962). These contributions, combined with Non-Linear
Programming (NLP), have been the basis for many
effective trajectory optimization methods which are
nowadays often classified as either direct or indirect
(see, e.g., von Stryk and Bulirsch, 1992; Betts, 1998;
Lewis et al., 2000; Szynkiewicz and Błaszczyk, 2011).
The indirect methods, which are based on the calculus
of variations, find solutions that satisfy the necessary
conditions of optimality. The direct ones seek solutions
having (locally) the best value of the performance
measure.

A special group of trajectory optimization problems
consists of those with black-box represented objective
functions. In this case, most of the classic optimization
methods cannot be used (at least not directly) and
the optimization process is often based on one of the
soft-computing methods (see, e.g., Pošík and Huyer, 2012;
Pošík et al., 2012; Szłapczyński and Szłapczyńska, 2012;
Vasile and Locatelli, 2009; Ceriotti and Vasile, 2010).

Another important class of trajectory optimization
methods comprises those based on graph shortest path
algorithms (see, e.g., Crauser et al., 1998; Rippel et al.,
2005; Dramski, 2012). Some research has been done
on parallelization of these algorithms (see, e.g., Crauser
et al., 1998; Jasika et al., 2012) including the possibility of
their GPU-acceleration (see, e.g., Harish and Narayanan,
2007; Singla et al., 2013).

As for trajectory optimization case studies, many of
the existing ones are related to aerospace engineering (see,
e.g., Yokoyama, 2002; Rippel et al., 2005; Ceriotti and
Vasile, 2010) but there are also a few others (see, e.g.,
Vanderbei, 2001) and among them some related to alpine
ski racing (see, e.g., Kaps et al., 1996; Hirano, 2006;
Brodie, 2009).

3. Problem formulation

The trajectory optimization task is to find, among all ad-
missible trajectories, the one with the best value of the
performance measure. A system performance measure
can be written in the following (general) form9:

J = h
(
xxx(tf ), tf

)
+
∫ tf

t0

g
(
xxx(t), uuu(t), t

)
dt, (1)

where t0 and tf are the initial and final times, respectively,
respectively, h and g are scalar functions.

9This form is commonly used in control theory.
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Sometimes a closed-form formula of the
performance measure (i.e., the objective functional)
is unknown, i.e., it is “opaque” (or black-boxed) to the
optimization routine as shown in Fig.1. In this figure the
inputs x1, x2, . . . , xn represent a trajectory (encoded in
some way) and J is a performance measure. A typical
example of this situation is when objective functional
values are taken from a computer simulation.

Fig. 1. Black-box functional (the value of J that corresponds to
the input can be found only through simulation).

The trajectory optimization problem analyzed
in this paper is taken from alpine ski racing (see
Fig. 2). This problem can be treated as an example of
a two-dimensional, constrained, continuous trajectory
optimization task having a black-box (i.e., arbitrary
complex) represented objective functional. The
constraints in the optimization task are related to
the setting of the course, which geometrically defines all
admissible trajectories, and to the dynamics of the skier
which is described in the next two subsections.

3.1. Alpine skier’s model. Consider a skier (modeled
as a material point of mass m) going down a slope with
an angle α (see Fig. 3(b)). We assume that all turns are
purely carved (i.e., with no skidding). The instantaneous
center of the skiing line curvature is at point oc and the
corresponding curvature is equal to κ, while �v and ϕ̇ are
instantaneous velocities: linear and angular, respectively.
All the forces drawn in Fig. 3(b) are described below.

3.1.1. Equations of motion. After applying Newton’s
second law for directions ξ1 and ξ2 (see Fig. 3(b)), we get
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mξ̈1 = mg sin α − Ffd
ξ̇1√

ξ̇1
2
+ξ̇2

2

− Fr
ξ̇2√

ξ̇1
2
+ξ̇2

2 sgn ϕ̇,

mξ̈2 = −Ffd
ξ̇2√

ξ̇1
2
+ξ̇2

2 + Fr
ξ̇1√

ξ̇1
2
+ξ̇2

2 sgn ϕ̇,

(2)

where
Ffd = Ff + Fd (3)

is the sum of snow resistance (friction) Ff and air
resistance (drag) Fd, which are expressed in the following
way10:

Ff = μmg cosα, (4)

Fd = k1v
2 = k1

(
ξ̇1

2
+ ξ̇2

2
)

= mk
(
ξ̇1

2
+ ξ̇2

2
)

, (5)

10See Kaps et al. (1996).

Fig. 2. Alpine ski racer’s trajectory optimization (analyzed in
this paper) as an example of a constrained, continu-
ous trajectory optimization problem having a black-box
(i.e., arbitrary complex) represented objective functio-
nal. (Note that admissible trajectories are those in which
the skier passes correctly all the gate lines.)

and

Fr = m
(
ξ̇1

2
+ ξ̇2

2
)
|κ|

+ mg sin α
ξ̇2√

ξ̇1
2
+ ξ̇2

2
sgn ϕ̇ (6)
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(a)

(b)

Fig. 3. Forces acting on a skier that is going around a purely
carved turn (the forces are reduced to the skier’s center
of mass and the surface of the ski slope): Ted Ligety (one
of the best contemporary alpine ski racers) passes a gate
during the first run of an alpine ski men’s World Cup
Giant Slalom in Garmisch-Partenkirchen, Germany, Feb.
24, 2013 (photo by Shinichiro Tanaka; forces added by
the author) (a), model (forces reduced to the surface of
the ski slope, i.e., ξ1 − ξ2) (b).

is the ξ1 − ξ2 plane component of the perpendicular force
exerted on the skis by the snow (see Fig. 3(b)). After
dividing both sides by m, we get

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ̈1 = g sinα − Ffd1
ξ̇1√

ξ̇1
2
+ξ̇2

2

− Fr1
ξ̇2√

ξ̇1
2
+ξ̇2

2 sgn ϕ̇,

ξ̈2 = −Ffd1
ξ̇2√

ξ̇1
2
+ξ̇2

2 + Fr1
ξ̇1√

ξ̇1
2
+ξ̇2

2 sgn ϕ̇,

(7)

where

Ffd1 =
Ffd

m
, Ff1 =

Ff

m
,

Fd1 =
Fd

m
, Fr1 =

Fr

m
. (8)

If we introduce

xxx = (x1, x2, x3, x4)
� =

(
ξ1, ξ2, ξ̇1, ξ̇2

)�
(9)

as the vector of the system state variables (or simply the

states) at time t, and

uuu = (u1) = (|κ|) (10)

as the vector of the system control inputs at time t, then the
system may be described by the following four first-order
differential equations:11

ẋxx (t) = aaa
(
xxx (t) , uuu (t)

)
, (11)

where12

aaa =

⎛

⎜
⎜
⎝

x3

x4

g sin α − x3ffd (x3, x4) − x4fr (x3, x4, u1)
−x4ffd (x3, x4) + x3fr (x3, x4, u1)

⎞

⎟
⎟
⎠

(12)
and

ffd =
μg cosα + k

(
x2

3 + x2
4

)

√
x2

3 + x2
4

, (13)

fr =
√

x2
3 + x2

4 u1 + g sin α
x4

x2
3 + x2

4

sgn ϕ̇. (14)

The above set of equations describes a nonlinear and
time-invariant system.

3.1.2. Boundary conditions. Let t0 be the time of
leaving the start gate and tf be the time of passing the
finish line. The skier starts at the start gate at point
S(x1S , x2S), S ∈ lSG, so, clearly, when using the new
state variables

x1 (t0) = x1S , x2 (t0) = x2S . (15)

We assume that the initial speed is zero, so

x3 (t0) = v01S = 0, x4 (t0) = v02S = 0. (16)

The only boundary condition at the finish point
F (x1F , x2F ), S ∈ lFG, is related to the skier’s position,

x1 (tf ) = x1F , x2 (tf ) = x2F . (17)

Note that lSG and lFG are the gate lines—the start
and finish ones, respectively.

3.1.3. Performance measure. The aim of the
optimization task is to find a trajectory having the
minimum value of tf (i.e., the time of passing the finish
line), so this is an example of a minimum-time problem.
For such problems,

h
(
xxx(tf ), tf

)
= 0, g

(
xxx(t), uuu(t), t

)
= 1, (18)

11 In a more general case, when the problem is time-varying, the
expression (11) takes the form ẋxx (t) = aaa

(
xxx (t) , uuu (t) , t

)
.

12See Eqns. (3)–(5).
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so, if we additionally assume that t0 = 0, the performance
measure simplifies to

J =
∫ tf

0

dt = tf − 0 = tf . (19)

We can see from Eqn. (19) that simulation is the only way
of evaluating the performance measure.

3.2. One-dimensional approximation model.
The skier’s trajectory can be approximated by a
piecewise-linear function13. This modification simplifies
the problem significantly—instead of a one (complex)
two-dimensional problem, we have a series of (simple)
one-dimensional ones. Each of the sub-problems is
related to one segment only (see Fig. 4, note a local
coordinate system ζη, set for each segment).

Fig. 4. One-dimensional approximation model.

3.2.1. Equations of motion. Equations (2) simplify to
the following form:

{
mζ̈ = mgred − (Ff + Fd),
0 = −Frη − mg sin α sin β,

(20)

where
gred = g sinα cosβ (21)

13The more segments, the lower the approximation error.

can be considered “reduced gravitational acceleration”14

and Ff and Fd are defined by Eqns. (4) and (5),
respectively. Only the first equation is important in the
simulation. The second one expresses the condition of
equilibrium in the normal (to the trajectory) direction.

After dividing both sides of the first of Eqns. (20) by
m and simplifying the result, for the i-th segment we get

ζ̈i + kζ̇i
2

= g cosα (tanα cosβi − μ) . (22)

If, similarly as before, we introduce

xxx(i) =
(
x

(i)
1 , x

(i)
2

)�
=
(
ζi, ζ̇i

)�
(23)

as the vector of the system state variables at time t, and

uuu(i) =
(
u

(i)
1

)
= (βi) (24)

as the vector of the system control inputs at time t, then the
system can be described by the following two first-order
differential equations:

ẋxx(i) (t) = aaa(i)
(
xxx(i) (t) , uuu(i) (t)

)
, (25)

where15

aaa(i) =

(
x

(i)
2

g cosα
(
tanα cosu

(i)
1 − μ

)
− k(x(i)

2 )2

)

.

(26)

3.2.2. Boundary conditions. The skier’s trajectory is
now approximated by a piecewise-linear function. We
assume that its first (linear) segment starts at point
S(ξ1S , ξ2S) and the last one ends at F (ξ1F , ξ2F ) (see
Fig. 4). The boundary conditions have to be written now
for each segment. An additional assumption, related to
the speed values in two subsequent segments, has to be
introduced into the model

|vvv(i)
s | = c|vvv(i−1)

f |, (27)

where vvv
(i)
s = xxx

(i)
2s is the initial speed for the (i)-th

segment, and vvv
(i−1)
f = xxx

(i−1)
2e is the final speed for the

(i − 1)-th segment.

3.2.3. Performance measure. The trajectory
segmentation changes Eqn. (19) in the following
way:

J = tf =
∑

s

t
(s)
f , (28)

i.e., in order to find the total time of motion, a series
of simulations (one for each segment—s) have to be
performed.

14To the slope plane (g sinα) and to the current linear segment direc-
tion (g sinα cos β).

15Compare Eqns. (3), (4) and (5)
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4. Solution methods

The key idea behind the algorithms presented in this
section is to use a grid-based discretization scheme
to transform the continuous optimization problem into
a search problem over a specially constructed finite
graph, and then to apply dynamic programming to
find an approximation of the global solution which, in
the analyzed example, is the minimum-time ski line
represented as a piecewise-linear function (see Fig. 5). Of
course, the finer this grid, the better the final result (i.e.,
closer to the exact solution). The grid (mesh) is based
on equidistant nodes (Fig. 5 presents eight nodes in a
row, but there can be any number of them). The graph
representing this grid is directed, acyclic and topologically
sorted (the nodes in row r are followed by the nodes in
row r + 1 as are the edges of the graph which correspond
to the linear segments of the trajectory). These features
allow the search process to be much more effective
when compared with the standard Dijkstra (shortest path)
algorithm. The cost of each edge in the graph is obtained
from simulation, taking into account the corresponding
boundary conditions (related to the values of linear
velocity). It is important to note that at the beginning of
the optimization process there is no cost matrix. The cost
of each edge (linear segment) can be calculated only when
the corresponding initial velocity is known, and this value
depends on the results received from the simulation for
preceding segments. This is a sequential component of the
optimization process.

4.1. Elimination of unfeasible solutions. The skier’s
model assumes that all turns are purely carved (or at
least close). This means that the angle between any two
segments (see Fig. 6) in the final trajectory should be as
small as possible (this constraint is related to the curvature
of the trajectory). To eliminate the solution candidates
which do not meet the assumption and, at the same time,
keep the computational process stable, we introduce a
penalty function defined in the following way:

v
(s)
0 =

⎧
⎪⎨

⎪⎩

v
(s−1)
1 if cos δ >= Um,

v
(s−1)
1 cos4 δ if Lm < cos δ < Um,

0 otherwise.

(29)

In Eqn. (29) Um represents the upper margin (assumed in
the experiments to be 0.98) and Lm stands for the lower
margin (assumed in the experiments to be 0.5).

Note that Eqn. (29) is just an example of a penalty
function16 though its effectiveness has been verified in
experiments.

16It reduces the skier’s speed in the case of overly tight turns (so with
skidding, which always causes braking).

Fig. 5. Grid-based discretization scheme transforming the con-
tinuous optimization problem into a search problem. The
grid nodes are grouped in rows and columns (the grid
shown in the figure has eight nodes in a row—it is an
eight-column structure).
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Fig. 6. Angle δ representing a local value of the trajectory cu-
rvature.

Fig. 7. Dependence of the segments in the mesh: segment
s(rs, cs, ce) depends on all segments s(k)(rs−1, k, cs).
Arrows with ranges r = 0, . . . , R − 1; i = 0, . . . , C −
1; j = 0, . . . , C−1; k = 0, . . . , C−1 describe the loops
of the algorithm pseudo-codes presented in this section.

4.2. Basic optimization algorithm. In the analysis
that has been carried out so far it is assumed that nodes
from any two subsequent rows (layers) are fully connected
(i.e., each node in row r is connected to all nodes from
rows r−1 and r+1). This means that, in order to evaluate
a single linear segment we have to perform C simulations
(see Fig. 7). This is a consequence of the definition of the
penalty function (see Eqn. (29) and Fig. 6). The number
of simulations can be usually reduced if we make use of
some features of the model. For instance, in the case of
the skier model, the set of segments which end in a node,
say node c, {s(i)

c : i = 0, . . . , C − 1}, is partially ordered

s(l)
c � s(m)

c ⇐⇒ t
(l)
f(c)

≤ t
(m)
f(c)

∧ v
(l)
f(c)

≥ v
(m)
f(c)

. (30)

So if s
(l)
c � s

(m)
c , there is no need to perform simulation

for s
(m)
c . Note that the basic version of the algorithm

assumes performing simulation for all segments, which
is more general and keeps parallel computation more
regular.

The above analysis is not related to the simulation
for the segments from the first row, because they do not
have any predecessors. The pseudo-code of simulation for
these segments is shown as Algorithm 1. In the first step

Algorithm 1. sim0: Perform simulation for a segment in
mesh row 0.
Require: cs, ce

{@param cs: the segment start node column index}
{@param ce: the segment end node column index}

1: (l(s), g(s)
red) := get_segm_stat_data(0, cs, ce)

2: (t(s)1 , v
(s)
1 ) := simulation_for (l(s), g(s)

red, 0, 0)
{set t

(s)
1 and v

(s)
1 as s’s optimal values}

3: update_segment(0, cs, ce, t
(s)
1 , v

(s)
1 ,NULL)

we calculate the segment length l(s) and the corresponding
reduced gravitational acceleration g

(s)
red (see Eqn. (21)).

Note that this pair of values is referenced in this
section as static data of the segment. Next, the final
values for time t

(s)
1 and speed v

(s)
1 are obtained through

simulation. In the last step these values are stored because
they will be needed in simulations for segments from the
first layer (see Eqn. (29) and Fig. 6).

Algorithm 2 shows the main steps of the simulation
for the segments from rows 1, . . . , R− 2. The differences
(when compared with Algorithm 1) are a consequence of
using the penalty function (see Eqn. (29)). To find the
shortest time of travel to the segment end point (e.g.,
point (rs + 1, ce) in Fig. 7), it is necessary to perform C
simulations updating, if necessary, the best solution found
so far (compare Dijkstra, 1959). The variable pidx opt

stores the index of the segment from row rs − 1 which
corresponds to the locally optimal piece of trajectory
(with the shortest time of travel to the segment end point;
indexes pidx opt are used in the final part of the algorithm
to find the optimal solution).

Note that sim0 and sim1R presented as Algorithms
1 and 2 are OpenCL kernels.

4.2.1. Serial (reference) version. Algorithm 3
presents the serial version of the trajectory optimization
procedure (compare loop control variables with Fig. 7).
The time complexity of the algorithm is equal to
Θ
(
RC3tsim

)
, where R and C are the numbers of rows17

and columns (in the mesh), respectively, and tsim is

17The dependence on the number of rows is caused by the constant
component present in the simulation time, needed for solving the non-

linear equation t
(s)
f = f(l(s), g

(s)
red).
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Algorithm 2. sim1R: Perform simulation for a segment in
mesh rows [1, . . . , R − 1).
Require: rs, cs, ce

{@param rs: the segment start node row index}
{@param cs: the segment start node column index}
{@param ce: the segment end node column index}

1: topt := TMAX

2: (l(s), g(s)
red) :=

get_segm_stat_data(rs, cs, ce)
{For all mesh nodes in the (rs − 1)-th row}

3: for all k in [0..C) do
{Initialize t

(s)
0 , v

(s)
0 with the corresponding final

values for segment (rs − 1, k, cs)}
4: (t(s)0 , v

(s)
0i ) :=

get_segm_dyn_data(rs − 1, k, cs)
{If necessary, correct v0, see Eqn.29}

5: v
(s)
0 = correct_v0(rs − 1, k, cs, ce, v

(s)
0i )

6: (t(s)1 , v
(s)
1 ) :=

simulation_for (l(s), g(s)
red, t

(s)
0 , v

(s)
0 )

{If necessary, update the best values so far}
7: if (t(s)0 + t

(s)
1 < topt) then

8: topt := t
(s)
0 + t

(s)
1

9: vopt := v
(s)
1

10: pidx opt := k
11: end if
12: end for

{Update the segment data}
13: update_segment(rs, cs, ce, topt, vopt, pidx opt)

the time needed for a single simulation. The algorithm
needs Θ (RC) memory (i.e., the memory consumption is
proportional to the size of the mesh).

Note that the time complexity of this serial algorithm
can be reduced, for instance, by modifications described
in section 4.3.

4.2.2. Parallel version. Algorithm 3 can be
parallelized by making use of the fact that simulations for
all segments in the same row are independent18 of each
other. This idea is shown in Fig. 8. The simulation tasks
can be performed in OpenCL-capable embedded systems
(they can be considered μ-HPC systems), in cluster-based
HPC infrastructures or in hybrid, hierarchical systems.

Algorithm 4 presents pseudo-code of the parallel
version of the trajectory optimization procedure.
Functions sim0 _kernel and sim1R_kernel are OpenCL
kernels, i.e., pieces of code prepared for parallel execution
on OpenCL-capable devices. They are almost the same as
sim0 and sim1R, with two OpenCL “decorators” (kernel
and global) added into the code.

18The problem is embarrassingly parallel.

Algorithm 3. Serial trajectory optimization.
{For all mesh nodes in the 0-th row}

1: for all i in [0..C) do
{For all mesh nodes in the 1-st row}

2: for all j in [0..C) do
3: sim0(i, j)
4: end for
5: end for

{For the rest rows in the mesh}
6: for all r in [1..R-1) do

{For all mesh nodes in the r-th row}
7: for all i in [0..C) do

{For all mesh nodes in the (r + 1)-th row}
8: for all j in [0..C) do
9: sim1R(r, i, j)

10: end for
11: end for
12: end for
13: return opt_trajectory,fin_time,fin_velocity

Fig. 8. Parallel simulation for all segments in the same mesh
row. The synchronization barrier is needed because of
the dependence between nodes from subsequent rows.

The parallel algorithm time complexity is equal
to Θ (RCtsim). The annotation @PARALLEL(f(·))
expresses19 that function f CAN BE executed in
parallel for different pieces of data referenced by the
pointer—datap.

4.3. Possible extensions of the basic algorithm. In
some situations the algorithms described above have to be
changed to meet certain constraints. It might be the case,
for instance, when the algorithm time and/or memory
complexity is too high. The memory constraint can be a
problem in some embedded systems or when the available
(OpenCL-capable) GPU has too little RAM. One way of
addressing this issue is to divide the computation into
stages which represent subsequent parts of the mesh. Each

19In pseudo-code only as there is no such annotation in OpenCL.
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Algorithm 4. Parallel trajectory optimization.

1: @PARALLEL (sim0 _kernel(datap))
2: for all r in [1..R-1) do
3: @PARALLEL (sim1R_kernel(r , datap))
4: end for
5: return opt_trajectory,fin_time,fin_velocity

stage can be handled separately, with partial results stored
on hard drive. Unfortunately, this approach often is not
acceptable. Sometimes there is just no hard drive (or
any device of this type) in the system. Other times, the
increased number of I/O operations adversely affects the
computation time.

Another approach, i.e., successive mesh refinements,
is shown in Fig. 9. The number of mesh nodes can
be set so that all its data structures can be stored in
RAM. The optimization task is divided into a couple
of iterations in which subsequent meshes (of the same
size or not) are generated and used to find better
and better approximations of the exact solution. This

Fig. 9. Mesh refinement: it reduces the algorithm memory com-
plexity and improves the accuracy of the final result.

approach reduces the memory size needed to perform
the optimization process. It can sometimes also reduce
the computation time, if the total number of performed
simulations is smaller than in the basic algorithm.

Another modification, shown in Fig. 10, assumes
reduction in the number of connections between nodes.
The smaller number of connections decreases both
the memory size needed to store the mesh data
structures and the total number of simulations to be
performed. As a consequence, both the time and memory
complexity can be (significantly) reduced. Unfortunately,
the effectivenesses of this approach is very dependent on
the problem being solved. In many cases we cannot reduce
the search space in this way without the danger of losing

Fig. 10. Reduction of the number of connections between nodes
(i.e., the degree of the nodes).

good solution candidates.
The last possibility (discussed in this section) of

extending the basic algorithm is based on combining the
global search with a local one. In the skier’s trajectory
optimization case the local algorithm can be executed for
each turn separately. The local optimization can improve
the final result—sometimes significantly. This is because
the search space of the local algorithm can be continuous,
which means that there is no accuracy limit related to the
mesh granularity. One of the key aspects of successful
application of local optimization is choosing, in the search
space, a basis appropriate for the problem.

5. Experimental results

To demonstrate the effectiveness of the algorithms
presented in Section 4, two series of experiments20 were
carried out to find the optimal trajectory (i.e., the ski line)
for the unsymmetrical course setup shown in Fig. 2. The
ski slope α was constant in all experiments and set to
π/12. The first series was related to the skier’s model with
μ = 0.00, k = 0.00 (i.e., with no friction and no drag
force, see Eqns. (4), (5) and (25)), whilst the second one
with μ = 0.12, k = 0.05 (these values represent the upper
limits of the coefficients).

In all experiments a MacBook Pro21 with OS X
10.8.4 and OpenCL 1.1, having two OpenCL-capable
devices:

• processor Intel Core i7-3740QM @ 2.7 GHz,

• graphic card nVidia GeForce GT 650m,22

20Each experiment was carried out 5 times, the values were then ave-
raged.

21With 16 GB of DDR3L 1600 MHz RAM.
22 Two compute units, each having 192 processing elements (CUDA
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was used. This computer system can be visualized from
the OpenCL perspective as shown in Fig. 11 (cf. Gaster
et al., 2013), if we assume that there are two OpenCL

Fig. 11. OpenCL platform model with one host and N OpenCL
devices. Each OpenCL device has one or more com-
pute units, each of which has one or more processing
elements.

devices as specified above.

5.1. Performance analysis: Impact of a global num-
ber of work-items. The results for μ = 0.00 and k =
0.00 are summarized by Table 1 and Fig. 12. In Table 1
the subsequent columns represent the following: m—the
number of mesh nodes in one row, ts—the execution time
of the serial version of the optimization algorithm (see
Algorithm 3), tocl−CPU and tocl−GPU are the execution
times of (parallel) Algorithm 4 run on the CPU and the
GPU, respectively, and finally, for reference, tf —the final
result of the optimization. It can be seen from the last
column that the minimum (acceptable) number of mesh
nodes (in one row) is 32. The optimal mesh should have
between 32 and 64 nodes in one row, depending on the
required accuracy.

The speedups23 are presented in Fig. 12. Two
facts are worth noting with regard to speedups: on the
GPU there is a strong dependence on the mesh-size
whereas on the CPU this dependence is almost negligible.
The first of these is a typical feature of computations
performed on a GPU. The more work-items (which can
be seen as threads) the GPU has to handle, the better
the speedup. Another important aspect of utilizing a
GPU as a general-purpose computation device is the
cost of data transfers between the host and the GPU.
This overhead can be sometimes so high that using the

cores), warp size 32, 1 GB of GDDR5 memory, 48 KB of local memory,
64 KB of constant memory.

23Calculated in a classic way, i.e., as s = ts/tp .

Table 1. Average execution times (in ms), from five runs, for
different numbers of mesh nodes in a row (the model
with μ = 0.00, k = 0.00). The last column (tf ) con-
tains the final results. Note that the code of the serial
(reference) algorithm was compiled with -O0 compiler
flag.

m ts tocl−CPU tocl−GPU tf [s]

8 533 104 368 26.50
16 3896 536 698 17.78
32 28329 3574 1296 11.60
64 220923 25517 2985 11.37

128 1739789 213490 13498 11.33

Fig. 12. Speedups for the skier’s model with no friction and no
drag (i.e., μ = 0.00, k = 0.00). The number of mesh
nodes is related to the total number of OpenCL work-
items (threads) in the following way: #work -items =
m2.

GPU has no benefit. The figure also shows that there are
two characteristic ranges of mesh node numbers—in the
first one, with m ≤ 16, the CPU was more effective,
whilst in the second one, for bigger values of m, the
GPU performed better (for m = 128 the speedup
is equal to 128). This observation demonstrates an
important advantage of using OpenCL for programming
heterogeneous computer systems—the resources can be
used more effectively with no additional programming
cost (the code is exactly the same for all OpenCL-capable
devices). Moreover, the selection of the computing device
can be done at run-time.

The results for μ = 0.12 and k = 0.05 are
summarized by Table 2 and Fig. 13. Longer simulation
times were the result of a very slow motion of the skier
(which was caused by high forces of friction and drag).
These parameters of the skier’s model were selected to
demonstrate worse (than before) results of utilizing the
GPU as a general-purpose computing device. Figure 13
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Table 2. Average execution times (in ms), from five runs, for
different numbers of mesh nodes in a row (the model
with μ = 0.12, k = 0.05). The last column (tf ) con-
tains the final results. Note that the code of the serial
(reference) algorithm was compiled with -O0 compiler
flag.

m ts tocl−CPU tocl−GPU tf [s]

8 708 132 1455 49.60
16 4985 636 1911 40.64
32 42998 5115 6250 35.87
64 345426 38725 19251 35.33
96 1152450 104740 34918 34.87

presents the corresponding values of the speedup. The
speedups related to the CPU were again similar in the
whole range of the change of parameter m. It may be
surprising that the best speedup observed on the CPU was
equal to 11.0 because it was achieved on the device having
only four cores, each one with two logical threads (which
means eight threads executing simultaneously). This was
the result of OpenCL compiler optimizations. Speedups

Fig. 13. Speedups for the skier’s model with μ = 0.12, k =
0.05. The number of mesh nodes is related to the total
number of OpenCL work-items (threads) in the follo-
wing way: #work -items = m2.

related to the GPU were significantly worse than before
(i.e., for μ = 0.00 and k = 0.00). Some points are
worth noting here: for eight mesh-nodes in a row the
GPU-accelerated computation took twice as much time as
the serial algorithm, for 32 nodes the speedup was only
6.9 and was worse than the corresponding one for the
CPU, and finally, the biggest speedup was equal to 33.0.
This worse performance was a consequence of a very
unbalanced (among work-items) computational load24.

24This issue can be addressed by equalizing (approximately) the si-

Because of the way the computation was synchronized
(see Fig. 8), the computation for a single mesh row was
as long as the longest simulation of a single segment.

5.2. Performance analysis: Impact of a local num-
ber of work-items. According to the OpenCL execution
model (see Gaster et al., 2013), a CPU host defines an
N -dimensional computation domain over some region
of an OpenCL device’s DRAM memory. Every index
of this N -dimensional domain at runtime corresponds
to a work-item (which executes the same OpenCL
kernel). These work-items are grouped (by the host) into
work-groups. All work-items from the same work-group
execute concurrently on the same compute unit. They
can share local memory (this is a special memory space
with a work-group scope), and can be synchronized using
barriers. Each work-item has two indexes—a global (in
the computational domain) and a local one (within the
work-group it belongs to). The number of the work-items
in one work-group is called work-group size.

To analyze the impact of a work-group size on
the (computational) speedup, the same25 experiments (as
in the previous section) were carried out for different
work-group sizes including a special “auto” mode (in
which the OpenCL platform determines the best value of
this parameter26). The results are summarized in Tables 3
and 4. These results are averages from five runs. The

Table 3. Average execution times (in ms), from five runs, on
GPU for different numbers of mesh nodes (m) in a row
and different number of work items (wi) in one work
group (the model with μ = 0.00, k = 0.00).

m = 8 m = 16 m = 32 m = 64

wi = 4 389 917 3994 27063
wi = 16 407 717 1614 7910
wi = 64 407 758 1319 3132
wi = 256 – 758 1359 3017
wi = 1024 – – 1394 4016
wi = auto 404 753 1371 3043

first of the tables is related to the skier’s model with
μ = 0.00 and k = 0.00, and the second one to the model
with μ = 0.12 and k = 0.05. The empty spaces are
a consequence of the OpenCL platform constraints—for
certain parameters the experiment could not be run. These
constraints are related (among others) to the maximum
number of work-items in a work-group (in the case of GT
650m it is equal to 1024), the size of local memory (48
kB) and the size of constant memory (64 kB). There is

mulation times for all segments in a row.
25But only on the GPU; a programmer cannot control the work-group

size on the CPU for the current OpenCL platform.
26A programmer can chose this option by setting the work-group size

to 0.
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Table 4. Average execution times (in ms), from five runs, on
GPU for different numbers of mesh nodes (m) in a row
and different number of work items (wi) in one work
group (the model with μ = 0.12, k = 0.05).

m = 8 m = 16 m = 32 m = 64

wi = 4 1332 1996 10318 -
wi = 16 1424 1963 7026 28921
wi = 64 1450 1993 6739 19739
wi = 256 – 1910 6248 19223
wi = 1024 – – 6394 25936
wi = auto 1440 1918 6237 19260

also an important platform parameter describing the re-
commended work-group sizes. They should be equal to
even multipliers of a constant defined by NVIDIA as a
warp and by AMD a wave-front. In the case of GT 650m
it is equal to 32.

The values from Tables 3 and 4 are presented in
Figs. 14–16 from the computational speedup perspective.
Figure 14 shows that, for a small GPU computational
load27, the work-group size change impact on the
speedup was negligible for both sets of the skier’s model
parameters.

Fig. 14. Comparison of speedups in eight mesh nodes in a row
based trajectory optimization for two sets of a skier’s
model parameters and different work-group sizes.

The same could be observed in the case of 16 mesh
nodes in a row (which means 16×16 = 256 work-items),
but only for the second model (for which the observable
speedups were worse in general, compare Figs. 12 and
13). For the first one, there was a small (25%) speedup
increase with the work-group size change from 2× 2 = 4
to 4 × 4 = 16 (see Tables 1–4).

27That is, 8 × 8 = 64 work-items (globally); they are grouped in
8/2 × 8/2 = 16, 8/4 × 8/4 = 4, 8/8 × 8/8 = 1 work-groups,
respectively (as shown in Fig. 14).

The corresponding dependence for 32 mesh nodes in
a row (meaning 1024 work-items) is shown in Fig. 15.
This computational load was big enough to start utilizing
the GPU’s parallel processing capabilities. In this case
the work-group size change impact on the speedup was
significant, especially for the skier’s model with μ = 0.00
and k = 0.00. The figure shows that the work-group sizes

Fig. 15. Comparison of speedups in 32 mesh nodes in a row
based trajectory optimization for two sets of a skier’s
model parameters and different work-group sizes.

should be bigger than 4 × 4 = 16, with the maximum
speedup observed at work-group size equal to 8×8 = 64.
Because the subsequent values were only slightly worse,
we should consider an optimal range (e.g., [8, 32]), rather
than the single value.

Finally, the dependence for 64 mesh nodes in a
row (64 × 64 = 4096 work-items) is shown in Fig.16.
Similarly, the work-group size change impact on the
speedup was significant. In this case the optimum was
reached at the work-group size equal to 16 × 16 = 256,
but again the value for 8 × 8 = 64 was only a bit worse.

After taking into account that the work-group size
should be equal to even multipliers of a warp value (for the
GT 650m it is equal to 32), one can draw the conclusion
that, in the analyzed computational problem, they should
be equal to 64 or 256. On the other hand, the results in
Tables 3 and 4 show that the “auto mode” is usually good
enough (at least as the first approach) for most cases.
Note that the results presented in the previous section
were obtained with the use of this mode, thus giving the
OpenCL platform control over the optimal work-group
size.

5.3. Final result analysis: Impact of unfeasible so-
lution elimination. The optimal trajectories presented
in this paragraph were calculated in a mesh having 64
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Fig. 16. Comparison of speedups in 64 mesh nodes in a row
based trajectory optimization for two sets of a skier’s
model parameters and different work-group sizes.

nodes in a row (note that: these nodes are too close to
each other to be seen as separate dots in Figs. 17 and 18)
and with the skiers model having no friction and no drag
force (i.e., with μ = 0.00, k = 0.00). Parts (a) of both
of these figures correspond to the results received from
optimization without elimination of unfeasible solutions
(see Fig. 6 and Eqn. 29). On the other hand, Parts (b)
are related to the results obtained when the elimination
of unfeasible solutions was activated.

Figure 17 shows the two optimal trajectories for
a simple symmetrical course. The solution reflected
in Fig. 17(a) is a sequence of seven brachistochrones
(cycloides)—it is not a feasible solution because of these
“zero-radius” turns at each gate28. The finish time for this
solution was tfne = 10.27s29. Solution b is both feasible
and optimal, with the corresponding tfe = 10.36 s.

Figure 18 shows the two trajectories for an
unsymmetrical course, which is much more challenging
for the athletes. In this case, Part (a) is an unfeasible
solution composed of eight brachistochrones with the
corresponding tfne = 11.21 s. Part (b) of the figure
shows the trajectory which is feasible and optimal. Its
corresponding finish time tfe = 11.37 s.

Note that the penalty function defined by Eqn. (29)
proved effective not only in the examples presented above
but also for problems in which both the skier’s model
parameters and/or course set-ups were different. However,
it is just an example of such a function, which was needed
to demonstrate the whole optimization algorithm.

28One of the key assumptions of the model was that all turns are purely
carved, with no skidding (which causes braking).

29With “ne” standing for “no elimination”.

(a) (b)

Fig. 17. Trajectory optimization result for a symmetrical cour-
se, the skier’s model with μ = 0.00, k = 0.00 and WI-
THOUT elimination of unfeasible solutions (a), WITH

elimination of unfeasible solutions (b).

6. Conclusion

Effective, simulation-based trajectory optimization
algorithms adapted to heterogeneous computer systems
were studied using an example taken from alpine
ski racing. Both the serial and parallel versions of
the optimization algorithm were presented in detail
(pseudo-code, time and memory complexity). Possible
extensions of the basic algorithm were also described.

The experimental results showed that contemporary
heterogeneous computers can be used effectively in
simulation-based continuous trajectory optimization
problems. Such computers can be treated as μ-HPC
platforms—they offer high peak performance (the
effective use of the OpenCL-capable GPU accelerated
the optimization procedure even up to 128 times!) while
remaining energy and cost efficient. This fact can be very
important in the embedded systems domain.

The presented algorithms can be applied to many
trajectory optimization problems, including those having
a black-box represented performance measure and/or the
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(a) (b)
Fig. 18. Trajectory optimization result for a unsymmetrical co-

urse, the skier’s model with μ = 0.00, k = 0.00
and WITHOUT elimination of unfeasible solutions (a),
WITH elimination of unfeasible solutions (b).

ones in which the trajectory cannot be approximated by a
piecewise-linear function.

Future research work will concentrate on
experimenting with the proposed extensions of the basic
(parallel) algorithm, on different ways of approximating
the trajectory, on the verification of the proposed
algorithm in an augmented cloud30 environment, and on
further analysis of the impact of the model parameters on
optimization results.
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Appendix

Simulation helper functions API

{@param l: the segment length}
{@param gred: the reduced gravit. acceleration}
{@param t0: the initial time}
{@param v0: the initial velocity}
{@returns t1: the final time}
{@returns v1: the final velocity}

1: simulation_for(l, gred, t0, v0) : (t1, v1)

{@param r: the segment start node row index}
{@param c: the segment start node column index}
{@param n: the segment end node column index}
{@returns l(s): the segment length}
{@returns g

(s)
red: the segment reduced acceleration}

2: get_segm_stat_data(r, c, n) : (l(s), g(s)
red)

{@params r, c, n: see get_segm_stat_data}
{@returns: t

(s)
1 : the segment final time}

{@returns: v
(s)
1 : the segment final velocity}

3: get_segm_dyn_data(r, c, n) : (t(s)1 , v
(s)
1 )

{@params r, c, n: see get_segm_stat_data}
{@param topt: the best value of t1 (found so far)}
{@param vopt: the best value of v1 (found so far)}
{@param pidxopt: the previous segment index}

4: update_segment(r, c, n, topt, vopt, pidxopt)

{@param rp: the prev segment start node row idx}
{@param cp: the prev segment start node col idx}
{@param cs: the curr segment start node col idx}
{@param ce: the curr segment end node col idx}
{@param v0i: the final velocity before correction}
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{@returns v0: the final velocity after correction}
5: correct_v0(rp, cp, cs, ce, v0i)
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