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Hysteretic control of arrivals is one of the most easy-to-implement and effective solutions of overload problems occurring
in SIP-servers. A mathematical model of an SIP server based on the queueing system M [X]|G|1〈L, H〉|〈H,R〉 with batch
arrivals and two hysteretic loops is being analyzed. This paper proposes two analytical methods for studying performance
characteristics related to the number of customers in the system. Two control policies defined by instants when it is decided
to change the system’s mode are considered. The expression for an important performance characteristic of each policy (the
mean time between changes in the system mode) is presented. Numerical examples that allow comparison of the efficiency
of both policies are given.
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1. Introduction

The problem of overload protection of essential
components of a telecommunications network has
again become crucial in 3G and 4G generation
networks. At this time, the reliability of a network
is compromised by a rapid growth in the number
of telecommunications services, characterized by
unpredictable traffic transmitted over a network, and the
high performance requirements for network nodes and
servers. The problem’s manifestations were, for example,
various kinds of SIP-server (Session Initiation Protocol)
overload generated by avalanche flood of requests from
users for broadband services (Hilt et al., 2011). For
example, in the simplest case, voice-over-IP service, a
user request requires transfer and processing by multiple
servers at least seven SIP-messages. The explosive nature
of the traffic, whose processing is not handled by the
most modern equipment, is not only the behavior of
people in the busy hours, as previously in 2G circuit
switched networks, but also due to a variety of other
reasons. The most typical causes of SIP-server overload

such as poor capacity planning, component failures,
flash crowds, denial of service attacks are described
in documents of the Internet Engineering Task Force
(IETF), which are considered international standards for
IP networks. One of the most problematic sources of
overload is avalanche restart, when a large number of
users simultaneously attempt to register on SIP-servers.
An example is the so-called “Manhattan reboots”
scenario, when an outage accident happened in the largest
area of the city, and after the power was restored, all
SIP-terminals simultaneously tried to log on to servers,
thus creating a large flow of REGISTER SIP-messages.
The problem considered in the paper relates to control
theory and performance analysis of complex technical
systems (Kaczorek, 2013; Olwal et al., 2012; Moltchanov
et al., 2006).

In fact, it is required to solve two problems: how
to define the beginning of overload and how to eliminate
it. The most obvious solution is the introduction of
queue length thresholds, just as is done in the ITU-T
recommendations for network and link layers of the
common channel signaling system no. 7 (SS7) (Russell,
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2006).

Abaev et al. (2011; 2012b; 2012a) give a general
overview and analysis of the hysteretic load control
mechanism used in SS7, and the mathematical model
developed for local overload control in an SIP-server
network. Overload control is carried out by introducing
three thresholds in the queue of messages waiting to be
processed in the buffer of a server. They are overload
onset threshold H , overload abatement threshold L, and
load discard threshold R. The server operates in one of
three modes: normal, overload, and discard, each with
its own arrival rate. At that, the behavior of the server
differs: the control system acts to reduce the input traffic
by discarding some of the input messages in overload
mode and all the input messages in discard mode. While
the total number of messages in the queue does not exceed
the onset threshold H , the server is considered to be
operating in normal mode. If the queue length becomes
equal to H , the control system switches to overload mode
in order to eliminate overload. The server remains in
this mode until the queue length falls to the abatement
threshold L in case of the mitigating of overload or
until the queue length overtakes (R − 1). After the
queue length drops below L, the control system detects
elimination of overload and switches to normal mode.
If the queue length increases to R, the control system
detects aggravation of overload and switches to discard
mode. If in discard mode the queue length drops below H ,
the control system switches to overload mode. Threshold
values are chosen so that 0 < L < H < R, leading to the
so-called hysteretic effect (Gebhart, 1967; Krasnoselskii
and Pokrovskii, 1989) between the pairs of thresholds
〈L, H〉 and 〈H, R〉 in the form of two loops—one for each
pair of thresholds, as shown in Fig. 1. In SS7 protocols,
hysteretic control has been introduced (Takshing and Yen,
1983; Brown et al., 1984) to reduce the number of control
system switchings between operating modes. At that, the
problem was solved by the choice of thresholds in order
to minimize the mean return time of the system from
overload states to normal load states.

In many papers devoted to the study of queueing

Fig. 1. Hysteretic load control.

systems with hysteresis control more common are the
models with hysteretic service disciplines (Golubchik
and Lui, 1997; Sindal and Tokekar, 2008), and less
so the models with hysteretic input flow (Takagi,
1985; Benaboud and Mikou, 2002). One can find
a comprehensive review of results on the hysteresis
control in the work of Dshalalow (1997) and Bekker
(2009). The closest to our research model and methods
are those developed by Roughan and Pearce (2000),
who give numerous references on the problem of the
analysis of queueing systems with hysteresis control of the
incoming flow intensity (hereinafter—with hysteretic load
control). Abaev et al. (2011; 2012b; 2012a) as well as
Pechinkin and Razumchik (2013a; 2013b) review papers
on mathematical modeling and simulation of systems
with hysteretic load control. The queueing system with
Poisson input, exponential and general service times was
built there and thoroughly studied. The parameter of
interest from the viewpoint of SIP-server performance is
the total time spent by the server in overload and discard
modes. This random variable is called the return time of
the system from the overload states to the normal load
states. Its characteristics such as the mean value and
the 95% quantile are subject to minimization with the
given constraints on the load and structural parameters
of the system. In the work of Abaev et al. (2014)
for the Markovian case, an algorithm was developed for
calculation of the mean return time and the problem of
its minimization was solved numerically for practically
important values of the model parameters.

The contribution of this paper is the mathematical
model for SIP-server overload control—queueing system
M [X]|G|1〈L, H〉|〈H, R〉 with hysteretic load control and
batch arrivals—and methods of its stationary analysis.
We consider two control policies based on the time
instants when switching between operating modes occurs.
According to policy P1, the system may switch between
operating modes at time instants when any change in the
number of customers in the system (arrival or departure)
occurs; according to policy P2—only at time instants of
service completion.

Our main result is Theorem 1, which gives the
equation for the stationary probability distribution of the
system states with hysteresis policy P1. We also prove
Theorem 2, which gives a method of calculating the
stationary distribution of the queue length for the system
with control policy P2.

The paper is organized as follows. In Section 2
we describe in detail the proposed model and introduce
all necessary concepts and denotation. In Sections 3
and 4 we carry out the mathematical analysis of the
model for control policies P1 and P2. In Section 5
examples of numerical analysis are provided, key results
are summarized and directions of further research are
given.
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2. System description

Consider a single-queue, single-server system with a
general service time distribution function which is
denoted by B(x) and hysteretic load control. By β(s)
we denote a Laplace–Stieltjes Transform (LST) of B(x),
and by b the mean service time. In addition, we use the
notation

β̃(s) =

∞∫

0

e−sx[1 − B(x)] dx =
1
s
[1 − β(s)].

Two types of customers (say, type 1 and type 2)
arrive at the system in batches (each) in accordance with a
time-homogeneous Poisson process with rates λ1 and λ2,
respectively. Henceforth λ = λ1+λ2. Each arriving batch
has a random number of customers and the probability that
the arriving batch of type k, k = 1, 2, customers contains
exactly n, n ≥ 1, customers is ωk,n. Write

Ωk,n =
∞∑

m=n

ωk,m, k = 1, 2, n ≥ 1,

ωn =
λ1ω1,n + λ2ω2,n

λ
, n ≥ 1,

Ωn =
∞∑

m=n

ωm, n ≥ 1.

Clearly, Ωk,n, k = 1, 2, n ≥ 1, is the probability that
there are at least n customers in the arriving batch of type
k customers, whereas ωn, n ≥ 1, is the probability that
there are exactly n customers in the batches of any type
customers batches arriving at the system. Finally, Ωn,
n ≥ 1, is the probability that there are at least n customers
in the batches of any type customers batches arriving at the
system.

Customers are served one at a time. In this section
we are only interested in a stationary queue length
distribution and related performance characteristics. Thus
we do not specify the order of service for batches and
inside batches as well as a discard rule when only part
of a batch can be accepted by the system.

The hysteretic load control is functioning as follows.
The server operates in three modes: normal (s = 0),
overload (s = 1), and discard (s = 2), where s is the
overload status (see Fig. 1). From the time instant of
the first customer’s arrival into the system until the time
instant when the number of customers increases to H ,
the system is considered to be in normal mode, where
all incoming customers are taken into the system. When
the number of customers in the system becomes no less
than H , the system switches to overload mode, where only
incoming type 1 customers are taken into the system, and
incoming type 1 customers are blocked. The system is
considered to be in overload mode until the number of

customers in the system drops to (L − 1) or until the
number of customers overtakes (R − 1). In the first case,
the system switches to normal mode, where all incoming
customers are taken into the system. In the second case
the system switches to discard mode, where all incoming
customers are blocked, and stays in discard mode until
the number of customers drops to H . Then the procedure
continues.

We assume that the condition b < ∞ holds for the
system which is necessary and sufficient for the existence
of a steady state.

In further analysis it is assumed that threshold values
are chosen in such a way that inequalities H −L ≥ 1 and
R−H ≥ 2 hold. Thus, special cases are left out of scope.
This is done only for convenience because computational
expressions for them differ from those presented below
(are simpler and thus omitted).

Throughout the paper, in order to present expressions
in a concise form, we use the agreement that

∑i−1
j=i xj = 0

and
∏i−1

j=i xj = 1.

3. Policy P1

In this section we obtain a stationary queue length
distribution in an M [X]|G|1〈L, H〉|〈H, R〉 system
operating under policy P1 and give a computational
expression for its several important performance
characteristics.

Note that policy P1 implies that the system changes
its state from normal mode to overload mode at the
moment when a batch of customers arrives at the system
and the total number of customers in the system jumps to
the value between H and (R − 1). Similarly, the system
changes its state from normal or overload mode to discard
mode if the size of the arriving batch exceeds the system’s
current free capacity. Those customers in the batch that
find room in the queue stay in the system and the rest of
them leave it without having any further effect on it (they
are considered to be lost).

In the next subsection, auxiliary functions significant
for further analysis are introduced. Then, using the
supplementary variable method and the state space
elimination method, we obtain the stationary distribution
of the Markov process describing the system’s behaviour.
In the closing subsection we give expressions for the
probability that the system is in normal/overload/discard
mode, the stationary mean control cycle time and the
mean time the system spends in overload and discard
modes.

Throughout this section, for the sake of simplicity,
we assume that there exists a density b(x) = B′(x).

3.1. Auxiliary functions. Assume that at an arbitrary
time instant the total number of customers in the system
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is n, n = H + 1, R − 1, the system is in overload mode
(i.e., only batches of type 1 customers are allowed to enter
system) and the elapsed service time of the customer in
service is x. Denote by αn(x) the probability that until
the time instant when the total number of customers in
the system equals (n − 1) for the first time, there will
never be R customers in the system (or, alternatively, the
total number of customers in the system will reach (n−1)
earlier than R).

Write

qn(x) = [1 − B(x)]αn(x), n = H + 1, R − 1. (1)

It can be shown that, for functions qn(x), n =
H + 1, R − 1, the following equations hold:

−q′n(x) = −λ1qn(x) + b(x)

+ λ1

R−1−n∑
m=1

ω1,mqn+m(x)
m−1∏
i=0

αn+i(0).

(2)

Solving (2) for n = R − 1 yields

qR−1(x) = Ceλ1y +

∞∫

x

b(y)e−λ1(y−x) dy,

where C is a constant. Since αR−1(x) is a probability for
each value of x, using the property |αR−1(x)| ≤ 1, one
finds that C = 0. Thus

qR−1(x) =

∞∫

x

b(y)e−λ1(y−x) dy. (3)

In the same manner, one can obtain from (2) the
following expression for qn(x), n = H + 1, R − 2:

qn(x) =

∞∫

x

[
b(y) + λ1

R−1−n∑
m=1

ω1,mqn+m(y)

×
m−1∏
i=0

αn+i(0)

]
e−λ1(y−x) dy.

(4)

The latter expression contains unknown
quantities αn(0). Setting x = 0 in (3) and (4), and
taking into account (1), one can find them in the form

αn(0) =

(
1 − λ1

R−1−n∑
m=1

ω1,m

∞∫

0

qn+m(y)e−λ1ydy

×
m−1∏
i=1

αn+i(0)

)−1

β(λ1),

n = H+1, R−1.

(5)

Now assume that at an arbitrary time instant the total
number of customers in the system is n, n = L, H − 1,
the system is in normal mode and the elapsed service
time of the customer in service is x. Denote by αn(x)
the probability that, until the time instant when the total
number of customers in the system becomes equals to (n−
1) for the first time, there will never be H customers in the
system (or, alternatively, the total number of customers in
the system will reach (n − 1) earlier than H).

If we write

qn(x) = [1 − B(x)]αn(x), n = L, H − 1,

and use the same argument as above, it can be shown
that probabilities qn(x), n = L, H − 1 can be computed
using the following expressions:

qn(x)

=

∞∫

x

[
b(y) + λ

H−1−n∑
m=1

ωmqn+m(y)

×
m−1∏
i=0

αn+i(0)

]
e−λ(y−x)dy, n = L, H − 1,

(6)

αn(0)

=

(
1 − λ

H−1−n∑
m=1

ωm

∞∫

0

qn+m(y)e−λydy

×
m−1∏
i=1

αn+i(0)

)−1

β(λ), n = L, H − 1. (7)

For numerical computation it is more convenient to
transform the expressions obtained above in the following
way.

Introduce functions Q0(x) = Q̃0(x) = b(x), x > 0,
and

Q̃n(x) =

∞∫

x

Q̃n−1(y)e−λ1(y−x) dy, n=1, R−H,

(8)

Qn(x) =

∞∫

x

Qn−1(y)e−λ(y−x) dy, n=1, H−L.

(9)

Through careful inspection of probabilities qR−n(x),
n = 1, R − H − 1, one can find that they can be rewritten
in an alternative form, i.e.,

qR−n(x) =
n∑

k=1

d̃n,kQ̃k(x), n = 1, R − H − 1.
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Then from (3) we have qR−1(x) = Q̃1(x) and d̃1,1 = 1.
Further, from (4) it follows that

qR−n(x) = Q̃1(x) + λ1

n−1∑
m=1

ω1,m

n−m∑
k=1

d̃n−m,k

× Q̃k+1(x)
m−1∏
i=0

αR−n+i(0),

n = 2, R − H − 1.

Thus we obtain coefficients d̃n,k in the form

d̃n,k = λ1

n−k+1∑
m=1

ω1,md̃n−m,k−1

m−1∏
i=0

αR−n+i(0),

n = 2, R − H − 1, k = 2, n.

In particular, for n = 1, R − H − 1, it holds that

∞∫

0

qR−n(x)e−λ1x dx =
n∑

k=1

d̃n,kQ̃k+1(0).

A similar argument leads to the following result for
probabilities qH−n(x), n = 1, H − L. Let

qH−n(x) =
n∑

k=1

dn,kQk(x), n = 1, H − L.

Then from (6) for n = H − 1 we get qH−1(x) = Q1(x),
thus d1,1 = 1. Similarly, from (6) for n = L, H − 2 one
can verify that coefficients dn,k, n = 2, H − L, k = 2, n
are given by

dn,k = λ

n−k+1∑
m=1

ωmdn−m,k−1

m−1∏
i=0

αH−n+i(0).

Notice that

∞∫

0

qH−n(x)e−λx dx =
n∑

k=1

dn,kQk+1(0), n=1, H−L.

3.2. Stationary distribution. Having introduced all
necessary auxiliary functions, we turn to the derivation
and solution of equations for the stationary probability
distribution.

Denote by pn(x), n = 1, H − 1, the stationary
probability density that the total number of customers in
the system is n, the elapsed service time of a currently
served customer is x and the system is in normal mode
(i.e., batches of both types of customers are allowed to
enter the system); pn(x), n = H, R − 1, the stationary
probability density that the total number of customers in
the system is n, elapsed service time of a currently served

customer is x and the system is in overload mode (i.e.,
only batches of type 1 customers are allowed to enter
the system); by p̃n(x), n = L, H − 1, the stationary
probability density, that the total number of customers in
the system is n, the elapsed service time of a currently
served customer is x and the system is in overload mode;
by p̃n(x), n = H + 1, R, the stationary probability
density that the total number of customers in the system is
n, the elapsed service time of a currently served customer
is x and the system is in discard mode (i.e., none of the
arriving customers are allowed to enter the system).

Let also pn and p̃n denote stationary probabilities of
n customers in the system, i.e.,

pn =

∞∫

0

pn(x) dx, n = 1, R − 1,

p̃n =

∞∫

0

p̃n(x) dx, n = L, R, n �= H.

3.2.1. Computation of pn(x) for n = 1, L − 1. Let
us start with the derivation of equations for stationary
probability densities pn(x), n = 1, L − 1. Introduce new
functions rn(x) defined by the relation

pn(x) = [1 − B(x)]rn(x), n = 1, L − 1. (10)

By writing out differential equations for pn(x) and using
the substitution (10), after some simple transformations
one can verify that the following equation holds:

r′n(x) = −λrn(x)+λ

n−1∑
m=1

ωn−mrm(x), n=1, L−1,

(11)
whose solution for n = 1, L − 1 has the form

rn(x)

= e−λx

(
cn,n + λ

n−1∑
m=1

ωn−m

x∫

0

eλyrm(y) dy

)
. (12)

Solving (11) for n = 1, 2 and then using induction, one
readily gets

rn(x)=e−λx
n−1∑
k=0

(λx)k

k!
cn,n−k, n = 1, L − 1. (13)

Substitution of (13) into (12) leads to the expression
for rn(x), n = 1, L − 1:

rn(x)

= e−λx

(
cn,n +

n−1∑
m=1

ωn−m

m−1∑
k=0

(λx)k+1

(k+1)!
cm,m−k

)
,

(14)
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wherefrom recurrence relations for coefficients cn,m

follow. That is, for n = 2, L − 1, m = 1, n− 1,

cn,n−m =
n−1∑
k=m

ωn−kck,k−m+1. (15)

In order to determine the only unknown term
cn,n in (14), we require certain additional (boundary)
conditions. Removing from consideration all time instants
when the total number of customers in the system is
greater than n and using the elimination method, one can
come to the following equation:

cn,n = rn(0) = pn(0)

= λΩnp0 + λ

n∑
i=1

Ωn−i+1pi

= λΩnp0+λ

n−1∑
i=1

Ωn−i+1pi+λ

∞∫

0

[1−B(x)]rn(x) dx

= λΩnp0 + λ
n−1∑
i=1

Ωn−i+1pi

+ λ

∞∫

0

[1−B(x)]e−λx
n−1∑
k=0

(λx)k

k!
cn,n−k dx

= λΩnp0 + λ

n−1∑
i=1

Ωn−i+1pi

+ λ

(
β0cn,n +

n−1∑
k=1

βkcn,n−k

)
, n = 1, L − 1,

where

βk =
λk

k!

∞∫

0

xke−λx[1 − B(x)] dx

=
(−λ)k

k!
β̃(k)(λ).

(16)

Here and henceforth by β̃(k)(s), k ≥ 0, we denote the
k-th derivative of β̃(s) with respect to s. Solution of the
latter equation yields the following expression for cn,n:

cn,n = λ(1 − λβ0)−1

(
Ωnp0 +

n−1∑
i=1

Ωn−i+1pi

+
n−1∑
k=1

βkcn,n−k

)
, n = 1, L − 1.

(17)

Thus the probability that the number of customers in
the system is n, n = 1, L − 1 (and it is in normal mode),

is given by

pn =

∞∫

0

[1 − B(x)]e−λx
n−1∑
k=0

(λx)k

k!
cn,n−k dx

=
n−1∑
k=0

βkcn,n−k, n = 1, L − 1.

(18)

3.2.2. Computation of pn(x) for n = L, H − 1.
Having found expressions for pn(x), n = 1, L − 1, we
turn to derivation of equations for pn(x), n = L, H − 1.
Differential equations for pn(x), as in the previous case,
using substitution

pn(x) = [1 − B(x)]rn(x), n = L, H − 1, (19)

are reduced to the form

r′n(x) = −λrn(x)+λ

n−1∑
m=1

ωn−mrm(x), n=L, H−1.

One can verify that its solution is

rn(x) = e−λx
n−1∑
k=0

(λx)k

k!
cn,n−k, n = L, H−1, (20)

with the following recurrence relations for determination
of coefficients cn,m, n = L, H − 1, m = 1, n− 1:

cn,n−m =
n−1∑
k=m

ωn−kck,k−m+1. (21)

The boundary condition for determination of the
only unknown coefficient cn,n is again obtained using the
elimination method. Due to the lack of space we do not
dwell on its derivation and state its final form:

cn,n

= rn(0) = pn(0)

= λωnp0 + λ

H−1∑
m=n+1

(
ωmαm(0)p0

+
n∑

i=1

∞∫

0

ωm−iαm(x)pi(x) dx

)
m−1∏

j=n+1

αj(0)
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= λωnp0 + λ

H−1∑
m=n+1

(
ωmαm(0)p0

+
n∑

i=1

ωm−i

∞∫

0

qm(x)ri(x) dx

)
m−1∏

j=n+1

αj(0)

= λωnp0 +λ

H−1∑
m=n+1

(
ωmαm(0)p0

+
n−1∑
i=1

ωm−i

∞∫

0

qm(x)ri(x) dx

)
m−1∏

j=n+1

αj(0)

+ λ

H−1∑
m=n+1

ωm−n

n−1∑
k=0

αm,kcn,n−k

m−1∏
j=n+1

αj(0),

where for m = n + 1, H − 1, k = 0, n − 1

αm,k =

∞∫

0

(λx)k

k!
e−λxqm(x) dx. (22)

Solution of the latter equation leads to the following
expression for cn,n:

cn,n

=

(
1 − λ

H−1∑
m=n+1

ωm−nαm,0

m−1∏
j=n+1

αj(0)

)−1

×
[
λωnp0+λ

H−1∑
m=n+1

ωm−n

n−1∑
k=1

αm,kcn,n−k

m−1∏
j=n+1

αj(0)

+ λ
H−1∑

m=n+1

(
ωmαm(0)p0+

n−1∑
i=1

ωm−i

∞∫

0

qm(x)ri(x) dx

)

×
m−1∏

j=n+1

αj(0)

]
, n = L, H − 1.

(23)

Thus we obtain the expression for the probability that the
number of customers in the system is n, n = L, H − 1,
and it is in normal mode:

pn =
n−1∑
k=0

βkcn,n−k, n = L, H − 1. (24)

3.2.3. Computation of p̃n(x) for n = L, H − 1.
Let us dwell on the derivation of equations for p̃n(x),
n = L, H − 1. Using the same approach as above, i.e.,
introducing new functions r̃n(x) defined by the relation

p̃n(x) = [1 − B(x)]r̃n(x), n = L, H − 1, (25)

and using this substitution in differential equations for
p̃n(x), we arrive at the following equation for n =

L, H − 1:

r̃′n(x) = −λ1r̃n(x) + λ1

n−1∑
m=L

r̃m(x)ω1,n−m.

It is straightforward to validate that the solution of the
above equation is

r̃n(x) = e−λ1x
n−L∑
k=0

(λ1x)k

k!
c̃n,n−k, n=L, H−1,

(26)
where the coefficients c̃n,m are determined from the
following recurrence relationships for n = L + 1, H − 1,
m = 1, n− L:

c̃n,n−m =
n−1∑

k=m+L−1

ω1,n−kc̃k,k−m+1. (27)

For the only unknown term c̃n,n in (27) we have the
boundary condition

c̃n,n

= r̃n(0) = p̃n(0)

= λ

H−1∑
m=0

pmΩH−m + λ1

n∑
m=L

p̃mΩ1,n+1−m

= λ

H−1∑
m=0

ΩH−mpm + λ1

n−1∑
m=L

Ω1,n+1−mp̃m

+ λ1

∞∫

0

p̃n(x) dx

= λ
H−1∑
m=0

ΩH−mpm + λ1

n−1∑
m=L

Ω1,n+1−mp̃m

+ λ1

n−L∑
k=0

β̃kc̃n,n−k, n = L, H − 1,

where

β̃k =
λk

1

k!

∞∫

0

xke−λ1x[1 − B(x)] dx

=
(−λ1)k

k!
β̃(k)(λ1).

(28)

Solution of the above equation gives the expression for
c̃n,n, n = L, H − 1:

c̃n,n

= (1 − λ1β̃0)−1

(
λ

H−1∑
m=0

ΩH−mpm

+ λ1

n−1∑
m=L

Ω1,n+1−mp̃m + λ1

n−L∑
k=1

β̃k c̃n,n−k

)
.

(29)
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Thus we have obtained the expression for the probability
that the number of customers in the system is n, n =
L, H − 1, and it is in overload mode:

p̃n =

∞∫

0

[1 − B(x)]e−λ1x
n−L∑
k=0

(λ1x)k

k!
c̃n,n−k dx

=
n−L∑
k=0

β̃k c̃n,n−k, n = L, H − 1.

(30)

3.2.4. Computation of pH(x). The differential
equation for pH(x) using substitution

pH(x) = [1 − B(x)]rH (x) (31)

can be reduced to

r′H(x) = −λ1rH(x) + λ

H−1∑
m=1

ωH−mrm(x)

+ λ1

H−1∑
m=L

ω1,H−mr̃m(x).

Its solution can be written in the form

rH(x)

= e−λ1x

(
c∗H,H +λ

x∫

0

eλ1y
H−1∑
m=1

ωH−mrm(y) dy

+ λ1

x∫

0

eλ1y
H−1∑
m=L

ω1,H−mr̃m(y) dy

)

= e−λx
H−2∑
k=0

(λ2x)k

k!
cH,H−k + e−λ1x

[
c∗H,H

+
H−2∑
k=0

H−1∑
m=k+1

ωH−m

( λ

λ2

)k+1

cm,m−k

+
H−L∑
k=1

(λ1x)k

k!

H−1∑
m=L−k+1

ω1,H−mc̃m,m−k+1

]
.

Thus the final expression for rH(x) can be represented as
two finite sums, i.e.,

rH(x) = e−λx
H−2∑
k=0

(λ2x)k

k!
cH,H−k

+ e−λ1x
H−L∑
k=0

(λ1x)k

k!
c̃H,H−k,

(32)

where

cH,H−k = −
H−2∑
i=k

H−1∑
m=i+1

ωH−m

( λ

λ2

)i+1

cm,m−k,

k = 0, H − 2,
c̃H,H = c∗H,H

+
H−2∑
k=0

H−1∑
m=k+1

ωH−m

( λ

λ2

)k+1

cm,m−k,

c̃H,H−k =
H−1∑

m=L+k−1

ω1,H−mc̃m,m−k+1,

k = 1, H − L.

(33)

The boundary condition, which is determined using
the elimination method as well, has the form

cH,H + c̃H,H

= rH(0) = pH(0)

= λ

H−1∑
m=0

pmΩH+1−m + λp0ωH

+ λ1

H−1∑
m=L

p̃mΩ1,H+1−m+λ1

∞∫

0

pH(x) dx

= λp0ωH +
H−1∑
m=0

λpmΩH+1−m + λ1

[
H−1∑
m=L

p̃mΩ1,H+1−m

+
H−2∑
k=0

(λ2

λ

)k

βkcH,H−k +
H−L∑
k=0

β̃k c̃H,H−k

]
.

After collecting the common terms, one can find the
following expression for c̃H,H :

c̃H,H

= (1−λ1β̃0)−1

(
λp0ωH +

H−1∑
m=0

λpmΩH+1−m

+ λ1

[
H−1∑
m=L

p̃mΩ1,H+1−m +
H−2∑
k=0

(λ2

λ

)k

βkcH,H−k

+
H−L∑
k=1

β̃k c̃H,H−k

]
− cH,H

)
.

(34)

Note that the probability that the number of customers in
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the system is H and the system is in overload mode equals

pH =

∞∫

0

[1 − B(x)]

(
e−λx

H−2∑
k=0

(λ2x)k

k!
cH,H−k

+ e−λ1x
H−L∑
k=0

(λ1x)k

k!
c̃H,H−k

)
dx

=
H−2∑
k=0

(λ2

λ

)k

βkcH,H−k +
H−L∑
k=0

β̃k c̃H,H−k.

(35)

3.2.5. Computation of functions pn(x) for
n = H + 1, R − 1. Whereas probabilities pn(x),
n = 1, H, and p̃n(x), n = L, H − 1, are now considered
to be found, we turn to the determination of probabilities
pn(x), n = H + 1, R − 1. We seek to obtain their
expressions in the form

pn(x)

= [1 − B(x)]

[
e−λx

H−2∑
k=0

(λ2x)k

k!
cn,n−k

+ e−λ1x
n−L∑
k=0

(λ1x)k

k!
c̃n,n−k

]
,

n = H + 1, R − 1.

The differential equation for pn(x) using substitution

pn(x) = [1 − B(x)]rn(x), n = H + 1, R − 1, (36)

is reduced to

r′n(x)

= −λ1rn(x) + λ

H−1∑
m=1

ωn−mrm(x)

+ λ1

H−1∑
m=L

ω1,n−mr̃m(x) + λ1

n−1∑
m=H

ω1,n−mrm(x).

The solution of the latter equation is given by

rn(x)

= e−λx
H−2∑
k=0

(λ2x)k

k!
cn,n−k

+ e−λ1x
n−L∑
k=0

(λ1x)k

k!
c̃n,n−k, n = H+1, R−1,

(37)

where

cn,n−k = −
[

λ1

λ2

n−1∑
m=H

H−2∑
i=k

ω1,n−mcm,m−i

+
H−2∑
i=k

( λ

λ2

)i+1 H−1∑
m=i+1

ωn−mcm,m−i

]
,

n = H + 1, R − 1, k = 0, H − 2,

c̃n,n =
H−2∑
k=0

( λ

λ2

)k+1 H−1∑
m=k+1

ωn−mcm,m−k

+
λ1

λ2

H−2∑
k=0

n−1∑
m=H

ω1,n−mcm,m−k + c∗n,n,

n = H + 1, R − 1
(38)

c̃n,n−k =
H−1∑

m=L+k−1

ω1,n−mc̃m,m−k+1

+
n−1∑

m=H

ω1,n−mc̃m,m−k+1,

n = H+1, R−1, k = 1, H−L,

c̃n,n−k =
n−1∑

m=L+k−1

ω1,n−mc̃m,m−k+1,

n = H+1, R−1, k = H−L+1, n−L.

The only term left to de determined is c̃n,n. It
is found from boundary conditions obtained using the
elimination method, whose derivation here is omitted due
to the lack of space. We have, for n = H + 1, R − 1,

cn,n + c̃n,n

=rn(0) = pn(0)

= λp0

R−1∑
m=n

ωm

m∏
j=n+1

αj(0)

+ λ1

R−1∑
m=n+1

ω1,m−n

[
H−2∑
k=0

(λ2

λ

)k

αm,kcn,n−k

+
n−L∑
k=0

α̃m,k c̃n,n−k

]
m−1∏

j=n+1

αj(0)

+
R−1∑

m=n+1

∞∫

0

(
λ

H−1∑
i=1

ri(x)ωm−i+λ1

H−1∑
i=L

r̃i(x)ω1,m−i

+ λ1

n−1∑
i=H

ri(x)ω1,m−i

)
qm(x) dx

m−1∏
j=n+1

αj(0),
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where for αm,k and α̃m,k the following notation is used:

αm,k =

∞∫

0

(λx)k

k!
e−λxqm(x) dx,

m = n + 1, R − 1, k = 0, H − 2,

α̃m,k =

∞∫

0

(λ1x)k

k!
e−λ1xqm(x) dx,

m = n + 1, R − 1, k = 0, n − L.

(39)

Collecting the common terms in the previous equation, we
get

c̃n,n

=

(
1 − λ1

R−1∑
m=n+1

ω1,m−nα̃m,0

m−1∏
j=n+1

αj(0)

)−1

×
[
λp0

R−1∑
m=n

ωm

m∏
j=n+1

αj(0)

+ λ1

R−1∑
m=n+1

ω1,m−n

(
H−2∑
k=0

(λ2

λ

)k

αm,kcn,n−k

+
n−L∑
k=1

α̃m,kc̃n,n−k

)
m−1∏

j=n+1

αj(0)

+
R−1∑

m=n+1

∞∫

0

(
λ

H−1∑
i=1

ri(x)ωm−i+λ1

H−1∑
i=L

r̃i(x)ω1,m−i

+ λ1

n−1∑
i=H

ri(x)ω1,m−i

)
qm(x) dx

m−1∏
j=n+1

αj(0)−cn,n

]
,

n = H + 1, R − 1.
(40)

Now we can find the probability that the number of
customers in the system is n, n = H + 1, R − 1, and it is
in overload mode. We have

pn

=

∞∫

0

[1 − B(x)]

(
e−λx

H−2∑
k=0

(λ2x)k

k!
cn,n−k

+ e−λ1x
n−L∑
k=0

(λ1x)k

k!
c̃n,n−k

)
dx

=
H−2∑
k=0

(λ2

λ

)k

βkcn,n−k +
n−L∑
k=0

β̃k c̃n,n−k,

n = H + 1, R − 1.

(41)

3.2.6. Computation of p̃R(x). Let us now find the
expression for the probability p̃R(x), in the form

p̃R(x) = [1 − B(x)]

[
c∗ + e−λx

H−2∑
k=0

(λx)k

k!
cR,R−k

+ e−λ1x
R−L−1∑

k=0

(λ1x)k

k!
c̃R,R−k

]
.

Having introduced function p̃R(x) by the relation

p̃R(x) = [1 − B(x)]r̃R(x), (42)

we obtain from the differential equation for p̃R(x) the
corresponding equation for r̃R(x). We have

r̃′R(x) = λ

H−1∑
m=1

ΩR−mrm(x)

+ λ1

H−1∑
m=L

Ω1,R−mr̃m(x)

+ λ1

R−1∑
m=H

Ω1,R−mrm(x).

The solution of the latter equation is

r̃R(x) = c∗ + e−λx
H−2∑
i=0

(λx)i

i!
cR,R−i

+ e−λ1x
R−1−L∑

i=0

(λ1x)i

i!
c̃R,R−i,

(43)

where

c∗ = c∗R,R +
H−2∑
k=0

H−1∑
m=k+1

ΩR−mcm,m−k

+
R−1−L∑

k=0

R−1∑
m=L+k

Ω1,R−mc̃m,m−k

+
H−2∑
k=0

R−1∑
m=H

λ1λ
k
2

λk+1
Ω1,R−mcm,m−k,

cR,R−i = −
H−2∑
k=i

H−1∑
m=k+1

ΩR−mcm,m−k

−
H−2∑
k=i

R−1∑
m=H

λ1λ
k
2

λk+1
Ω1,R−mcm,m−k,

i=0, H−2,

(44)

c̃R,R−i = −
R−1−L∑

k=i

R−1∑
m=L+k

Ω1,R−mc̃m,m−k,
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i = 0, R − 1 − L. (45)

From the boundary condition we find that for
unknown term c∗ in (43) it holds that

cR,R + c̃R,R + c∗ = r̃R(0) = p̃R(0) = λp0ΩR.

Hence
c∗ = λp0ΩR − cR,R − c̃R,R. (46)

The probability that the number of customers in the
system in R (and it is in discard mode) is given by

pR = bc∗ +
H−2∑
k=0

βkcR,R−k +
R−L−1∑

k=0

β̃kc̃R,R−k. (47)

3.2.7. Computation of the functions p̃n(x) for
n = H + 1, R − 1. The last expressions that are left
to be found are those for probabilities p̃n(x), n =
H + 1, R − 1. Write

α∗ =

∞∫

0

p̃R(x)
b(x)

1 − B(x)
dx

=

∞∫

0

r̃R(x)b(x) dx

=
H−2∑
k=0

(−λ)k

k!
β(k)(λ)cR,R−k

+
R−L∑
k=0

(−λ1)k

k!
β(k)(λ1)c̃R,R−k.

(48)

One can readily verify that differential equations
for p̃n(x) using substitution

p̃n(x) = [1 − B(x)]r̃n(x), n = H + 1, R − 1,

can be reduced to

r̃′n(x) = 0, n = H + 1, R − 1,

whose solution is

r̃n(x) = c̃n, n = H + 1, R − 1.

The boundary condition used to obtain the expression
for unknown term c̃n in this case is

c̃n = r̃n(0) = p̃n(0)

=

∞∫

0

p̃n+1(x)
b(x)

1 − B(x)
dx

=

∞∫

0

r̃n+1(x)b(x) dx

= c̃n+1 = α∗, n = H+1, R−1.

Thus for p̃n(x), n = H + 1, R − 1, we have

p̃n(x) = [1 − B(x)]r̃n(x), n = H + 1, R − 1, (49)

and integration from 0 to ∞ yields the expression for p̃n:

p̃n =

∞∫

0

p̃n(x) dx

=

∞∫

0

[1 − B(x)]r̃n(x) dx

= c̃nb = α∗b, n = H + 1, R − 1.

(50)

3.2.8. Computation of p0. The stationary probability
p0 of an empty system is determined, as usual, from the
normalization condition:

p0 +
R−1∑
n=1

pn +
H−1∑
n=L

p̃n +
R∑

n=H+1

p̃n = 1. (51)

Now we state the main result of Section 3.

Theorem 1. The stationary probability density pn(x)
that the total number of customers in the system is n,
n = 1, L − 1, the elapsed service time of a currently
served customer is x and the system is in normal mode
is given by the relation (10). All quantities in this relation
are given by (13), (16) and (17).

The stationary probability density pn(x) that the to-
tal number of customers in the system is n, n = L, H − 1,
the elapsed service time of a currently served customer is
x and the system is in normal mode is given by the relation
(19). All quantities in this relation are given by (20), (21),
(22) and (23).

The stationary probability density p̃n(x) that the to-
tal number of customers in the system is n, n = L, H − 1,
the elapsed service time of a currently served customer is
x and the system is in overload mode is given by the rela-
tion (25). All quantities in this relation are given by (26),
(27), (28) and (29).

The stationary probability density pH(x) that the to-
tal number of customers in the system is H , the elapsed
service time of a currently served customer is x and the
system is in overload mode is given by the relation (31).
All quantities in this relation are given by (32), (33) and
(34).

The stationary probability density pn(x) that the to-
tal number of customers in the system is n, n = H, R − 1,
the elapsed service time of a currently served customer is
x and the system is in overload mode is given by the rela-
tion (36). All quantities in this relation are given by (37),
(38), (39) and (40).

The stationary probability density p̃R(x) that the to-
tal number of customers in the system is R, the elapsed
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service time of a currently served customer is x and the
system is in discard mode is given by the relation (42). All
quantities in this relation are given by (43), (44), (45) and
(46).

The stationary probability density p̃n(x) that
the total number of customers in the system is n,
n = H + 1, R − 1, the elapsed service time of a currently
served customer is x and the system is in discard mode is
given by the relation (49). The quantity α∗ in this relation
is given by (48).

The stationary probabilities pn and p̃n of n cus-
tomers in the system (and the system’s corresponding
state) are given by (18), (24), (30), (35), (41), (47) and
(50).

The stationary probability p0 of an empty system is
determined from the normalization condition (51).

3.3. Performance characteristics. The stationary
probability P (S1) of the system being in overload mode
is equal to the sum of the corresponding probabilities, i.e.,

P (S1) =
R−1∑
n=H

pn +
H−1∑
n=L

p̃n.

Similarly, we can find the stationary probability P (S2) of
the system being in discard mode. We have

P (S2) =
R∑

n=H+1

p̃n.

Finally the stationary probability P (S0) of the system
being in normal mode is

P (S0) =
H−1∑
n=0

pn.

In order to find the mean time τ12 the system spends
in overload and the discard set of states during one control
cycle, one needs to find at first τ , by which we denote
the mean control cycle length. A control cycle is the
time between consecutive transitions from overload state
L to normal state (L − 1). The rate of such transitions in
steady state equals

μ =

∞∫

0

b(x)
1 − B(x)

p̃L(x) dx = c̃L,Lβ(λ1).

Using renewal theory, according to which the mean cycle
length is the reciprocal of the transition rate in steady state,
we get τ = 1/μ .

The control cycle consists of two parts: the time
system spends in normal mode and the time the system
spends in overload and discard modes. Respective
probabilities are equal to P (S1) + P (S2) and P (S0).

Thus, the mean time τ12 can be calculated by the
following formula:

τ12 =
P (S1) + P (S2)

P (S0) + P (S1) + P (S2)
τ. (52)

4. Policy P2

In this section we turn to the M [X]|G|1〈L, H〉|〈H, R〉
system operating under policy P2. As mentioned earlier,
according to policy P2, the system may switch between
operating modes only at the time instant of customer
departure. If in normal mode, just before the customer
departure, the total number of customers in the system
equals H , then the system switches to overload mode.
Similarly, if in overload mode just before the customer
departure the total number of customers in the system
equals H , then the system switches to discard mode.
Suppose the batch size distributions are the same, hence
the probability that the arriving batch of any type contains
exactly n, n ≥ 1, customers equals ωn. For uniformity,
in this section we use the notation λ0 for the total intensity
of arrivals, i.e., λ0 = λ1 + λ2.

Here we develop a Markov chain embedded
at customer departure epochs and get its transition
probability matrix for computing the stationary
distribution of the Markov chain. After that we
get the stationary queue length distribution of the
corresponding Markov process. Finally, we find the
stationary probabilities of the system being in each of
operating modes, the stationary expectation control cycle
time and the stationary mean return time from overload
and discard modes to normal mode.

4.1. Embedded Markov chain. Let us denote by
{X(t), t ≥ 0} a two-dimensional stochastic process with
the set of states

S =

⎧⎪⎨
⎪⎩(j, s)

∣∣∣∣∣∣∣

j = 0, R, s = 0

j = L, R, s = 1

j = H + 1, R − 1, s = 2

⎫⎪⎬
⎪⎭

and its subsets Si = {(j, s) ∈ S|s = i}, i = {0, 1, 2},
where j is the number of customers in the system at the
instant t ≥ 0 and s indicates system operating mode.

Take the service completion epochs to be 0 < t1 <
t2 < . . . , where tn is the departure instant of the
n-th customer. According to policy P2, we assume that
the system operating mode s may be changed only at
the completion of a service tn. Then the discrete-time
process embedded at customer departure epochs X(tn +
0) emerges as a Markov chain.

The set of states of X(tn + 0) and its subsets are as
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follows:

S̃ =

⎧⎪⎨
⎪⎩(j, s)

∣∣∣∣∣∣∣

j = 0, H − 2, s = 0

j = L, R − 2, s = 1

j = H + 1, R − 1, s = 2

⎫⎪⎬
⎪⎭ ,

S̃i = {(j, s) ∈ S̃|s = i}, i = {0, 1, 2}.
Let us denote by {pj,s} and {qj,s} the stationary

distributions of X(t) and X(tn + 0), respectively,

pj,s = lim
t→∞ P{X(t) = (j, s)}, (j, s) ∈ S,

qj,s = lim
n→∞ P{X(tn + 0) = (j, s)}, (j, s) ∈ S̃.

To obtain transition probabilities of the Markov
chain, we denote by βs

k, s = 0, 1, k ≥ 0, the probability
that in operating mode s during the service time of a
customer exactly k batches will arrive at the system:

βs
k =

∞∫

0

e−λsx (λsx)k

k!
dB(x) =

λk
s

k!
β(k)(λs).

To express transition probabilities of the Markov
chain, we introduce the probability ωk

i , k ≥ 0, i ≥ 0,
that there are exactly i customers in k batches,

ω0
i = δi, i ≥ 0,

ωk
i =

i∑
n=0

ωk−1
i−n ωn, k ≥ 1, i ≥ 0,

where δi is the Kronecker delta (δi = 1 if i = 0, or 0
otherwise).

We introduce αs
i , s = 0, 1, i ≥ 0, i.e.,

the probability that in operating mode s exactly i new
customers arrive during the time of service of a customer,
and As

i , s = 0, 1, i ≥ 0, i.e., the probability that in
operating mode s no less than i new customers arrive
during the time of service of a customer. We also
introduce γi, i ≥ 0, i.e., the probability that immediately
after the departure of the customer who arrived when the
system was empty there will be exactly i customers in the
system, and ΓR−1, i.e., the probability that immediately
after the departure of the customer who arrived when
the system was empty, there will be no less than R − 1
customers in the system. Then

αs
i =

i∑
k=0

βs
kωk

i , As
i =

∞∑
k=i

αs
k, s = 0, 1, i ≥ 0,

γi =
i+1∑
k=1

ω0
kα0

i−k+1, i ≥ 0, ΓR−1 =
∞∑

i=R−1

γi.

Thus the equilibrium equation set for probability
distribution {qj,s} takes the form

qj,0 = q0,0γj +
min(j+1,H−2)∑

i=1

qi,0α
0
j−i+1

+ δj−L+1qL,1α
1
0, j = 0, H − 2,

qj,1 = q0,0γj +
H−2∑
i=1

qi,0α
0
j−i+1

+
min(j+1,R−2)∑

i=L

qi,1α
1
j−i+1

+ δj−HqH+1,2, j = H − 1, R − 2,

(53)

qj,1 =
j+1∑
i=L

qi,1α
1
j−i+1, j = L, H − 2,

qR−1,2 = q0,0ΓR−1

+
H−2∑
i=1

qi,0A
k
R−i +

R−2∑
i=L

qi,1A
1
R−i,

qj,2 = qR−1,2, j = H + 1, R − 2.

The stationary probability q0,0 of an empty system is
determined, as usual, from the normalization condition:

H−1∑
j=0

qj,0 +
R−2∑
j=L

qj,1 +
R−1∑

j=H+1

qj,2 = 1. (54)

The equilibrium equation set (53) is of a peculiar
feature, so we can use the technique based on the
exclusion of certain states of the Markov chain and the
bonding of the remaining subsets (Bocharov et al., 2004)
for its solving.

4.2. Stationary state distribution. We use renewal
theory to receive the stationary queue length distribution
of the corresponding stochastic process from the
stationary queue length distribution of the embedded
Markov chain.

The stationary mean T of the time interval between
neighboring instants tn and tn+1 is defined by the formula
T = b + 1

λ0
q0,0. We also write ν = 1/T , and

β̃s
k =

∞∫

0

[1 − B(x)]e−λsx (λsx)k

k!
dx

=
λk

s

k!
β̃(k)(λs),

α̃s
i =

i∑
k=0

β̃s
kωk

i ,

Ãs
i =

∞∑
k=i

α̃s
k, s = 0, 1, i ≥ 0,
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γ̃i =
i∑

k=1

ω0
kα̃0

i−k, , i ≥ 1,

Γ̃R =
∞∑

i=R

γ̃i.

The following theorem contains formulas for
calculating the stationary queue length distribution of the
corresponding Markov process.

Theorem 2. The stationary probabilities of the stochastic
process X(t) are given by p0,0 = ν

λ0
q0,0,

pj,0 = ν

(
γ̃jq0,0 +

min(j,H−2)∑
i=1

α̃0
j−iqi,0

)
, j = 1, R−1,

pR,0 = ν

(
Γ̃Rq0,0 +

H−2∑
i=1

Ã0
j−iqi,0

)
,

pj,1 = ν

min(j,R−2)∑
i=L

α̃1
j−iqi,1, j = L.R − 1,

pR,1 = ν

R−2∑
i=L

Ã1
j−iqi,1,

pj,2 = νbqR−1,2, j = H + 1, R − 1,

where qi,s are the solutions of the system (53) with the
normalization condition (54).

Using renewal theory one can obtain the other
stationary probabilistic characteristics, for example, a
stationary density pj,s(x), i.e., the probability that in
operating mode s exactly j customers are in the system
and the time interval after the last customer is departure is
x.

4.3. Performance characteristics. Now we give the
same performance characteristics as were defined for the
system operating under policy P1 in Section 3.

The stationary probability P (S1) of the system being
in overload mode is equal to the sum of the corresponding
probabilities, i.e.,

P (S1) =
∑

(j,s)∈S1

pj,s =
R∑

j=L

pj,1.

Similarly, one can find the stationary probability
P (S2) of the system being in discard mode. We have

P (S2) =
∑

(j,s)∈S2

pj,s =
R−1∑

j=H+1

pj,2.

Finally, the stationary probability P (S0) of the system
being in normal mode is

P (S0) =
∑

(j,s)∈S0

pj,s =
H−2∑
j=0

pj,0.

As mentioned in the previous section, the mean
control cycle time is inverse to the stationary intensity of
the instants of control cycle starts. Since the control cycle
starts when the system passes from state (L, 1) to state
(L − 1, 0), the stationary intensity of instants of control
cycle starts is equal to the stationary intensity of passes
from state (L, 1) to state (L − 1, 0):

μ = νqL,1

∞∫

0

e−λ1x dB(x) = νβ1
0qL,1.

Hence

τ = μ−1 =
1

νβ1
0qL,1

.

Thus the mean time τ12 that the system spends in
overload and the discard set of states during one control
cycle can be calculated by the formula (52).

5. Numerical example

In this section we present results of computation of the
mean return time of the system from overload mode
to normal load mode. Two policies, P1 and P2, were
compared under the exponential service time and the
constant service time with the same mean value of b = 1.
The values of the thresholds were set to L = 8, H = 12,
R = 20. The distribution of the number of customers in
the batch was assumed to be uniform, i.e., ωk,n = 0.2,
where k = 1, 2 and n = 1, 5; the input flow rate λ = 2/3.
Since the average number of customers in the batch is
equal to 3, the offered load is ρ = 2.

Fig. 2. Mean return time τ12 dropping probability q for the two
policies of overload control.

Figure 2 shows the dependence of mean return time
τ12 on the dropping probability q for the two policies. The
first thing to notice is that the mean return time for an
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exponential service time is less than those for a constant
time for the values of q < 0.6 for both policies. At the
same time the mean return time, for policy P1 is always
less than those for policy P2. It is predictable since policy
P1 is applied at all possible instants of the queue-length
change. As might be expected, the computations showed
that the expectation of τ0 of the system being in the set of
normal load is independent of the dropping probability q.
The time the system spends in normal mode for policy P2
is always greater than for policy P1.

6. Conclusion

This paper provides methods for stationary analysis of
the queueing system with batch arrivals and hysteretic
overload control policy modeling an SIP-server with
a load control mechanism. There were obtained key
performance characteristics of the system related to the
number of customers in it and the control policy (namely,
the mean time between changes of the system’s mode).
Analysis was carried out under two assumptions: a
change in the system mode happens each time the
number of customers in the system changes; a change
in the system mode happens only at consecutive service
completion epochs. Numerical analysis shows that
hysteretic policy under both assumptions has features
beneficial to SIP-server overload control. The choice of
the assumption for practical implementation is the subject
of further study and requires formulation and solution of
the optimization problem.
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