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This paper discusses a discrete-time queueing system with starting failures in which an arriving customer follows three
different strategies. Two of them correspond to the LCFS (Last Come First Served) discipline, in which displacements or
expulsions of customers occur. The third strategy acts as a signal, that is, it becomes a negative customer. Also examined
is the possibility of failures at each service commencement epoch. We carry out a thorough study of the model, deriving
analytical results for the stationary distribution. We obtain the generating functions of the number of customers in the queue
and in the system. The generating functions of the busy period as well as the sojourn times of a customer at the server, in
the queue and in the system, are also provided. We present the main performance measures of the model. The versatility of
this model allows us to mention several special cases of interest. Finally, we prove the convergence to the continuous-time
counterpart and give some numerical results that show the behavior of some performance measures with respect to the most
significant parameters of the system.
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1. Introduction

Queueing systems constitute a central tool in modelling
and performance analysis. These types of systems are in
our everyday life activities, and the theory of queueing
systems was developed to provide models for forecasting
behaviors of systems subject to random demand.

Most queueing models in the literature before the
early 1990s were developed in continuous time and only
the models that were based on embedded Markov chains
were studied in discrete times, e.g., models such as
M/G/1 and GI/M/1, which were well discussed in the
1950s by Kendall (1951a; 1951b).

During the last few decades, there has been a keen
interest in the study of discrete-time queueing systems.
One of the main reasons is that discrete-time systems
are more suitable than their continuous-time counterparts
for modelling computer and telecommunication systems,
since the basic units in these systems are digital,
such as machine cycle times, bits and packets. The
modelling of a communication system is an area that
uses queueing models significantly, and continuous time
models were seen as adequate for the purpose. However,
the communication systems are now more digital than
analogical and we work in time slots. Therefore, discrete

modelling has become more appropriate. Another use of
discrete-time models is to approximate continuous-time
models via time quantization, which especially serves for
the numerics of direct computations (see Kleinrock, 1976;
Yang and Li, 1995).

The pioneering work on discrete-time queueing
system was carried out by Meisling (1958). Reference
works and more detailed applications on discrete-time
queueing theory include the monographs by Bruneel
and Kim (1993) as well as Takagi (1993). Further, a
detailed treatment regarding this subject can be found in a
two-volume book on applied probability by Hunter (1983)
and in the one by Alfa (2010).

In most of the queueing literature, it is assumed
that the server is always available, but this assumption
is practically unrealistic. A notable and inevitable
phenomenon in the service facility of a queueing
system is its breakdown and consequent repair. Until
the server facility is recovered again, the waiting
time for customers will increase with a consequence
effect over the impatience of the customer. Indeed,
queueing systems with server breakdowns are very
common in communication systems. Queues with
service interruptions were first studied by White and
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Christie (1958). In queueing theory parlance, periods of
temporary service unavailability are referred to as server
vacations, server interruptions or server breakdowns.
Vacation queues are a very important class of queues
because of their theoretical structure as well as their
applicability in various real life situations, especially
in telecommunication systems where Medium Access
Control (MAC) is a critical component of managing a
successful network. A vacation is the period of not
attending a certain task, but this is due to the fact that
the server is under repair, attending other queues, or in
priority queues where a low priority customer receives
service until a higher priority one arrives. In this case the
server may switch off. That is, a lower priority customer
will see the server as on vacation. Vacation models have
been used extensively to study various systems, such as
polling and some priority ones.

This work analyses a discrete-time queue with
the service station subject to starting failures. It is
assumed the breakdowns take place in accordance with the
preemptive non-resume strategy, i.e., the customer whose
services are unsuccessful waits in the queue and, when the
service resumes for the preempted customer, it starts again
from the beginning.

Developing analytical models to be used for
analyzing their performance is a very important issue,
which has been dealt with by several researchers.
Most of the existing models focus on continuous-time
ones (e.g., Aissani and Artalejo, 1998; Artalejo, 1994;
Krishna Kumar et al., 2002; Kulkarni and Choi, 1990;
Yang and Li, 1994; Krishnamoorthy et al., 2009) and
application to networks with blocking and truncation
(Oniszczuk, 2009). Works related to discrete-time
systems with server interruptions with or without
expulsions and vacations can be found, including those
by Fiems et al. (2002; 2004), Vinck and Bruneel (2006),
Morozov et al. (2011) as well as Atencia and Pechinkin
(2012) and Atencia et al. (2013a; 2013b).

Performance prediction in communication switching
queues, job processing in computers, etc., are always
influenced by customers’ behaviour, and the provision of
this additional information will be useful in upgrading
the service. Therefore, in many real problems it is also
interesting to consider the movement of jobs, customers,
etc. from one place to another. This mechanism is
called a synchronized or triggered motion (e.g., Artalejo,
2000; Gelenbe and Label, 1998). For the inverse order
discipline, we refer to Pechinkin and Svischeva (2004),
Pechinkin and Shorgin (2008) as well as Cascone et al.
(2011).

The arrival of a negative customer to a queueing
system causes one ordinary customer to be removed or
killed, if any is present. Pioneering work on discrete-time
considering negative arrivals without retrials was done
by Atencia and Moreno (2004; 2005), who considered

several killing strategies for negative customers. For a
survey on this topic, see Gelenbe and Label (1998) or
Artalejo (2000), for applications in engineering refer to
Chao et al. (1999), and for applications in communication
networks and packet transmission systems see Harrison
et al. (2000), Park et al. (2009) as well as Piórkowski and
Werewka (2010).

In order to design a queueing system, we need to
find configurations and rules that will optimize it. To
do this, we need to understand how the queueing system
will perform under different configurations and rules like
the queue length, which refers to the number of items
or customers waiting in some location or buffer in order
to be processed. This is often a good indicator on how
a queueing system is performing. The longer the queue
length, the worse its performance from the user’s point of
view. The waiting times or the delay for a customer to wait
until getting service are another measure of the behavior
of the system. Of course, the longer this performance
measure, the worse the perception of the system from the
customer’s point of view in terms of the service time. The
busy period is also an interesting measure. This measure
is more of interest in order to keep his/her resources fully
utilized, for example, in ISPs (Internet Service Providers).
However, if the resource that is used to provide service is
human, such as in a bank, store, etc., then there is a limit
on how long a service provider wishes to keep a server
busy before it becomes ineffective. Finally, we point out
that the objective of this work is to obtain all important
performance measures for a rather versatile discrete-time
queueing model by means of a complete analysis that
allow us to obtain several previously found results as
special cases.

The rest of this paper is organized as follows. The
next section gives a description of the queueing model.
In Sections 3 and 4, we study the Markov chain and
the stability condition of the system. The queue and
system size distributions are also obtained, together with
several performance measures. In Section 5 we study the
stationary distribution of the busy period. In Section 6, we
present the stationary distributions of the sojourn times of
a customer in the server and in the system. In Section 7,
we show how the continuous-time version of our model
can be approximated by its discrete-time counterpart.
Finally, in the last section, some numerical examples are
presented.

2. Mathematical model

Discrete-time queueing models have been widely used
over the past years in view of their applicability
in the study of many computer and communication
systems. In this type of systems, the time axis is
partitioned into intervals of equal length, called slots.
It should be pointed out that the probability of an
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arrival and a departure occurring simultaneously is zero
in continuous-time queues, whereas it is not so in
discrete-time systems. Since more than one different
event may occur concurrently, to resolve conflicts
it is necessary to establish the order in which the
arrivals, departures and repairs take place in the case of
simultaneity. Basically, there are two rules:

(i) If an arrival takes precedence over a departure, it
is identified with a Late Arrival System (LAS) (see
Fig. 1(a)).

(ii) If a departure takes precedence over an arrival, it is
recognized by an Early Arrival System (EAS) (see
Fig. 1(b)).

The former case is also known as the Arrival First (AF)
policy and the latter as the Departure First (DF) policy.
For more details on these and related concepts, see Gravey
and Hébuterne (1992) as well as Hunter (1983). In the
present paper, we will follow the second policy.

Departure

Arrival

m− m m+

(a)

m− m m+

Departure

Arrival

(b)

Fig. 1. Options of the arrival models.

Therefore, let the time axis be marked by
0, 1, 2, . . . , m, . . .. Consider the epoch m and suppose that
the end of services and repairs occur in (m−, m), and the
arrivals and the beginning of the repairs in (m, m+).

In this paper we consider a discrete-time queueing
system with starting failures in which an arriving customer
follows three different strategies. The first and the
second follow the LCFS discipline with displacements

and expulsions, respectively. The third one behaves
itself as a negative customer, that is, expels out of the
system the customer that is currently being served and
has no further influence on the system. Customers arrive
according to a Bernoulli arrival process with rate a,
that is, a is the probability that a customer arrives at a
slot. A customer who enters the server must turn on
the service station. If the server is activated successfully
(with probability γ), the customer begins his/her service
immediately and if the server at the moment of his/her
arrival is busy, with probability θ1 displaces the customer
that was currently being served to the first place of the
queue, with probability θ2 expels out of the system the
customer that was in service, and with probability θ3 the
arriving customer becomes a negative customer, that is,
kills the customer in service and has no effect on an empty
system; otherwise, if the server is started unsuccessfully
(with complementary probability γ), it is sent to repair
directly and the customer is placed at the head of the
queue. The customers that arrive to the system during
a repair time go directly to the last place of the queue.
Clearly, θ1 + θ2 + θ3 = 1.

The service times are independent and identically
distributed with a general distribution {s1,i}∞i=1 and a ge-
nerating function

S1(x) =
∞∑

i=1

s1,ix
i.

Certainly, after service completion, the served customer
leaves the system forever and will have no further effect
on the system.

The repair times are independent and identically
distributed with an arbitrary distribution {s2,i}∞i=1 with a
generating function

S2(x) =
∞∑

i=1

s2,ix
i,

and n-th factorial moments β2,n. Naturally, after repair,
the service station is as good as new.

The load of the system is given by ρ1 + ρ2, where

ρ1 = a(1 − θ3) b,

ρ2 =
aa γ(1 − θ3)β2,1

γ[θ1S1(a) + a(1 − θ1)]
,

and b is the mean sojourn time of a customer in the server.
For most times in queueing applications, Markov

chains are more common even though continuous space
Markov processes, in the form of stochastic fluid models,
are getting popular with applications to queueing systems.
Therefore, our queueing model has been reduced to a
Markov chain analysis, as otherwise it would be difficult
to solve it.
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3. Markov chain

At time m+, the system can be described by the process

(Cm, ξ1,m, ξ2,m, Nm),

where Cm denotes the state of the server, 0, 1 or 2
according to whether the server is free, busy or down, and
Nm is the number of customers in the queue. If Cm = 1,
ξ1,m represents the remaining service time of the customer
currently being served, and if Cm = 2, ξ2,m corresponds
to the remaining repair time.

It can be shown that {(Cm, ξ1,m, ξ2,m, Nm), m ∈
N}, provides a Markovian description of our queueing
system, whose state space is

χ = {(0), (1, i, k) : i ≥ 1, k ≥ 0;
(2, i, k) : i ≥ 1, k ≥ 1}.

Our first objective is to find the stationary distributions

π0 = lim
m→∞ P [Cm = 0],

of the Markov chain {(Cm, ξ1,m, ξ2,m, Nm), m ∈ N}.
For i ≥ 1, k ≥ 0 we have

π1,i,k = lim
m→∞P [Cm = 1, ξ1,m = i, Nm = k],

and for i ≥ 1, k ≥ 1 we get

π2,i,k = lim
m→∞P [Cm = 2, ξ2,m = i, Nm = k].

The evolution of the chain is governed by the
one-step transition probabilities given by

p(0)(0) = a + aθ3,

p(1,1,0)(0) = a + aθ3,

p(1,i,0)(0) = aθ3, i ≥ 2.

If i ≥ 1 and k ≥ 0 we have

p(0)(1,i,k) = a(1 − θ3)γs1,i, k = 0,

p(1,1,k)(1,i,k) = a(θ1 + θ2)γs1,i,

p(1,1,k+1)(1,i,k) = (a + aθ3)γs1,i,

p(1,i+1,k)(1,i,k) = a + aθ2γs1,i,

p(1,j,k−1)(1,i,k) = aθ1γs1,i, j ≥ 2,

p(1,j,k)(1,i,k) = aθ2γs1,i, j ≥ 2, j �= i + 1,

p(1,j,k+1)(1,i,k) = aθ3γs1,i, j ≥ 2,

p(2,1,k)(1,i,k) = a(1 − θ3)γs1,i, k ≥ 1,

p(2,1,k+1)(1,i,k) = (a + aθ3)γs1,i.

If i ≥ 1 and k ≥ 1, we have

p(0)(2,i,k) = a(1 − θ3)γs2,i, k = 1,

p(1,1,k−1)(2,i,k) = a(θ1 + θ2)γs2,i,

p(1,1,k)(2,i,k) = (a + aθ3)γs2,i,

p(1,j,k−2)(2,i,k) = aθ1γs2,i, j ≥ 2, k ≥ 2
p(1,j,k−1)(2,i,k) = aθ2γs2,i, j ≥ 2,

p(1,j,k)(2,i,k) = aθ3γs2,i, j ≥ 2,

p(2,1,k−1)(2,i,k) = a(1 − θ3)γs2,i,

p(2,1,k)(2,i,k) = (a + aθ3)γs2,i,

p(2,i+1,k−1)(2,i,k) = a(1 − θ3), k ≥ 2,

p(2,i+1,k)(2,i,k) = a + aθ3,

where a = 1 − a.
The Kolmogorov equations for the stationary

distribution of the system are given by

π0 = (ā + aθ3)π0 + āπ1,1,0 + aθ3

∞∑

i=1

π1,i,0 , (1)

π1,i,k =δ0,k a(1 − θ3)γs1,iπ0 + aθ1γs1,iπ1,1,k

+ āγs1,iπ1,1,k+1 + aπ1,i+1,k

+ (1 − δ0,k)aθ1γs1,i

∞∑

j=2

π1,j,k−1

+ aθ2γs1,i

∞∑

j=1

π1,j,k + aθ3γs1,i

∞∑

j=1

π1,j,k+1

+ (1 − δ0,k) a(1 − θ3)γs1,iπ2,1,k

+ (a + aθ3)γs1,iπ2,1,k+1, i ≥ 1, k ≥ 0,

(2)

π2,i,k =δ1ka(1 − θ3)γs2,iπ0 + aθ1γs2,iπ1,1,k−1

+ (a + aθ3)γs2,iπ1,1,k

+ (1 − δ1k)aθ1γs2,i

∞∑

j=2

π1,j,k−2

+ aθ2γs2,i

∞∑

j=1

π1,j,k−1

+ aθ3γs2,i

∞∑

j=2

π1,j,k

+ (1 − δ1k)a(1 − θ3)γs2,iπ2,1,k−1

+ (a + aθ3)γs2,iπ2,1,k

+ (1 − δ1k)a(1 − θ3)π2,i+1,k−1

+ (a + aθ3)π2,i+1,k, i ≥ 1, k ≥ 1,

(3)

where δa,b is Kronecker’s symbol and the normalizing
condition is

π0 +
∞∑

i=1

∞∑

k=0

π1,i,k +
∞∑

i=1

∞∑

k=1

π2,i,k = 1.

With the aim of solving Eqns. (1) and (2), we
introduce the following generating functions:

ϕ1(x, z) =
∞∑

i=1

∞∑

k=0

π1,i,kxizk,

ϕ2(x, z) =
∞∑

i=1

∞∑

k=1

π2,i,kxizk
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and the auxiliary functions

ϕ1,i(z) =
∞∑

k=0

π1,i,kzk,

ϕ2,i(z) =
∞∑

k=1

π2,i,kzk.

Multiplying Eqns. (2) and (3) by zk, summing up over k
and taking into account Eqn. (1), we get

ϕ1,i(z) = āϕ1,i+1(z)

+
ā + aθ1z(1 − z)

z
γs1,iϕ1,1(z)

+
θ1z

2 + θ2z + θ3

z
aγs1,iϕ1(1, z)

+
a + az + aθ3(1 − z)

z
γs1,iϕ2,1(z)

− 1 − z

z
a(1 − θ3)γs1,iπ0, i ≥ 1,

(4)

ϕ2,i(z) = [a + az + aθ3(1 − z)]ϕ2,i+1(z)
+ [a + aθ1z(1 − z)]γs2,iϕ1,1(z)

+ [θ1z
2 + θ2z + θ3]aγs2,iϕ1(1, z)

+ [a + az + aθ3(1 − z)]γs2,iϕ2,1(z)
− a(1 − z)(1 − θ3)γs2,iπ0, i ≥ 1.

(5)

Next, multiplying Eqns. (4) and (5) by xi and summing
up over i, we obtain

x − ā

x
ϕ1(x, z)

=
[
ā + aθ1z(1 − z)

z
γS1(x) − ā

]
ϕ1,1(z)

+
θ1z

2 + θ2z + θ3

z
aγS1(x)ϕ1(1, z)

+
a + az + aθ3(1 − z)

z
γS1(x)ϕ2,1(z)

− 1 − z

z
a(1 − θ3)γS1(x)π0,

(6)

x − [a + az + aθ3(1 − z)]
x

ϕ2(x, z)

= [a + aθ1z(1 − z)]γS2(x)ϕ1,1(z)

+ [θ1z
2 + θ2z + θ3]aγS2(x)ϕ1(1, z)

+ {[a + az + aθ3(1 − z)]γS2(x)
− [a + az + aθ3(1 − z)]}ϕ2,1(z)
− a(1 − z)(1 − θ3)γS2(x)π0.

(7)

Letting x = 1 in Eqn. (6) gives

aϕ1(1, z) =
1

z − γ[θ1z2 + θ2z + θ3]
× [[(a + aθ1z(1 − z))γ − az]ϕ1,1(z)
+ [a + az + aθ3(1 − z)]γϕ2,1(z)
− (1 − z)a(1 − θ3)γπ0].

Inserting the above equation into (6) and (7) yields

x − a

x
ϕ1(x, z)

=
1

z − γ[θ1z2 + θ2z + θ3]
× [[θ1z + a(1 − θ3)](1 − z)γS1(x)

− a(z − γ[θ1z
2 + θ2z + θ3])]ϕ1,1(z)

+ a + az + aθ3(1 − z)γS1(x)ϕ2,1(z)
− (1 − z)(1 − θ3)aγS1(x)π0],

(8)

x − [a + az + aθ3(1 − z)]
x

ϕ2(x, z)

=
1

z − γ[θ1z2 + θ2z + θ3]
× [(θ1z + a(1 − θ3))(1 − z)zγS2(x)ϕ1,1(z)
+ [a + az + aθ3(1 − z)][zγS2(x) − z

+ γ[θ1z
2 + θ2z + θ3]]ϕ2,1(z)

− az(1 − z)(1 − θ3)γS2(x)π0].

(9)

Letting x = a and x = a+az +aθ3(1− z) in (8) and (9),
respectively, we have

ϕ1,1(z) =
(1 − z)(1 − θ3)aγS1(a)

D(z)
π0, (10)

ϕ2,1(z) =
1

[a + az + aθ3(1 − z)]γS1(a)D(z)
× [aa γz(1 − z)(1 − θ3)
× S2(a + az + aθ3(1 − z))]π0,

(11)

where

D(z) =[θ1z + a(1 − θ3)](1 − z)γS1(a)
+ a γzS2(a + az + aθ3(1 − z))

− a[z − γ(θ1z
2 + θ2z + θ3)].

Substituting the above relations into (8) and (9), we have
the following generating functions:

ϕ1(x, z) =
S1(x) − S1(a)

x − a

aaγx(1 − z)(1 − θ3)
D(z)

π0,

ϕ2(x, z) =
S2(x) − S2(a + az + aθ3(1 − z))

x − (a + az + aθ3(1 − z))

× aa γxz(1 − z)(1 − θ3)
D(z)

π0.

Using the normalization condition π0 + ϕ1(1, 1) +
ϕ2(1, 1) = 1, we can find the unknown constant π0:

π0 =
1

γ[θ1S1(a) + a(1 − θ1)]
× [[θ1 + a(1 − θ3)]γS1(a)
− aa γ(1 − θ3)β2,1 − aγ(θ1 − θ3)].
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Since π0 > 0, we obtain that a necessary condition for the
system stability is

[θ1 + a(1 − θ3)]γS1(a) − aa γ(1 − θ3)S′
2(1)

− aγ(θ1 − θ3) > 0.

Let us note that the stability condition can be also written
as ρ1 + ρ2 < 1.

Applying Foster’s theorem, it is not difficult to prove
that the above condition is also sufficient for system
stability. In what follows, when we consider stationary
distributions of any system’s characteristics, it will always
be supposed that the stability condition is fulfilled.

The above results can be summarized in the
following theorem.

Theorem 1. If ρ1 + ρ2 < 1, the stationary distribution of
the Markov chain {(Cm, ξ1,m, ξ2,m, Nm), m ∈ N} has
the following generating functions:

ϕ1(x, z) =
S1(x) − S1(a)

x − a

aaγx(1 − z)(1 − θ3)
D(z)

π0,

ϕ2(x, z) =
S2(x) − S2(a + az + aθ3(1 − z))

x − (a + az + aθ3(1 − z))

× aa γxz(1 − z)(1 − θ3)
D(z)

π0,

where

π0 =
1

γ[θ1S1(a) + a(1 − θ1)]
× [[θ1 + a(1 − θ3)]γS1(a)
− aa γ(1 − θ3)β2,1 − aγ(θ1 − θ3)].

Corollary 1.

1. The marginal generating function of the number of
customers in the queue when the server is busy is
given by

ϕ1(1, z) =
(1 − S1(a))aγ(1 − θ3)(1 − z)

D(z)
π0.

2. The marginal generating function of the number of
customers in the queue when the server is down is
given by

ϕ2(1, z) =
[1 − S1(a + az + aθ3(1 − z))]a γz

D(z)
π0.

3. The probability generating function of the queue size
(i.e., of the variable N ) is given by

Ψ(z) = π0 + ϕ1(1, z) + ϕ2(1, z)

=
(1 − z)[θ1zS1(a) + a(1 − θ1z)]

D(z)
γ π0.

4. The probability generating function of the system size
(i.e., of the variable L) is given by

Φ(z) = π0 + z ϕ1(1, z) + ϕ2(1, z)

=
1

D(z)
(1 − z)[θ1zS1(a) + a(1 − θ1z)

− a(1 − θ3)(1 − z)(1 − S1(a))] γ π0.

Differentiating the above GFs at the point z = 1, we
can obtain the stationary characteristic of the mean queue
and the mean system size.

4. Stationary characteristics

In this section we present some performance measures for
the system at the stationary regime.

4.1. Probability that the sever is respectively idle,
busy and down.

π0 = 1 − ρ1 − ρ2,

ϕ1(1, 1) = ρ1,

ϕ2(1, 1) = ρ2.

4.2. Mean queue size.

E[N ] = Ψ′(1)
= [2θ1γ(a − S1(a))(1 − S1(a)) + 2aa γβ2,1

+ [a − θ1(a − S1(a))]a2γ(1 − θ3)β2,2]a(1 − θ3)
× [2[γS1(a)(θ1 + a(1 − θ3)) − aa(1 − θ3)γβ2,1

− aγ(θ1 − θ3)][θ1S1(a) + a(1 − θ1)]]−1.

4.3. Mean system size.

E[L] = E[N ] + ν̄,

where ν̄ is the mean number of customers in the server.
Let us observe that the GF of the number of

customers in the server is given by

ν(z) = 1 − a(1 − θ3)(1 − z)(1 − S1(a))
θ1zS1(a) + a(1 − θ1z)

,

and

ν̄ = ν′(1) =
a(1 − θ3)(1 − S1(a))
θ1S1(a) + a(1 − θ1)

.

Remark 1. It can be observed that Φ(z) = ν(z)Ψ(z),
and, as a consequence, we find the formula, for n ≥ 1,

Φ(n)(1) =
n∑

m=0

(
n

m

)
m! [θ1(a − S1(a))]m−1

[θ1S1(a) + a(1 − θ1)]m
·

× a(1 − θ3)(1 − S1(a))Ψ(n−m)(1).
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Special cases. As mentioned in the abstract, the versatility
of the model, that is, its capacity for describing different
situations and disciplines, due to the variety of parameters
involved, makes interesting to point out the special cases
more relevant.

Case 1. If in our system we consider θ2 = 0, we get

Φθ2=0 = (1 − z)[θ1(a + az)S1(a) + a(1 − θ1)]
× [θ1(z + a)(1 − z)γS1(a)
+ a γzS2(1 − aθ1(1 − z))

− a[z − γ(1 − θ1(1 − z2))]]−1γπ0,

where

π0 =
θ1(1 + a)γS1(a) − aa γθ1β21 + aγ(1 − 2θ1)

γ[θ1S1(a) + a(1 − θ1)]
,

which is the GF of the number of customers in the
Geo/G/1/∞ queueing system with negative customers,
the LCFS discipline and starting failures.

Case 2. Considering the case where θ1 = 1, we have

Φθ1=1 =(1 − z)(a + az)S1(a)
× [(z + a)(1 − z)γS1(a)
+ a γzS2(a + az)

− az(1 − γz)]−1γπ0,

where

π0 =
(1 + a)γS1(a) − aa γβ21 − aγ

γS1(a)
,

which is the GF of the number of customers in the
Geo/G/1/∞ queueing system with repairs and the LCFS
discipline.

Case 3. Let us note that if in our system we do not
consider expulsions and starting failures, that is, θ1 = γ =
1, we have

Φ∗(z) =
(a + az)S1(a)

aS1(a) − z[a − S1(a)]
π∗

0 ,

where

π∗
0 =

aS1(a) − [a − S1(a)]
S1(a)

,

which is the GF of the number of customers in the
Geo/G/1/∞ queueing system with the LCFS discipline.

In this case, if we consider geometric services with
parameter b, the corresponding GF is S(z) = bz/(1− bz)
and the GF of the number of customers in the system is

Φ(z) =
a + az

a(1 − δz)
p0,

where p0 = 1 − a/b and δ = ab/(ab), which is the GF of
the standard Geo/Geo/1/∞ with the LCFS and also the
FCFS discipline. This result is far from surprising due to
the memoryless property of the geometrical distribution.

Case 4. If in our system we consider γ = 1 and θ2 = 0,
we have

Φ∗(z) =
θ1S1(a)(a + az) + aθ3

θ1(a + z)S1(a) + a[1 − θ1(1 + z)]
π∗

0 ,

where

π∗
0 =

θ1(a + 1)S1(a) + a(1 − 2θ1)
θ1S1(a) + aθ3

.

which is the GF of the number of customers in the
Geo/G/1/∞ queueing system with negative customers
and the LCFS discipline.

5. Busy period

A busy period is defined to begin with the arrival of a
customer to an empty system and to end when the system
next becomes empty. In this section we will study the
busy period of an auxiliary system, which will be useful
to study the customer delay in the original system.

This auxiliary system differs from the original by the
fact that the customer who enters the system goes directly
to the server, interrupting the service of the customer
who is currently being served, if any. Therefore, we do
not consider the possibility that any customer enters the
system during the repair times. We will denote by hk,
k ≥ 0, the probability that the busy period lasts k slots.
Then we have

h0 = 0,

hk = γ [ak−1s1,k(a + aθ3)

+
k∑

i=1

ai−1s1,ia(1 − θ3)hk−i

+
k∑

i=1

ai−1S1,i+1aθ1

k−i∑

j=0

hjhk−i−j

+
k∑

i=1

ai−1S1,i+1aθ2hk−i + ak−1S1,k+1aθ3]

+ γ [
k∑

i=1

s2,ia(1 − θ3)
k−i∑

j=0

hjhk−i−j

+
k∑

i=1

s2,i(a + aθ3)hk−i], k ≥ 1.

The above formulae can be used recursively in k
to numerically calculate the distribution {hk, k ≥ 0}.
Nevertheless, with the aim of calculating the moments of
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the distribution, we will work with its GF h(x) that has
the following form:

h(x) =
∞∑

k=0

xk hk

= γ
[a + aθ3

a
S1(ax) +

a(1 − θ3)
a

S1(ax)h(x)

+
aθ1

a

ax − S1(ax)
1 − ax

h2(x)

+
aθ2

a

ax − S1(ax)
1 − ax

h(x) +
aθ3

a

ax − S1(ax)
(1 − ax)

]

+ γ [a(1 − θ3)S2(x)h2(x)
+ (a + aθ3)S2(x)h(x)].

The above formula can be expressed in the form

[aθ1γ[ax − S1(ax)]

+ aa(1 − θ3)γ(1 − ax)S2(x)] h2(x)
− [a(1 − ax) − a(1 − θ3)γ(1 − ax)S1(ax)
− aθ2γ[ax − S1(ax)]
− a(a + aθ3)γ(1 − ax)S2(x)] h(x)
+ γ[(a + aθ3)(1 − ax)S1(ax)
+ aθ3[ax − S1(ax)]] = 0.

Therefore, the GF h = h(x) satisfies the quadratic
equation

f(h) = 0, (12)

where

f(h) = [γaθ1(ax − S1(ax))

+ γa(1 − θ3)a(1 − ax)S2(x)] h2

− [a(1 − ax) − γ(1 − ax)a(1 − θ3)S1(ax)
− γaθ2(ax − S1(ax))
+ γ a(1 − ax)(a + aθ3)S2(x)] h
+ γ [(1 − ax)(a + aθ3)S1(ax)
+ (ax − S1(ax))aθ3]

Let us note that for any fixed x0 ∈ (0, 1) we have

γaθ1(ax0 − S1(ax0))
+ γa(1 − θ3)a(1 − ax0)S2(x0) > 0,

f(0) = γ [(1 − ax0)(a + aθ3)S1(ax0)
+ (ax0 − S1(ax0))aθ3] > 0

f(1) = a(x0 − 1)[1 − γS1(ax0)]
+ a γ[(1 − ax0)S2(x0) − ax0] < 0.

The above relations show that for any x ∈ (0, 1)
Eqn. (12) has two solutions, h(x) and h∗(x), satisfying

the inequalities 0 < h(x) < 1 < h∗(x) and given by

h(x) =
1

D(x)
× [a(1 − ax) − γ(1 − ax)a(1 − θ3)S1(ax)
− γaθ2(ax − S1(ax))
+ γ a(1 − ax)(a + aθ3)S2(x) −D(x)u(x)],

h∗(x) =
1

D(x)
× [a(1 − ax) − γ(1 − ax)a(1 − θ3)S1(ax)
− γaθ2(ax − S1(ax))
+ γ a(1 − ax)(a + aθ3)S2(x) + D(x)u(x)],

where

D(x) = 2[aθ1γ(ax − S1(ax))
+ aa γ(1 − θ3)(1 − ax)S2(x)],

u(x) = ([a(1 − ax) − γ(1 − ax)a(1 − θ3)S1(ax)
− γaθ2(ax − S1(ax))

+ γ a(1 − ax)(a + aθ3)S2(x)]2

− 4[γaθ1(ax − S1(ax))
+ γa(1 − θ3)a(1 − ax)S2(x)]
× γ [(1 − ax)(a + aθ3)S1(ax)

+ (ax − S1(ax))aθ3])1/2

× (2γaθ1(ax − S1(ax))

+ γa(1 − θ3)a(1 − ax)S2(x))−1.

For x = 1 we have f(1) = 0, which implies that at least
one of the solutions takes the value 1 for x = 1.

The GF of the busy period is defined by the first
(minimal) solution h(x). In order to check that h(1) = 1,
we will show that, if the stability condition is fulfilled,
h∗(1) > 1, that is,

B +
√

B2 − 4AC

2A
> 1,

where

A = aθ1γ(a − S1(a)) + a2a(1 − θ3)γ,

B = aa − a2(1 − θ3)γS1(a) − aθ2γ(a − S1(a))
− aa(a + aθ3)γ,

C = aγ[(a + aθ3)S1(a) + θ3(a − S1(a))].

The former inequality can be written as
√

B2 − 4AC > 2A − B

= a[aa γ(1 − θ3) + aγ(θ1 − θ3)
− [θ1 + a(1 − θ3)]γS1(a)],

but the right-hand side of the above inequality is negative
because of the stability condition and, in consequence
h∗(1) > 1. Therefore the busy period is h(x).
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Let us note that the value of h∗(1) can be found as

h∗(1) =
aγ[(1 − θ3)S1(a) + θ3]

θ1γ(a − S1(a)) + aa γ(1 − θ3)
,

which is greater than 1 if the stability condition is satisfied.
The mean length of a busy period is given by

h̄ = h′(1)

= [γ(1 − S1(a)) + aγS′
2(1)]

a

a
× [[θ1 + a(1 − θ3)]γS1(a) − aa γ(1 − θ3)

− aγ(θ1 − θ3)]−1.

In order to find the generating function of the waiting time
of a customer in the queue, we need to consider the busy
period, which begins when the server is down and the
remaining repair time is i slots and there is one customer
in the queue (the one with the repair began).

Let us denote by h(i, l) the probability that this busy
period lasts l slots, l ≥ i + 1. Then

h(i, l) = (a + aθ3)hl−i + a(θ1 + θ2)
l−i∑

j=0

hjhl−i−j .

The corresponding GF is given by

h(x, i) =
∞∑

l=i+1

h(i, l)xl

= [(a + aθ3)h(x) + a(θ1 + θ2)h2(x)]xi.

6. Sojourn times

6.1. Sojourn time of a customer in the server. In this
section we are going to find the distribution of the time
that a customer spends in the server. We will denote by bk

the probability that the sojourn time of a customer in the
server lasts exactly k slots. The distribution {bk; k ≥ 0}
is given by

b0 = 0,

bk = ak−1s1,k +
k∑

i=1

ai−1aθ1S1,i+1bk−i

+ a(θ2 + θ3)ak−1S1,k+1.

The corresponding GF b(x) =
∑∞

k=0 xkbk is given by

b(x) =
(1 − ax)S1(ax) + a(θ2 + θ3)(ax − S1(ax))

a(1 − ax) − aθ1(ax − S1(ax))
.

The mean sojourn time of a customer in the server is

b = b′(1) =
1 − S1(a)

a(1 − θ1) + θ1S1(a)
a

a
.

Let us note that

ν̄ = a(1 − θ3) b,

as Little’s principle establishes.

6.2. Sojourn time of a customer in the system.
Firstly, we will find the distribution of the period of time
that a customer spends in the system from the beginning
of its service till the moment of its departure. Let gk be
the probability that this period of time lasts exactly k slots.
Then we have

g0 = 0

gk = γ
[
ak−1s1,k + a(θ2 + θ3)ak−1S1,k+1

+
k∑

i=1

ai−1S1,i+1aθ1

k−i∑

j=0

hjgk−i−j

]

+ γ
[ k∑

i=1

s2,i(a + aθ3)gk−i

+
k∑

i=1

s2,ia(1 − θ3)
k−i∑

j=0

hjgk−i−j

]
,

and the corresponding GF is

g(x) =
∞∑

k=0

xkgk

= γ
[S1(ax)

a
+ a(θ2 + θ3)

ax − S1(ax)
a(1 − ax)

+
aθ1

a

ax − S1(ax)
1 − ax

h(x)g(x)
]

+ γ [S2(x)g(x)(a + aθ3)
+ a(1 − θ3)S2(x)h(x)g(x)],

that is,

g(x) = [(1 − ax)S1(ax)
+ a(θ2 + θ3)(ax − S1(ax))]γ
× [a(1 − ax) − [aθ1γ[ax − S1(ax)]
+ aa γ(1 − θ3)(1 − ax)]h(x)

− a γ(a + aθ3)(1 − ax)S2(x)]−1.

The mean length of the period of time that a customer
spends from the beginning of its service till the moment
of leaving the system is given by

ḡ = g′(1)

=
1

aγ[a(1 − θ1) + θ1S1(a)]
aγ(1 − S1(a))

+ ah̄[γθ1(a − S1(a)) + aa γ(1 − θ3)] + aa γS′
2(1).

We are going to study the period of time that a customer
spends in the queue from the moment of his/her arrival to
the system till the moment of the beginning of the service.
Let us note that the period of time that a customer spends
in the system from the moment of the beginning of the
service till the moment of the departure has been already
taken into account in the distribution {gk, k ≥ 0}.
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In order to find the stationary distribution of the
sojourn time of a customer in the queue till the beginning
of the service, we note that if an arriving customer finds
the system empty or the server busy (all with probabi-
lity π0 + ϕ1(1, 1)) the service will begin immediately and
therefore his sojourn time in the queue till the beginning
of his/her service will last zero slots. On the other
hand, a customer that arrives to the system while the
server is down, with the remaining repair time of i slots,
and finds k other customers in the queue before him/her
(with probability π2,i,k) will spend in the queue till the
beginning of his service a period of time formed by the
busy period h(x, i) plus the busy periods generated by
k − 1 customers in the queue before him/her, since the
first one at the head of the queue has already been taken
into account in the busy period h(x, i).

Therefore, the stationary distribution of the sojourn
time that a customer spends in the queue until the
beginning of his/her service has the following generating
function:

w(x) = π0 + ϕ1(1, 1)

+
[
(a + aθ3)h(x) + a(θ1 + θ2)h2(x)

]

×
∞∑

i=1

∞∑

k=1

π2,i,kxihk−1(x)

= π0 + ϕ1(1, 1)
+ [(a + aθ3) + a(θ1 + θ2)h(x)] ϕ2(x, h(x)).

The corresponding mean time is

w̄ = w′(1)

=
aa γ(1 − θ3)

γ[θ1S1(a) + a(1 − θ1)]

×
[
2S′

2(1) + S′′
2 (1)

2
(1 + a(1 − θ3)h̄) + Eh̄S′

2(1)
]

,

where

E = [2(a(1 − θ3)γS1(a) + aθ3γ)

+ a2a(1 − θ3)2γS′′
2 (1)]

× [2[(θ1 + a(1 − θ3))γS1(a)

− aa (1 − θ3)γS′
2(1) − aγ(θ1 − θ3)]]−1.

The GF of the sojourn time in the system for a random
customer is given by

v(x) = w(x)g(x),

and the mean sojourn time in the system by

v̄ = v′(1) = w̄ + ḡ.

7. Relation to the continuous-time system

In this section we show how the continuous-time version
of our model can be approximated by its discrete-time
counterpart. In order to unify the results of both
the discrete-time and the corresponding continuous-time
models, below we give a succinct proof as to how to get
the continuous-time results from those of the discrete-time
case. Using appropriate limits, we can get the results of
the continuous-time M/G/1/∞ queue where customers
arrive according to a Poisson process with rate λ.

The server is subject to starting failures, and
the parameters γ, θ1, θ2 and θ3 play the same role
as in the discrete-time model. Service and repair
times are independent and identically distributed with
common distribution B1(x) and B2(x), Laplace–Stieltjes
transform β1(s) and β2(s), and finite means μ−1

1 and μ−2
2 ,

respectively.

If we suppose that the time axis is divided into
equal intervals of length Δ, the above continuous-time
system can be approximated by our discrete-time model
considering

a = λΔ

and

sj,i =
∫ iΔ

(i−1)Δ

dBj(x), j = 1, 2, i ≥ 1,

where Δ is sufficiently small so that a is a probability.

The main purpose of this section is to establish that
limΔ→0 Φ(z) is the probability generating function of the
number of customers in the M/G/1/∞ queue described
above.

It is not difficult to justify the following equalities
using the definition of the Lebesgue integral

lim
Δ→0

S1(a)

= lim
Δ→0

∞∑

i=1

[B1(iΔ) − B1((i − 1)Δ)][1 − λΔ]i

= lim
Δ→0

∞∑

i=1

[B1(iΔ) − B1((i − 1)Δ)][(1 − λΔ)
1
Δ ]iΔ

= lim
Δ→0

∞∑

i=1

[B1(iΔ) − B1((i − 1)Δ)][e−λ+O(1)]iΔ

=
∫ ∞

0

e−λxdB1(x) = β1(λ).

In a similar way, we obtain

lim
Δ→0

S2(a + az + aθ3(1 − z)) = β2(λ(1 − θ3)(1 − z)).
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We also need the limits

lim
Δ→0

a β2,1 = lim
Δ→0

λΔ
∞∑

i=1

i [B1(iΔ) − B1((i − 1)Δ)]

= lim
Δ→0

λ

∞∑

i=1

iΔ [B1(iΔ) − B1((i − 1)Δ)]

= λ

∫ ∞

0

xd B2(x) =
λ

μ2
,

lim
Δ→0

ρ1 = lim
Δ→0

a(1 − θ3)b

= lim
Δ→0

(1 − θ3)(1 − S1(a))
θ1S1(a) + a(1 − θ1)

a

= lim
Δ→0

(1 − θ3)(1 − S1(a))
θ1S1(a) + (1 − λΔ)(1 − θ1)

× (1 − λΔ)

=
(1 − θ3)(1 − β1(λ))
θ1β1(λ) + 1 − θ1

,

and

lim
Δ→0

ρ2 = lim
Δ→0

a γ(1 − θ3)aβ2,1

γ[θ1S1(a) + a(1 − θ1)]

=
(1 − θ3)γλμ−1

2

γ[θ1β1(λ) + 1 − θ1]
.

Thus, the load of the system in the continuous case is
given by

ρ1 + ρ2 =
[γ(1 − β1(λ)) + γλμ−1

2 ](1 − θ3)
γ[θ1β1(λ) + 1 − θ1]

.

Now, we calculate

lim
Δ→0

Φ(z) = lim
Δ→0

(1 − z)[θ1zS1(a) + (1 − λΔ)

× (1 − θ1z) + (1 − λΔ)(1 − θ3)
× (1 − z)(1 − S1(a))]
× [θ1z + (1 − λΔ)(1 − θ3)]
× (1 − z)γS1(a)
+ (1 − λΔ) γzS2(a + az + aθ3(1 − z))
− (1 − λΔ)

× [z − γ(θ1z
2 + θ2z + θ3)]−1 γπ0

= (1 − z)[θ1zβ1(λ) + 1 − θ1z

+ (1 − θ3)(1 − z)(1 − β1(λ))]
× [[θ1z + 1 − θ3](1 − z)γβ1(λ)
+ γzβ2(λ(1 − θ3)(1 − z))

− [z − γ(θ1z
2 + θ2z + θ3)]]−1 γπ0,

where

π0 = 1 − (ρ∗1 + ρ∗2)

=
1

γ[θ1β1(λ) + 1 − θ1]

× [(θ1 + 1 − θ3)γβ1(λ) − γ(1 − θ3)λμ−1
2

− γ(θ1 − θ3)γ[θ1β1(λ) + 1 − θ1]],

which is the generating function of the number
of customers in the system M/G/1/∞ subject to
starting failures and with the service discipline formerly
described.

8. Numerical examples

In this section, we present some numerical examples
to study the effect of the parameters on the main
performance characteristics. Of course, in all the
examples below, the parametric values are chosen so as
to satisfy the stability condition.

We will concentrate on four important performance
descriptors: the probability that the system is empty, the
mean number of customers in the queue, the mean length
of a busy period and the probability that the system is
down. To this end, it is assumed that service and repair
times follow two different probability distributions with
the following generating functions, respectively:

S1(x) =
x b1

1 − b1 x
,

S2(x) =
(

2x

3 − x

)n

,

with 0 < b1 < 1, b1 = 1 − b1.
For the numerical examples we have considered the

values of the following probabilities: θ1 = 0.1, θ2 = 0.1,
θ3 = 0.8.

From the stability condition, one finds the value

γ > aa(1 − θ3)β21

{
[θ1 + a(1 − θ3)]S1(a)

+ aa(1 − θ3)β21 − a(θ1 − θ3)
}−1

= γ∗.

Therefore, the system is stable if and only if γ > γ∗.
Hence the domain of the functions, whose graphs are
given below, will be (γ∗, 1].

In Figs. 2 and 3, the probability that the system is
empty is plotted against the parameter γ. As we expected,
π0 is an increasing function of the parameter γ. In Fig. 2
we study the influence of the arrival rate on the probability
that the system is empty. Specifically, we present three
curves which correspond to a = 0.1, a = 0.4, a = 0.7.
As expected, π0 increases with decreasing values of a. In
Fig. 3, π0 is compared with varying values of the mean
repair time. The curves correspond to β21 = 20, 30, 40. It
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Fig. 2. Probability that the system is empty vs. γ
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Fig. 3. Probability that the system is empty vs. γ

.

can be observed that π0 decreases with increasing values
of the mean repair time, which also agrees with intuition.
Moreover, it can be noted that the graphics coincide when
γ = 1, as could not be in another way.

Figures 4 and 5 display the effect of the arrival rate
and the repair times on the mean queue size. For different
choices of the parameters a and β21, the curves show that
E[N ] is decreasing as a function of γ.

These plots also corroborate that the expectation
E[N ] increases with increasing values of the arrival rate
and the repair time.

In Figs. 6 and 7, the mean busy period, h̄, is
plotted versus γ and, as expected, in both graphics, h̄
is a decreasing function of γ, and as intuition says, h̄ is
increasing with the arrival rate and the repair times.

In Fig. 8 the probability that the server is down
is depicted versus γ. As expected, ρ2 is a decreasing
function of γ. It is observed that ρ2 is an increasing
function of the repair time, which agrees with intuition.

It should be pointed out that the plots in Figs. 3, 5,
7 and 8 are consistent when β2,1 increases, with intuition
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Fig. 4. Mean queue size vs. γ.
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Fig. 5. Mean queue size vs. γ.

and the limiting result

lim
β2,1→∞

γ∗ = 1.

Let us also observe that, if γ = 1, the server is reliable
and consequently the probability that the server is under
repair is equal to zero.
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