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APPROXIMATION OF A LINEAR DYNAMIC PROCESS MODEL USING THE
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The paper presents a novel approach to approximation of a linear transfer function model, based on dynamic properties
represented by a frequency response, e.g., determined as a result of discrete-time identification. The approximation is
derived for minimization of a non-quadratic performance index. This index can be determined as an exponent or absolute
norm of an error. Two algorithms for determination of the approximation coefficients are considered, a batch processing one
and a recursive scheme, based on the well-known on-line identification algorithm. The proposed approach is not sensitive
to local outliers present in the original frequency response. Application of the approach and its features are presented on
examples of two simple dynamic systems.
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1. Introduction

Investigation of process dynamics may result in different
representations. Commonly used identification schemes
(Ljung and Söderström, 1987) result in determination
of linear parametric models, which have compact form
of some transfer function, sometimes of a quite high
order. Before application of this model in controller
design, it is helpful to get a simplified, lower-order
transfer function in a continuous time or a discrete
time domain. In the case of determination of a fuzzy
parameterized TSK model, a simplified representation is
very advantageous, too. In the case of, e.g., determination
of a model composed of a static actuator part and an
inertial representation of a dynamic part, the simplified
model is valuable, too. A common feature for all the
mentioned problems is the possibility of determination
of a frequency characteristic for the investigated model.
Then the underlying computational problem is presented
as determination of a linear transfer function model,
derived from the known frequency characteristic.

In electrical-engineering applications, the fitting
of an approximation in frequency domain is often
considered during the modelling of parts of energy
transfer components (Deschrijver et al., 2007; Gustavsen
and Mo, 2007; Gustavsen, 2004; Lima et al., 2005; Mohan

et al., 2004; Unbehauen and Rao, 1997), hence this
problem is deeply investigated in terms of proper soft
modelling (Deschrijver et al., 2007; Grivet-Talocia et al.,
2005; Gustavsen, 2006; 2004) and even building some
hardware models (Mohan et al., 2004). In the area of
control techniques, various ways are used (Kowalczuk and
Kozłowski, 2011; Pintelon and Schoukens, 2004; Sreeram
and Agatokhlis, 1991; Unbehauen and Rao, 1997;
Varricchio et al., 2004; Wahlberg and Mäkilä, 1996), but
usually they are focused on weighted approximation with
the least-squares measure of approximation errors.

Various approaches are used to determine these
approximations (Ljung and Söderström, 1987). The
problem of fitting a reasonable model for some frequency
characteristic was formulated long ago (Levy, 1959)
and investigated by many authors in classic transfer
function form (Ljung and Söderström, 1987; Pintelon
and Schoukens, 2004) or other representations (Wahlberg
and Mäkilä, 1996). Various techniques are suggested,
and among them most interesting are methods based
on the basic approach of vector fitting and its ortho
normal version (Deschrijver et al., 2010; 2011; 2007;
Grivet-Talocia et al., 2005; Gustavsen and Mo, 2007;
Gustavsen, 2006; 2004; Gustavsen and Semlyen, 1999).
These approaches are usually focused on determination
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of poles of the final transfer function and can be very
precise. Based on measured and recorded frequency
characteristics, the resulting models can fit to the data with
negligible errors; however, some problems with outliers
points have been observed and the l1 norm was used in the
fitting algorithm (Deschrijver et al., 2010; 2011). Similar
problems are observed during the fitting of continuous
time models (Kowalczuk and Kozłowski, 2011), too.

The approach presented in the above-mentioned
works is usually based on the assumption of the linear
behaviour of processes considered and a proper choice of
poles for model fitting to the estimated frequency plots. In
identification of processes with dynamics reflecting some
non-linear phenomena, e.g., saturation or hysteresis, the
process behaviour depends on working conditions and
sometimes is modelled by neural nets. The corresponding
frequency plots, developed for these processes, can
represent other transients than the usually investigated
development of the model with the vector fitting approach.
The vector fitting algorithms discussed above are focused
on proper selection of transfer function poles and can
be less efficient in the mentioned cases. The problem
considered in the paper is focused on fitting a frequency
response to the data that can have some outliers, far from
any rational frequency response, and therefore the fitting
algorithm can be defined in way different from usual
least-squares algorithms.

An approximation with a non-quadratic performance
index has been considered in various contributions
(Fiodorov, 1994; Janiszowski, 1998; Kozłowski, 2003;
Kowalczuk and Kozłowski, 2011), and some positive
aspects of this approach have been pointed out. However,
numerical problems with the convergence of the resulting
algorithms have been mentioned, too. Recent applications
(Deschrijver et al., 2010; 2011) confirm an important
feature of the non-quadratic performance index that the
resulting models reflect low sensitivity to local distortions
of the original frequency characteristic.

The problem of fitting a model to a given frequency
characteristic, defined by a set of values FR ={
c1, . . . , cN

}
, ck = FR(ωk) ∈ C), is usually defined on

some interval Ω ⊃ {ω1, ω2, . . . , ωN}. The problem can be
presented as the minimization of the performance index

IΩ =
N∑

k=1

‖ck − Fa(ωk)‖αk
, (1)

where Fa(ωk) is a frequency characteristic of the
approximation. The introduced weights αk ≥ 0 can
induce a filter effect of different values ck within interval
Ω. The employed measure ‖·‖ can be L2 or another norm.
In the case of a norm resulting in least-squares fitting,
the minimization problem of IΩ is easy to solve and
the corresponding relations for the optimal solution can
be easily derived. However, in the case of the matching

problem, the application of the least-squares approach
is not the best choice. On the other hand, the least
sum of absolute errors (LSA) can be considered, but
it induces poor convergence properties (Fiodorov, 1994;
Janiszowski, 1998; Kozłowski, 2003). The nature of this
effect can be explained by the following example.

Let us consider the problem of matching a position
of a section of a known length, equal to 10, by 6
measurements of the initial point (IP) position

X1 = {x11, x12, . . . , x16}
= {10.1, 9.8, 10.2, 9.7,−10, 10.3}

and 6 measurements of the end point (EP) position

X2 = {x21, x22, . . . , x26}
{19.9, 20.1, 19.8, 20.2, 19.7, 20.3}.

Let the performance index, used for the matching of the
proper position of IP and EP, be defined in the form of

I =
6∑

k=1

‖IP − x1k‖γ +
6∑

k=1

‖EP − x2k‖γ

=
6∑

k=1

‖IP − x1k‖γ +
6∑

k=1

‖IP + 10 − x2k‖γ

= I(IP), γ ≥ 1. (2)

Close inspection of the set X1 shows one point x15 =
−10 quite distant from the other x1k . A good matching
placement of the investigated section is the points IP ≈
10 andEP = 10+IP ≈ 20, with the point x15 neglected.
This single outlier x15 can be a result of some distortion,
but an algorithm of matching should process this value,
too.

Now let us consider the problem of matching the
pair (IP, EP) with different performance indices used. The
Least-Squares (LS) matching corresponds to the value of
γ = 2 in (2). The most intuitive least sum of absolute
errors is determined for γ = 1. As the last option, will
be investigated the performance index LSE for a small
exponent of γ = 1.1.

In the case of the determination of LS matching IP
and EP to the index (2), the solution will attain a minimal
value of I at IP = 8.749 and EP = 18.749. In the case
of LSA value matching, the best fitting will yielded by the
values IP = 9.9 and EP = 19.9 and will correspond to
the above-mentioned intuitive solution. For LSE, the best
matching will be produced by the solution IP = 9.872
and EP = 19.872, quite close to the LSA solution, but not
exactly the same. Now let us observe variations of I(x) as
functions of x = IP, (EP = x + 10) for different values
of the parameter ω, Fig. 1.
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Fig. 1. Variations of performance indices ILS , ILSA and ILSE

in a logarithmic scale.

For the common presentation of trends of the
compared indices, the values of 0.5·ln(ILS ), ln(ILSA) and
ln(ILSE ) in Fig. 1. The plots reflect some basic problems
of matching with application of different methods, LS,
LSA and LSE. LS matching is shifted quite apart from
the intuitive solution (IP = 10,EP = 20) and the
index ILS slowly goes down and attains the minimal value
for IP = 8.749, but the corresponding algorithm for
ILS minimization is very easy to implement. The most
intuitive matching is attained by the LSA method, but
it has a very serious drawback—the index value ILSA

is constant within intervals of argument x, as shown
in Fig. 1. This feature, reflecting the fact that the LSA
algorithm can be performed only in an iterative way,
represents problems that arise in numerical calculations
(Fiodorov, 1994). The minimization of the LSA index
yields intervals vanishing the numerical derivative. The
plots, presented in Fig. 1, yield a conclusion that the
best result for the LSE algorithm is quite close to the
LSA matching, but the variation of ILSE is a continuous
function of the argument x with a unique minimum and
therefore is more flexible in numerical processing.

The next section presents the formal statement of
the approximation problem of fitting a transfer function
to the known frequency characteristic. Derivation of
the numerical approximation algorithm is based on
reformulation of some nonlinear problem, resulting
from matching complex values of the frequency
characteristic for the investigated approximation Fa

to the pattern characteristic FR. The approximation
problem is transformed to minimization of a measure of
errors between patterns |FR − Fa| defined by different
performance indices—LS, LSA or LSE. In Section 3 a
simple theorem for the development of an effective way
of calculation of solutions in the LSA and LSE sense is
shown, followed by propositions of numerical algorithms
for the approximation. The numerical calculations can
be performed in a batch-processing scheme or can be
based on the known, very old, recursive scheme, formerly
developed by Young (1966), and next used in efficient

on-line recursive algorithms, employed for parameter
identification (e.g., Ljung and Söderström, 1987). The
recursive version seems to be more flexible and easy
launching numerical calculations. As shown in Section 4,
the introduced approximation approach based on the
pseudo-inverse scheme can be used for solving different
tasks. For the verification and the efficiency test of
the proposed approach, we present problems where the
pattern is well known and the expected results are
more or less intuitive: reduction of the model order
for a discrete-time SISO process and approximation of
the model in a continuous-time domain. The results
of application of LSE performance in the case of data
with outliers compared with LS results close the set
of examples. The conclusions contain a summary of
investigations and are focused on new applications of the
proposed approach.

2. Problem statement

The set FR = {ck, k = 1 . . . , N} of the estimated
discrete-time frequency response, defined on the set Ω =
{ωk, k = 1, . . . , N}, represents dynamics of some SISO
process. We are looking for a linear transfer function
Ga(s), of order n, that is defined by the relation

Ga(s) =
B(s)
A′(s)

=
b0 + b1s+ · · · + bn−1s

n−1

1 + a1s+ · · · + ansn
, (3)

where the coefficients bi, ai are not known. The
frequency characteristic for the approximationGa(s) will
be determined as

Fa(ωk) = Ga(s)|s=lωk
, ωk ∈ Ω, (4)

or, in the case of investigating a process controlled by a
zero-order sampling unit with the transfer function I(s),
by

Fa(ωk) = {Ga(s)I(s)}|s=jωk
, ωk ∈ Ω. (5)

The measure of the approximation error is defined by
the relation (1) with application of an index adjusted to the
complex character of the frequency characteristic,

Iγ
α =

N∑

k=1

αk{[Reck − ReFa(ωk)]ω

+ [Im ck − ImFa(ωk)]γ}

=
N∑

k=1

‖ck − Fa(ωk)‖ω
α,

ωk ∈ Ω, αk ≥ 0, γ ∈ [1, 2]. (6)

The approximation aim is to determine a set of coefficients
bi, ai (3), which attain a minimum of the performance
index Iγ

α .
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Let us denote by ζk the value of the frequency
response of Ga for ωk

Ga(jωk) =
b0 + b1sk + · · · + bn−1s

n−1
k

1 + a1sk + · · · + ansn
k

∣
∣
∣∣
sk=jωk

= ζk, k = 1, . . . , N. (7)

The complex value ζk depends on polynomials A and B
defined for complex frequency sk,

ζk(1 +A(sk)) = B(sk)
⇒ ζk = B(sk) − ζkA(sk), k = 1, . . . , N. (8)

The error ek = ck − ζk ∈ C of the approximation is

ek = ck − ζk = ck −B(sk) + ζkA(sk). (9)

Now let us introduce some notation useful in the next steps
of the algorithm:

B(sk) =
n−1∑

i=0

bis
i
k = BSk,

B = [b0, b1, . . . , bn−1] ,

Sk =

⎡

⎢
⎢⎢
⎣

1
sk

...
sn−1

k

⎤

⎥
⎥⎥
⎦
,

A(sk) =
n∑

i=1

ais
i
k = AskSk,

A = [a1, a2, . . . , an]
A,B ∈ R

n, Sk ∈ C
n. (10)

The unknown coefficients vectors A, B are real, but
the terms of the measure Iγ

α in (6) are in the complex
domain. Let us distinguish the real and imaginary parts
of ck and vectors representing the values of B(sk) and
γkA(sk) in the relation (9) as

rk = Re ck, ik = Im ck

RBk =

⎡

⎢
⎢⎢
⎣

1
Re sk

...
Re sn−1

k

⎤

⎥
⎥⎥
⎦
, IBk =

⎡

⎢
⎢⎢
⎣

0
Im sk

...
Im sn−1

k

⎤

⎥
⎥⎥
⎦
,

RAk =

⎡

⎢
⎢
⎢
⎣

Re(skζk)
Re(s2kζk)

...
Re(sn

kζk)

⎤

⎥
⎥
⎥
⎦
, IAk =

⎡

⎢
⎢
⎢
⎣

Im(skζk)
Im(s2kζk)

...
Im(sn

kζk)

⎤

⎥
⎥
⎥
⎦
. (11)

The perfect fitting of the frequency characteristic of
Ga(s) to the pattern values ck will yield two conditions:
rk ∼= BRBk−ARAk, ik ∼= BIBk−AIAk. The measure

of the fitting error of the investigated approximation can
be represented by the index

Iγ
α(Θ) =

N∑

k=1

αk {|rk −BRBk +ARAk|γ

+ |ik −BIBk +AIAk|γ}

=
N∑

k=1

αk {|rk − ΘRk|γ + |ik − ΘIk|γ} ,

Θ = [B,A] ∈ R
2n,

Rk =
[
RBk

−RAk

]
∈ R

2n,

Ik =
[
IBk

−IAk

]
∈ R

2n. (12)

The minimization of the index Iγ
α(Θ) forN values of

frequency ω involves the problem of minimization in 2N
points, due to the complex character of values ck and the
form of the index (12). The algorithm for minimization
depends on unknown values of ζk (9), which have to be
estimated after determination of the model coefficients
vector Θ. Hence, the minimization algorithm has to be
arranged in an iterative way.

The minimization of

Iγ
α(Θ) = ‖VΘ − Y ‖γ

α → min
Θ
,

V =

⎡

⎢⎢
⎢
⎢
⎢
⎣

R1

I1
...
RN

IN

⎤

⎥⎥
⎥
⎥
⎥
⎦
, Y =

⎡

⎢⎢
⎢
⎢
⎢
⎣

r1
i1
...
rN
iN

⎤

⎥⎥
⎥
⎥
⎥
⎦
,

α = diag [α1, α2, . . . , αN ] , Ri, Ii ∈ R2n, (13)

can be arranged in different ways. In the paper it is
assumed that the resulting transfer function coefficient
will yield a frequency response close to the known values
of ck, and therefore in the first step the values ζk were
replaced by ck in (11). The next runs of the algorithm
have to be iterative, with determination of ζk calculated
as in (7). A batch-processing algorithm is proposed as
Algorithm 1.

The start of a minimization algorithm for I2
α(Θ0) is

simple. The LS approximation is direct and after basic
calculations can be solved as shown in (14), where j = 0
is the index of the iteration

ΘLS
j =

[
V jT

αV j
]−1

V jT

αY, α ∈ RN×N ,

V j =

⎡

⎢⎢
⎢
⎢
⎢
⎣

Rj
1

Ij
1
...
Rj

N

Ij
N

⎤

⎥⎥
⎥
⎥
⎥
⎦
, (14)
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Algorithm 1. Batch-processing.

Step 0. At the start of iterations, the initial guess of ζ0
k is

substituted by ck, k = 1, . . . , N . For the known frequency
values ωk the vectors RBk, IBk, RAk, IAk in (11) can
be calculated and the estimate Θ0 can be determined by
minimization of I(Θ) in (13).

Step 1. For the known initial component vector Θ0

the values of ζ1
k , k = 1, . . . , N can be recalculated,

consistent with the determination (7), (11) of the vectors
RBk, IBk, RAk, IAk. The next step of minimization (13)
can be performed and yields the estimation of the vector of
the model coefficients Θ1. After this step, based on (7), the
estimate of the model error and the resulting performance
index Iγ

α(Θ1) in (12) are calculated.

Step 2 and onward. For the known vector Θj the
values of ζj

k, k = 1, . . . , N can be calculated and the
next iteration of the vectors RBk, IBk, RAk, IAk is
performed. The next step of minimization of (13) Iγ

α(Θj)
is made and yields the next approximation of Θj+1. The
minimization of (13) proceeds until the value of Ij is
decreasing.

The only problem here is the convergence of the
proposed algorithm. Step 0 always produces an estimate
Θ0, which can be close to or quite distant from the
pattern set FR. The process of minimization of I2 has
to be supervised. After the first 2 to 3 steady iterations
of this algorithm, the procedure is convergent. However,
sometimes, especially in the case of quite a small order n
of the transfer function Ga(s) in (7), the algorithm may
converge to a false solution. In the presence of big outliers
in the pattern plot of ck, this effect was observed, too.

Now we will discuss algorithms for effective
calculation with non-square performance indices, with
exponent γ < 2. These algorithms are not based on direct
rules as in (14) and need a recursive way of calculations.

3. Minimization of LSA and LSE error
measures

Let us first consider the well-known problem of
minimization in the sense of the weighted minimal sum
of error squares of the linear regression model

Ŷ = VΘ, Ŷ ∈ R
M , V ∈ R

M×m, Θ ∈ R
m (15)

for the vector Y ∈ RM , where V is a matrix of stored
data and Θ is a vector of unknown model coefficients. The
least-squares estimation for the minimization of the model
error in the weighted LS sense (Ljung and Söderström,

1987),

IWLS = {(Y − VΘ)T W (Y − VΘ)},
W ∈ RM·M ,

diag [w1, . . . , wM ] , wi ≥ 0, (16)

where W is the matrix of weights, is defined by the
well-known formula (Ljung and Söderström, 1987)

ΘWLS =
[
V TWV

]−1
V TWY. (17)

Now let us consider a special form of the WLS
estimator with dynamic weight coefficients w, dependent
on the error volume produced by the resulting model.

Theorem 1. Consider a linear form

Ẑ = Xψ, Ẑ ∈ R
M , X ∈ R

M×m, ψ ∈ R
m, (18)

which is a model of a variable z, presented by the vector
Z = [z1, z2, . . . , zM ]T and X is a matrix composed of
row vectors xk ∈ Rm, k = 1, . . . ,M . If ψ

′′ ∈ Rm de-
notes a vector of the model coefficients, which attains a
minimum of the performance index

I =
M∑

k=1

‖zk − xkψ
′′‖γ , xk ∈ R

m, γ ≥ 1, (19)

and E is equal to

E = diag{e1, e2, . . . , eM},

ek =
1

‖zk − ẑk(ψ)‖2−γ
, k = 1, . . . ,M,

ẑk = xkψ
′′
, (20)

then the vector ψ
′′

satisfies the relation

ψ
′′

=
[
XTEX

]−1
XTEZ. (21)

Proof. The sum I(ψ
′′
) =

∑M
k=1 |zk − ẑk(ψ)|γ can be

presented as

I(ψ
′′
) =

M∑

k=1

[
(zk − ẑk(ψ))2

]γ/2

.

I is a convex function of ψ. A necessary condition for a
minimum of I(ψ) yields

∂

∂ψ
I(ψ)

=
∂

∂ψ

M∑

k=1

[
(zk − ẑk(ψ))2

]γ/2

=
M∑

k=1

γ

2
[
(zk − ẑk(ψ))2

](2−γ)/2

∂

∂ψ
(zk − ẑk(ψ))2

≡ 0.
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This relation can be presented in the following form:

∂

∂ψ
I =

M∑

k=1

ek
∂

∂ψ
(zk − ẑk(ψ))2 ≡ 0,

ek =
1

[
(zk − ẑk(ψ))2

](2−γ)/2
.

The above expression is equivalent to the necessary
condition for a minimum of the weighted least square
problem (e.g., Ljung and Söderström, 1987), where the
weights are equal to ek = 1/εk, and then the coefficient
vector ψ

′′
is determined as in (21). This completes the

proof. �

The theorem yields the condition for ψ
′′

, but first
the vector of estimation errors e = [e1, e2, . . . , en] has
to be known. In case of off-line estimation, Algorithm 2 is
proposed.

Algorithm 2. Off-line estimation in the LSE sense.

Step 1. Compute an estimate ψ0 with the initial value of
ej = 1, j = 1, . . . ,M ,

ψ0 =
[
XTX

]−1
XTZ. (22)

Step 2. Determine the absolute values of output errors ε0k,

ε0k = |zk − ẑk(ψ)|γ , k = 1, . . . ,M,

γ ∈ [1, 1.2], (23)

and set the weighing coefficients

e0k =

{
1/εk, εk > εmin,

εk = max, εk ≤ εmin,

k = 1, . . . ,M, max = 1/εmin, (24)

where εmin can be determined by quantization or
measurement errors. For the initial step j = 0 the weight
matrix is equal to

E0 = diag
[
e01, e

0
2, . . . , e

0
M

]
. (25)

Step 3. Compute the estimate ψ1 in (21),

ψ1 =
[
XTE0X

]−1
XTE0Z, (26)

with weights e1k defined as in (24).

Step 4. For the next iterations with indices j = 2, 3, . . .

Steps 2 and 3 are repeated with new determined model
errors (23) and updated values in the weight matrix Ej

(25) until the index I in (19) reaches a limit value, i.e., it
is not decreasing within a determined number κ of the last
runs.

Algorithm 2 is based on batch processing of
recorded data. Due to the observed behaviour of the
LSA performance index presented in the Introduction,
the convergence of this iterative processing may yield
some problems (Fiodorov, 1994; Janiszowski, 1998). LSE
estimation yields better convergence properties. The only
difference between LSA and LSE estimation is the value
of the weights coefficients (20), and the LSE index can be
expressed as

I =
M∑

k=1

|zk − xkψLSE|γ

=
M∑

k=1

ek |zk − xkψLSE |2 ,

ek = |zk − xkψLSE |λ , λ = 2 − γ, (27)

and in effect these weights ek will be used in estimation
(26) for LSE off-line estimation.

The batch processing algorithm yields one problem
in calculations: the first estimates in LSA or LSE are
received after the processing of all M recorded points.

The convergence rate can be improved when
estimation for one run, i.e., M steps, is determined
recursively, like in on-line schemes (Janiszowski, 1998;
Kozłowski, 2003; Kowalczuk and Kozłowski, 2011). The
efficiency of the recursive scheme was observed quite
long ago (Young, 1966), and next its positive features
were confirmed (Ljung and Söderström, 1987) and used in
other applications (Janiszowski, 1998; Kozłowski, 2003;
Kowalczuk and Kozłowski, 2011). A proposition of such
an algorithm is shown below.

In comparison with the usually used on-line
identification schemes, where the index k represents
discrete time instants, in the above algorithm this index
represents values of radial frequency ωk ∈ Ω. The choice
of these values is discussed in the next section. The
proposed starting point (35) can be used or a primary
fitting with the LS scheme for λ = 2 can be tested.

The application of the recursive calculation (28)–(35)
to estimation of model coefficients has an advantage
with respect to the batch processing scheme proposed by
(22)–(26). From the very beginning the approximation
Θ slowly but steadily converges to the expected LSE
or LSA estimates, does not contain an initial phase of
the ψ0

LSA estimation (22), which can push the initial
result far away from the proper resolution. This advantage
is accompanied by a convergence problem. The first
iterations of ψLSE(j) have to be well prepared, i.e., the
values of ω1, . . . , ωq, (q � M), close to 0, yield very
small variations in ck and the convergence of estimation
ψLSE (j) in this phase of data processing is slow and not
very well conditioned. Therefore, a set of the values ck
has to be carefully selected to yield sufficient changes into
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Algorithm 3. On-line estimation in the LSA sense.
Step 1. Estimate the model error for the step j of iteration,

εk = zk − xkψLSE (k − 1), k = 1, . . . ,M,

xk = [x1k, x2k, . . . , xmk] . (28)

Step 2. Determine the weight coefficient ej ,

ek =

{
1/ |εk|λ , |εk| ≥ εmin,

max = 1/εmin, |εk| < εmin.
(29)

Step 3. Calculate the vector of the filtered model inputs
and gain vector χ,

vk = ekxk, vk ∈ R
m, (30)

μk =
[
ρ+ vkPk−1v

T
k

]−1
, μk, ρ ∈ R, (31)

χ = μkPk−1v
T
k , χ ∈ R

m. (32)

Step 4. Update the model coefficient vector,

ψLSE (k) = ψLSE (k − 1) + sign(εk)χ |εk|γ−1 ,

αLSE ∈ Rm. (33)

Step 5. Update the estimate of the matrix P,

Pk = [1 − χvk]Pk−1ρ
−1, Pk ∈ R

mm, (34)

where ρ = [0.99, 1.0] is a forgetting factor.

Step 6. The initial conditions for the above algorithm are

ψLSE (0) = [0, 0, . . . , 0] , αLSE ∈ Rm,

P0 = diag(κ), (35)

and κ ∈ [108, 1020] initialises the matrix (P ).

estimation of ck in the approximation process. This topic
will be investigated and considered in further sections.

4. Application of the proposed algorithm
for approximation and reduction of the
model order for SISO systems

The problem of approximation can have many
applications like, e.g., reduction of the order of
discrete-time model dynamics for SISO system,
approximation of the process model in a continuous
time domain based on the discrete-time frequency
response with reduction of the model order (or without),
approximation of a model in a discrete or a continuous
time domain with the filtering of the response in a

specified frequency interval, change in the sampling
interval Δ in discrete-time representation and others.
In all these applications the main tool is efficient
approximation in the frequency domain, and the final
result can be achieved by an adequate statement of the
problem and proper pre-processing of the data used.

The proposed approach will be first tested for
reduction of the model order of a dynamic process. In this
application the expected result is usually quite obvious
and the efficiency of the approximation algorithm can be
verified. The quality of approximation has to be verified,
and therefore the following normalized performance index
is proposed:

In =

{
1
M

M∑

k=1

|ck −G(jωk)|2
|ck|2

}1/2

. (36)

This form of the performance index does not impose
any frequency a priori due to the introduced weighing
normalizing factor |ck|2 in the denominator. Its form
is different from the suggested LSA or LSE form (6)
but corresponds to indices used in the literature (Ljung
and Söderström, 1987; Mohan et al., 2004; Sreeram
and Agatokhlis, 1991) and therefore can be used for
comparison.

4.1. Reduction of the model order for a discrete-
time linear model of a SISO process. This problem
usually is yielded as a result of process identification,
performed with defined sampling interval Δ. The
estimated discrete-time transfer function of the SISO
process,

G∗(z−1) =
B(z−1)z−d

1 +A(z−1)

=
(b0 + b1z

−1 + · · · + bp)z−d

1 + a1z−1 + · · · + apz−p
,

T0 = dΔ, (37)

with the specified delay T0 is next investigated in the
form of the lower order r ≤ p model (37) with the
same discrete-time delay d. At the beginning a set FR of
given frequency characteristic values has to be created for
some set Ω. The set of frequency values Ω has an upper
bound ωup, in the given case limited by the Shannon’s
frequency π/δ. The initial frequency ω1 = ωlow and the
following values ωk, its number and choice is a decision
to be made by the user. In our case, the value of ω1 is set to
10−5 ·ωup. The number of generated frequency values ωk

should be sufficiently large and is defined, in the presented
examples, as M

′  300. The interval [ωlow, ωup] is first
divided in a logarithmic scale according to the rule

Δω = exp
{

ln(ωup/ωlow)
M ′

}
, ω1 = ωlow. (38)
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Next, the following selection of the frequency ω
value is introduced. The value ωk ∈ Ω is multiplied
by Δω. If the new value ω

′
= ωk · Δω presents a

sufficient variation of argument, i.e., argG∗[j(ω
′
)] −

argG∗[j(ωk)] > Δ arg, then this value ω
′

is included
into Ω as ωk+1. Otherwise, ω

′
is increased again, ω

′
=

ω
′ ·Δω and the condition for argument variation is tested.

The above rule generates a set Ω of M frequency values
ωk that preserve a sufficient variation of the investigated
frequency response,

Ω = {ωk, k = 1, . . . ,M} ,
FR = {ck = G∗(jωk), k = 1, . . . ,M} ,
|argG∗(jωk) − argG∗(jωk−1)| > Δ arg,

k = 1, . . . ,M. (39)

As an example, we use used a model of the eight order
discrete-time transfer function (Sreeram and Agatokhlis,
1991),

G∗
8 =

a8(z − 1)
b8(z − 1)

(40)

where

a8(z − 1) =0.2012z−1 + 0.1395z−2 − 0.0263z−3

+ 0.0190z−4 − 0.0645z−5 − 0.0328z−6

+ 0.0055z−7 − 0.0088z−8,

b8(z − 1) =1 − 0.6307z−1 + 0.4185z−2 − 0.0788z−3

+ 0.0570z−4 + 0.1935z−5 + 0.0983z−6

− 0.0165z−7 + 0.0023z−8.

In the work of Sreeram and Agatokhlis (1991) the
reduction into a second order model yields the following
transfer function:

G∗
2(z

−1) =
0.23159z−1 − 0.15233z−2

1 − 1.75851z−1 + 0.83862z−2
, (41)

which, after evaluation with In in (36), gives the value
of In = 0.043. The application of the proposed LSE
approach, with γ = 1.2, based on M = 289 and points
selected as in (38), (39) gives the following results for
reduction to the third and second orders:

GLSE
3 (z−1)

=
0.21309z−1 − 0.21427z−2 + 0.04096z−3

1 − 2.21016z−1 + 1.63034z−2 − 0.37974z−3

and the performance index In equals 6.1 · 10−5, which is
a very good result. The result for second order reduction
is quite good, too,

GLSE
2 (z−1) =

0.23089z−1 − 0.15083z−2

1 − 1.75752z−1 + 0.83751z−2
, (42)

and is qualified with In = 0.0047. Both results present
quite good fitting and show that the LSE estimation
scheme can be satisfactorily efficient.

4.2. Approximation in the continuous time doma-
in, based on frequency characteristics derived from a
discrete-time model of a SISO process. This problem
usually appears during process identification based on
sampled data, when the determined model has to be
expressed in continuous time form, which is more easy
to handle and evaluate. It is clear that sampled data
deliver information in a limited frequency domain [0, ωS].
Quite often data are gathered in an experiment where
the investigated process is controlled by a microcontroller
device, with constant sampling time Δ. This fact has to
be included into determination of investigated dynamics.
The observed dynamic properties in the form of frequency
characteristic, denoted by c

′
k, are products of process and

sampling unit Gs dynamics

c
′
k = G∗(jωk) ·Gs(jωk),

Gs(jωk) =
1 − exp(−jωkΔ)

jωk
. (43)

The determined values of the frequency characteristic
have to be redefined at the beginning of the approximation
process,

ck = c
′
[Gs(jωk)]−1

, k = 1, . . . ,M. (44)

These transformed values ck are next used for
approximation of the transfer function for investigated
continuous time representation of a SISO process.

The efficiency of the proposed approach can be
presented on an example of a simple, second order linear
dynamic process, described by a transfer function of the
form

G2(s) =
20

1 + 40s
− 1

1 + 4s
=

19 + 40s
1 + 44s+ 160s2

. (45)

This transfer function was used for generation of a set of
data with sampling interval Δ = 1 s. In this example the
sensitivity of approximations to the presence of outliers is
tested. The process of gathering frequency characteristic
data was performed

1. without any distortions (FC ),

2. with outliers added to the initial set FC with more
points of reduced values (FC−),

3. with outliers added to the initial set FC with more
points of increased values (FC+).

All data sets FC ,FC−,FC+, containing each
300 points, are generated with an algorithm satisfying
conditions presented in relation (39). Next, these data
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are used for approximation of the resulting transfer
function. The outliers are introduced by changing the
corresponding amplitudes of ck and observing the reaction
of approximation algorithm for such distortions.

In the case of undisturbed data FC and the second
order of the investigated transfer function, the LS, LSE and
LSA approximation results are practically the same and
equal to the original transfer function G2(s) (45). But for
the first order approximations for the LS, LSA and LSE
schemes, the results are different:

G1LS (s) =
19.38452

1 + 48.30591s
,

G1LSA(s) =
19.00002

1 + 41.89483s
,

G1LSE (s) =
19.00003

1 + 41.89572s
.

(46)

The LS approximation is visibly worse, which can
be observed in Fig. 2, where the plots for the LS
and LSA approximation, together with the original
frequency characteristic FC, are shown. We can observe
a difference at low frequency values ωk: the gain of
the LS approximation is too high. This effect is visible
considering the form of the transfer function G1LS (s),
too. The static gain for this transfer function is equal
to 19.384. The frequency characteristic begins from 19
and quite the same value is present in approximations
G1LSE (s) and G1LSA(s). The differences between these
transfer functions were negligible and therefore only the
frequency characteristic for G1LSA(s) is presented in
Fig. 2. At the high frequencies ωk, both approximations
LS and LSA present the same plot, typical for the first order
transfer function.

Fig. 2. Frequency characteristics for the first-order approxima-
tions determined with the LS and LSA schemes compa-
red with the original pattern FC .

The observed difference is not the only one. In the
case of outliers in the frequency pattern FC−, can be
observed, cf. some other behaviour of the approximations,
Fig. 3. The set FC− of frequency characteristics, with
visible outliers, is used for the determination of the first
order approximations with the LSE and LS algorithms.

In this case, the LSE approximation scheme produces
quite the same effect as in the case of the original set
FC. The outliers visibly destroy the variation of the LS−
approximation plot. The attraction of outliers pushed the
resulting LS− approximation quite apart from the set
FC−.

Fig. 3. Frequency characteristics for the first-order approxima-
tions LS−, the LSA− determined with LSA− and LS
schemes, compared with the pattern FC− with outliers.

The case of positive gathered outliers is presented
in Fig. 4. The approximations LS+ and LSE+

represent approximation results with application of the
corresponding algorithms, but this time for the second
order of the transfer function. The difference between
LSE+ and FC is hardly visible with distinctions of
outliers. The LS+ results are different—again the outliers
pushed the LS+ results in the direction of the transfer with
an increased gain.

Fig. 4. Frequency characteristics for the second-order approxi-
mations LS−, LSE− determined with the LSE and LS
schemes, compared with the pattern FC− with outliers.

The transfer functions determined within
approximation processing are equal to

G2LS+(s) =
19.49801 + 29.6896s

1 + 44.63748s+ 118.786s2
,

G2LSE+(s) =
19.03859 + 28.5043s

1 + 44.6002s+ 114.020s2
.

(47)

Brief inspection of these forms confirms an increased
static gain in the LS+ approximation and practically the
proper value in the LSE+ approximation result. The index
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(36) was not calculated because of the presence of the
outliers. However, comparison of the presented figures
shows that the LSE+ approximation covers practically the
original plot FC+ excluding the outliers. LS+ is close
but reflects a small displacement in the direction of the
outliers.

5. Conclusions

The approach presented in this paper is based on the
approximation algorithm with the option of minimization
of the non-quadratic error measure. The results shown
confirm that both aspects can be combined in one
algorithm and deliver good results. The primary iterative
working batch processing algorithm (7)–(13) considered
presents worse convergence than the recursive version
(26)–(34). This effect can be a result of recursive scheme
flexibility. The solution is in fact improved in each step
of the recursive processing. Interesting is the fact that
the recursive algorithm, invented initially for statistic
estimation of dynamic models using measured time
series, ca. 50 years ago (Young, 1966), can be now
successfully used for calculation of some other problems,
like recursive approximation. However, it should be
stressed that positive results can be obtained only after
special processing (38)–(39) of data. This choice of the
frequency set Ω and the set of the corresponding complex
values FR (39) can be completed by a stochastic draw of
pairs {ωk, ck} for the recursive algorithm (28)–(35). This
procedure does not present unstable solutions mentioned
in Section 3. Future works on the proposed algorithm
will consider application in the case of weakly nonlinear
continuous time systems, e.g., a chemical reactor with
dynamics dependent on operation point.

Recursive fitting, based on the LSE (γ = 1.2)
performance index Iγ

Ω is quite effective and very close
to LSA approximation. This observation, shown in
Example 2, was confirmed for different investigated cases.
In all cases the LSE recursive approximation procedure
was stable and produced reasonable results. Introduction
of a variable value of the exponent γ into the performance
index created an additional degree of freedom into
algorithms, based on minimization of performance indices
as introduced in (1) or (12).

The proposed approach can create a new way
for solving problems where non-quadratic criteria are
reasonable and shall be used, especially where outliers
create problems of LS approach convergence.
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MMAR’2003, Międzyzdroje, Poland, pp. 277–282.

Levy, E.C. (1959). Complex-curve fitting, IRE Transactions on
Automatic Control AC-4(1): 37–43.

Lima, A.C.S., Fernandes, A. and Carneiro, S., J. (2005). Rational
approximation of frequency domain responses in the s and
z planes, IEEE Power Engineering Society General Me-
eting, San Francisco, CA, USA, Vol. 1, pp. 126–131

Ljung, L. and Söderström, T. (1987). Theory and Practice of
Recursive Identification, MIT Press, Cambridge, MA.

Mohan, R., Choi, M.J., Mick, S., Hart, F., Chandrasekar,
K., Cangellaris, A., Franzon, P. and Steer, M. (2004).



Approximation of a linear dynamic process model using the frequency approach. . . 109

Causal reduced-order modeling of distributed structures in
a transient circuit simulator, IEEE Transactions on Micro-
wave Theory and Techniques 52(9): 2207–2214.

Pintelon, R. and Schoukens, J. (2004). System Identification:
A Frequency Domain Approach, John Wiley & Sons, New
York, NY.

Sreeram, V. and Agatokhlis, P. (1991). Model reduction of linear
discrete-time systems via impulse response Gramians, In-
ternational Journal on Control 53(1): 129–144.

Unbehauen, H. and Rao, G. (1997). Identification of
continuous-time systems: A tutorial, 11th IFAC Sym-
posium on System Identification, Kitakyushu, Japan,
pp. 1023–1049.

Varricchio, S., Gomes, S. and Martins, N. (2004). Modal
analysis of industrial system harmonics using the
s-domain approach, IEEE Transactions on Power Delive-
ry 19(3): 1232–1237.

Wahlberg, B. and Mäkilä, P. (1996). On approximation of
stable linear dynamical systems using Laguerre and Kautz
functions, Automatica 32(5): 693–708.

Young, P.C. (1966). Process parameter estimation and self
adaptive control, in P.H. Hammnod (Ed.), Theory of Self
Adaptive Control Systems, Vol. 1, Plenum Press, New
York, NY, p. 118.

Krzysztof B. Janiszowski, a leader of the Activa-
tors for Automation and Robotics Division at the
Mechatronics Department of the Warsaw Univer-
sity of Technology, specializes in identification,
modeling and control techniques. His application
areas include identification of industrial plants,
algorithms for control and fast prototyping in flu-
idic servo-mechanisms, models of human circu-
lation systems, software packages for modeling
and control of industrial processes.

Received: 7 December 2012
Revised: 5 July 2013
Re-revised: 12 October 2013


