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A new discrete-time sliding-mode congestion controller for connection-oriented networks is proposed. Packet losses which
may occur during the transmission process are explicitly taken into account. Two control laws are presented, each obtained
by minimizing a different cost functional. The first one concentrates on the output variable, whereas in the second one the
whole state vector is considered. Weighting factors for adjusting the influence of the control signal and appropriate (state
or output) errors are incorporated in both the functionals. The asymptotic stability of the closed-loop system is proved, and
the conditions for 100% bottleneck node bandwidth utilization are derived. The performance of the proposed algorithm is
verified by computer simulations.
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1. Introduction

In connection-oriented communication networks, data
units sent by sources pass through a series of intermedi-
ate nodes before reaching their destinations. If an inter-
mediate node due to a limited data flow rate of its out-
going link cannot pass on all the data it receives, then
congestion occurs. Consequently, in order to maximize
throughput as well as minimize queuing delays and jitter
in modern communication networks, congestion control
algorithms are applied. The main difficulty in appropri-
ate congestion control algorithm design is caused by large
propagation delays in the networks. The delays are in-
evitable since information about congestion at a specific
node must be dispatched to all sources transmitting data
through this node, in order to enable adjustment of the
source transmission rates, and this action does not affect
the congested node immediately, but only with delay usu-
ally called the Round Trip Time (RTT). The problem of
congestion control in connection-oriented communication
networks has been studied in many papers, and an exten-
sive review of the papers can be found in a recent mono-
graph of Ignaciuk and Bartoszewicz (2013).

The main advantage of sliding mode control meth-
ods is their strong robustness with regard to a class of
disturbance and model uncertainty (Drazenovic, 1969).

The robustness is achieved by employing nonlinear con-
trol signals to force the system trajectory to attain in fi-
nite time a motion along a pre-determined surface in the
state space. The sliding mode approach was originally
proposed for controller design (Emelyanov, 1967; Gao
et al., 1995; Hung et al., 1993; Levant, 1993; Mnasri and
Gasmi, 2011; Sira-Ramirez, 1993; Tomera, 2010; Utkin,
1977; Utkin and Shi, 1996). However, sliding mode tech-
niques can also be used in state observers (Edwards and
Spurgeon, 1994; Edwards et al., 2012; Floquet et al.,
2007; Fridman et al., 2007; Haskara et al., 1998; Veluvolu
and Soh, 2009).

Due to the robustness of sliding mode control, var-
ious types of sliding mode congestion controllers have
been proposed. Jing et al. (2007) used a sliding mode
controller with a state predictor, and established the max-
imum delay necessary for the system stability. A fuzzy
controller combining the advantages of linear and terminal
sliding modes was also proposed by Jing et al. (2008) for a
simplified delay-free network model. For a DiffServ net-
work, an adaptive sliding mode controller (using the back-
stepping procedure) for a model which neglects the feed-
back latency was presented by Zheng et al. (2008). On
the other hand, for a DiffServ network with delay a sec-
ond order sliding mode technique was applied by Zhang
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et al. (2009) in order to reduce the chattering of the control
signal. In the work of Jin et al. (2009) the problem of fair
(in the max-min sense) data rate distribution among the
sources is considered. A binary congestion signal is used
to control the data output of sources, and the analysis of
this algorithm is performed for a delay-free system.

The papers mentioned in the previous paragraph use
the continuous time network model. However, any flow
control algorithm for a data transmission network must be
implemented as a digital controller. Therefore, in some
works a discrete-time approach to the problem of data
flow control was used. For example, a sliding mode con-
troller was presented by Yan et al. (2007), but the re-
sult of that paper was derived without considering the
system delays. In the work of Yang et al. (2007) it is
shown that any max-min fair system with a stable sym-
metric Jacobian matrix maintains asymptotic stability un-
der arbitrary directional delays. This means that, if the
controller is designed so that the system has a symmetric
Jacobian matrix, its stability can be examined based on
the corresponding undelayed system. A dead-beat slid-
ing mode controller for multi-source networks with a pri-
ori known round trip times is presented by Bartoszewicz
and Zuk (2009), whereas in the work of Ignaciuk and Bar-
toszewicz (2008) an LQ optimal sliding mode controller
for single-source networks is proposed. The same ap-
proach is then extended for multi-source networks by Ig-
naciuk and Bartoszewicz (2009), who also design a simi-
lar optimal flow controller for multi-source networks with
the round trip times which may change during the control
process (Ignaciuk and Bartoszewicz, 2011).

In most papers published up to now only packet
losses due to buffer overflows are considered, and the oc-
currence of lossy links in the network is neglected. As in
real networks transmission losses are inevitable, in this pa-
per we present an LQ optimal sliding mode controller for
a single connection in which packets may be lost during
the transmission process.

2. Network model

In this paper we consider a single virtual circuit in a
connection-oriented network. The virtual circuit consists
of a single data source, intermediate nodes and a desti-
nation. Data sent by the source are passed from node to
node, until they reach their destination. It is assumed that
one of the intermediate nodes (further in the paper called
the “bottleneck” node) cannot pass on all the data it re-
ceives, due to the limited bandwidth of its outgoing link.
Thus congestion occurs, and the surplus data accumulate
in the buffer located at the bottleneck node. The block
diagram of the network is shown in Fig. 1.

We assume that the source is persistent, i.e., it always
has enough data to transmit at the maximum rate allowed
by the network. Therefore, the congestion problem can be

solved through an appropriate adjustment of the data rate
of the source. This rate is determined by the controller
placed at the bottleneck node. The source receives the sig-
nal from the controller (denoted by u) after backward de-
lay TB . It then sends the specified amount of data, which
reaches the bottleneck queue after forward delay TF . It
is assumed that during the transmission some data packets
are lost, so that only αu (α ∈ (0, 1)) data packets arrive at
the bottleneck node. The round trip time RTT (the delay
between generating the control signal, and the requested
data arriving at the bottleneck queue) can be expressed as
a sum of backward and forward propagation delays,

RTT = TB + TF . (1)

Further in the paper, T represents the sampling time. The
queue length at time instant kT is denoted by y(kT ), and
its demand value by yd. It is assumed that before the
beginning of data transmission the buffer is empty, i.e.,
y(kT < 0) = 0. The controller output at time kT is de-
noted by u(kT ). We also assume that the round trip time
is a multiple of the sampling time, i.e., RTT = mRTTT ,
where mRTT is a positive integer.

The amount of data which may leave the bottleneck
buffer at each time instant is modeled as an a-priori un-
known bounded function of time d(kT ), and its maximum
value is denoted by dmax. Because at some time instants
there can be less data in the queue than can be sent, an
additional function of time h(kT ) is introduced, which
represents the data actually leaving the bottleneck queue.
Consequently,

0 ≤ h(kT ) ≤ d(kT ) ≤ dmax. (2)

The queue length for any kT ≥ 0 can be expressed as
follows:

y(kT ) = α

k−1∑

j=0

u(jT − RTT )−
k−1∑

j=0

h(jT )

= α

k−mRTT−1∑

j=0

u(jT )−
k−1∑

j=0

h(jT ). (3)

The network can also be described in the state space
as

x[(k + 1)T ] = Ax(kT ) + bu(kT ) + oh(kT ),

y(kT ) = qT x(kT ), (4)

where x(kT ) = [x1(kT ) x2(kT ) · · · xn(kT )]T is the
state vector, dim(x) = n = mRTT + 1, y(kT ) = x1(kT )
is the queue length, and

xi(kT ) = u[(k − n + i − 1)T ] (5)
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Fig. 1. Network model.

for i = 2, . . . , n. A is an n × n state matrix,

A =

⎡

⎢⎢⎢⎢⎢⎣

1 α 0 0
0 0 1 · · · 0

...
. . .

...
0 0 0 · · · 1
0 0 0 0

⎤

⎥⎥⎥⎥⎥⎦
, (6)

and b, o, q are n × 1 vectors,

b =

⎡

⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤

⎥⎥⎥⎥⎥⎦
, o =

⎡

⎢⎢⎢⎢⎢⎣

−1
0
...
0
0

⎤

⎥⎥⎥⎥⎥⎦
, q =

⎡

⎢⎢⎢⎢⎢⎣

1
0
...
0
0

⎤

⎥⎥⎥⎥⎥⎦
. (7)

The state space equation can also be written as follows:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1[(k + 1)T ] = x1(kT ) + αx2(kT ) − h(kT ),
x2[(k + 1)T ] = x3(kT ),

...
xn−1[(k + 1)T ] = xn(kT ),

xn[(k + 1)T ] = u(kT ).
(8)

The desired state of the system is denoted by
xd = [xd1 xd2 · · · xdn]T , where xd1 = yd is the
demand value of the queue length. It can be noticed from
(8) that all other components of xd are equal to zero for
h(kT ) = 0.

3. Proposed control strategy

In this section a control-theoretic approach is applied to
design a discrete-time sliding-mode controller for the sys-
tem considered. We begin with deriving the general form
of a sliding-mode controller. The parameters of the slid-
ing hyperplane are then chosen minimizing two different
quality criteria. One involves the output of the system,
and the other takes into account the whole state vector. Fi-
nally, the stability of the closed-loop system and its other
important properties are proved.

3.1. Sliding-mode controller design. We introduce a
sliding hyperplane described by the following equation:

s(kT ) = cT e(kT ) = 0, (9)

where cT = [c1 c2 · · · cn] is a vector satisfying
cT b �= 0, and e(kT ) = xd − x(kT ) denotes the closed-
loop system error. Substituting (4) into cT e[(k + 1)T ] =
0, the following feedback control law can be derived:

u(kT ) = (cT b)−1cT [xd − Ax(kT )]. (10)

Using (6), (7) and (8), we can present (10) as

u(kT ) = c−1
n

[
c1yd − c1x1(kT ) −

n∑

i=2

ci−1xi(kT )

]
.

(11)
With the application of this control strategy, the state
matrix of the closed-loop system has the form Ac =[
In − b(cT b)−1cT

]
A. The characteristic polynomial of

Ac can be found as follows:

det(zIn − Ac) = zn +
cn−1 − cn

cn
zn−1 + · · ·

+
c2 − c3

cn
z2 +

αc1 − c2

cn
z. (12)

The properties of the closed-loop system will be de-
termined by the choice of the sliding hyperplane param-
eters c1, c2, . . . , cn. In the remaining part of this sub-
section, two performance indices will be considered. For
both of them appropriate selection of elements of vector c,
minimizing the different cost functionals will be obtained.

Case 1. In optimization problems we often consider a
performance index involving values of the control signal
and the output error. In this case we seek for a sliding-
mode control uopt(kT ) that minimizes the following cost
functional:

J1(u) =
∞∑

k=0

{
u2(kT ) + w[yd − y(kT )]2

}
, (13)

where w is a positive weighting factor adjusting the influ-
ence of the control signal and the output variable on the
functional. According to Kwakernaak and Sivan (1972),
for the time-invariant discrete-time system (4) the optimal
control uopt(kT ) that minimizes the cost functional (13)
can be presented as

uopt(kT ) = −gx(kT ) + r, (14)
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where
g = b∗K (In + bb∗K)−1

A, (15)

r = Gc(1)−1yd =
[
qT (In − A + bg)−1 b

]−1

yd,

(16)
where (·)∗ denotes the complex conjugate matrix trans-
pose, Gc(z) is the transfer function of the closed-loop
system, and semipositive matrix K satisfies K∗ = K
and is determined by the following Ricatti equation:

K = A∗K (In + bb∗K)−1
A + wqq∗. (17)

Because all elements of A, b and q are real numbers, the
complex conjugate matrix transpose (·)∗ is equivalent to
the matrix transpose (·)T , and the elements of K are also
real numbers. Therefore, condition K∗ = K implies that
K is symmetric.

In the case of the network system considered in this
paper, the Ricatti equation needs to be solved analytically
for the system of an arbitrary order n. The method pro-
posed here is similar to the one used by Ignaciuk and Bar-
toszewicz (2008). It involves iterative substitution of K
into the right hand side of Eqn. (17) and comparing the
result with its left-hand side, so that at each iteration the
number of independent elements of K is reduced.

We begin with

K0 =

⎡

⎢⎢⎢⎢⎢⎣

k11 k12 k13 k1n

k12 k22 k23 · · · k2n

k13 k23 k33 k3n

...
. . .

...
k1n k2n k3n knn

⎤

⎥⎥⎥⎥⎥⎦
. (18)

Because matrix K is symmetric, in the following equa-
tions, in order to save space, we will represent the ele-
ments positioned below the diagonal by ‘*’. After the first
analytical iteration, we obtain the following form:

K1 =

⎡

⎢⎢⎢⎢⎢⎣

k11 α(k11 − w) k13 k1n

∗ α2(k11 − w) k23 · · · k2n

∗ ∗ k33 k3n

...
. . .

...
∗ ∗ ∗ · · · knn

⎤

⎥⎥⎥⎥⎥⎦
. (19)

The next step is substituting K1 given by (19) into (17)
and comparing its left and right-hand sides. We arrive at
the next form of K, which expresses the values of more
elements in terms of k11,

K2

=

⎡

⎢⎢⎢⎢⎢⎣

k11 α(k11 − w) α(k11 − 2w) k1n

∗ α2(k11 − w) α2(k11 − 2w) · · · k2n

∗ ∗ α2(k11 − 2w) k3n

...
. . .

...
∗ ∗ ∗ · · · knn

⎤

⎥⎥⎥⎥⎥⎦
.

(20)

We repeat this procedure until all elements of K are ex-
pressed as functions of k11, weighting factor w and system
order n,

K

=

⎡

⎢⎢⎢⎣

k11 α(k11 − w) · · · α(k11 − (n − 1)w)
∗ α2(k11 − w) · · · α2(k11 − (n − 1)w)
...

...
. . .

...
∗ ∗ · · · α2(k11 − (n − 1)w)

⎤

⎥⎥⎥⎦ .

(21)

In order to determine k11, we substitute (21) into the right-
hand side of (17) and compare the first elements of the
obtained matrices. This results in

α2k2
11−α2w(2n−1)k11+α2w2(n2−n)−w = 0. (22)

Equation (22) has the following roots:

k′
11 =

1
2α

[
α(2n − 1)w +

√
w(α2w + 4)

]

k′′
11 =

1
2α

[
α(2n − 1)w −

√
w(α2w + 4)

]
(23)

The determinant of every principal minor of K is given by
det(Kr) = α2wr−1 [k11 − (r − 1)w], where r is the di-
mension of the minor considered. Therefore, since w ≥ 0,
K will be semipositive definite if and only if the condition
k11 ≥ (n − 1)w is satisfied. Therefore, only k′

11 guaran-
tees that matrix K is semipositive definite. Having found
K , we derive vector g by substituting k′

11 into (15) and
obtain

g = γ1[1/α 1 1 · · · 1], (24)

where

γ1 =
1
2

[
α
√

w(α2w + 4) − α2w
]

(25)

From (16) we obtain

r =
γ1yd

α
. (26)

Finally, the optimal control law can be written as

uopt(kT ) = γ1

[
yd − y(kT )

α
−

n∑

i=2

xi(kT )

]
. (27)

Case 2. We can also analyze the situation where instead
of the output error the whole state error vector is taken into
account. In this case we seek for uopt(kT ) that minimizes
the following cost functional:

J2(u) =
∞∑

k=0

[
u2(kT ) + eT (kT )We(kT )

]
, (28)

where

W =

⎡

⎢⎢⎢⎣

w1 0 · · · 0
0 w2 · · · 0
...

...
. . .

...
0 0 · · · w2

⎤

⎥⎥⎥⎦ , (29)
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with w1 and w2 being positive constants that adjust the
influence of the queue length error and the amount of
data under way error, respectively. The optimal control
uopt(kT ) can be found using (14), (15) and (16). Equa-
tion (17) needs to be modified to

K = AT K
(
In + bbT K

)−1

A + W . (30)

Solving (30) in the same way as before, we arrive at
the following form of matrix K:

K =

⎡

⎢⎢⎢⎢⎢⎢⎣

k11 α(k11 − w1) · · · M1

∗ α2(k11 − w1) + w2 · · · M2

...
...

...

∗ ∗ . . . M2

∗ ∗ · · · M3

⎤

⎥⎥⎥⎥⎥⎥⎦
, (31)

where

M1 = α[k11 − (n − 1)w1],

M2 = α2[k11 − (n − 1)w1], (32)

M3 = α2[k11 − (n − 1)w1] + (n − 1)w2,

and k11 is determined by

α2k2
11 − k11w1α

2(2n − 1)

+ w1(n − 1)(α2w1n − w2) − w1 = 0. (33)

Equation (33) has two roots,

k′
11 =

1
2α

[
w1α(2n − 1)

+
√

w2
1α

2 + 4w1w2(n − 1) + 4w1

]
,

k′′
11 =

1
2α

[
w1α(2n − 1)

−
√

w2
1α

2 + 4w1w2(n − 1) + 4w1

]
. (34)

Only k′
11 guarantees that K is semipositive definite. Now

we can obtain g by substituting k′
11 into (15),

g = γ2[1/α 1 · · · 1], (35)

where

γ2 =
α
√

w1(α2w1 + 4) + 4w1w2(n − 1) − α2w1

2 + 2w2(n − 1)
.

(36)
Now we can derive r from (16):

r =
γ2yd

α
. (37)

We conclude that the optimal control law for the second
quality criterion is given by

uopt(kT ) = γ2

[
yd − y(kT )

α
−

n∑

i=2

xi(kT )

]
. (38)

Remark 1. As w → 0 for the first criterion, and as
w1 → 0 for the second one, the influence of the output
error on the value of the functional diminishes, and gains
of the controllers decrease to zero. As w → ∞ for the
first criterion, and as w1 → ∞ for any finite w2 in the
second case, the impact of the control signal is negligible,
and the output error is to be reduced to zero as quickly
as possible, regardless of the value of the control signal.
The controllers then become dead-beat schemes, and their
gains approach unity. State variables x2, x3, . . . , xn are
the delayed values of the control signal. This means that,
as w2 → ∞ with finite w1 for the second cost functional,
the value of the control signal dominates the quality crite-
rion and gain γ2 drops to zero. The relation between γ1

and w for α = 0.97 is shown in Fig. 2. Relations be-
tween gain γ2 and the weighting coefficients w1 and w2

for the second controller are depicted in Figs. 3 and 4, re-
spectively.
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Fig. 2. Relation between γ1 and w for α = 0.97.
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Fig. 3. Relation between γ2 and w1 for w2 = 0.25, n = 9 and
α = 0.97.

3.2. Stability analysis. We notice that both quality cri-
teria lead to cT = [γ/α γ · · · γ 1], where γ is either
γ1 or γ2. Substituting this vector into (12), we obtain the
characteristic polynomial

det (zIn − Ac) = zn−1 [z − (1 − γ)] . (39)
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Fig. 4. Relation between γ2 and w2 for w1 = 1, n = 9 and
α = 0.97.

A discrete-time closed-loop system is asymptotically sta-
ble if all the roots of the characteristic polynomial of its
system state matrix are located inside the unit circle. The
roots of (39) lie inside the unit circle if γ ∈ (0, 2). Since
both γ1 and γ2 satisfy γ ∈ (0, 1), both of the proposed op-
timal controllers indeed guarantee the asymptotic stability
of the system.

3.3. Properties of the proposed strategy. Properties
of both optimal controllers will be formulated and proved
simultaneously, again denoting by γ both γ1 and γ2.

Theorem 1. If the proposed control strategy is applied,
then the queue length never exceeds its demand value yd.

Proof. Substituting (3) and (5) into (27) or (38), we obtain

uopt(kT ) = γ

[
yd

α
−

k−1∑

i=0

u(iT ) +
1
α

k−1∑

i=0

h(iT )

]
. (40)

We assume that y(mT ) ≤ yd at some time instant m ≥ 0.
We will prove that this theorem is also true for m+1. The
queue length at time m + 1 can be expressed as

y[(m + 1)T ] = y(mT ) + αu[(m − mRTT)T ]
− h(mT ). (41)

Using (3) and (40), we obtain

y[(m + 1)T ]
= y(mT )− h(mT )

+ αγ

[
yd

α
−

m−mRTT−1∑

i=0

u(iT )

+
1
α

m−mRTT−1∑

i=0

h(iT )

]

= γyd + y(mT )− γ
m−1∑

i=m−mRTT

h(iT )− h(mT )

− γ

[
α

m−mRTT−1∑

i=0

u(iT ) −
m−1∑

i=0

h(iT )

]

= yd − (1 − γ)[yd − y(mT )]

− γ

m−1∑

i=m−mRTT

h(iT ) − h(mT ). (42)

Since γ ∈ (0, 1) and h(kT ) is always nonnegative,
y[(m + 1)T ] ≤ yd. Because y(0) ≤ yd, we conclude
that y(kT ) ≤ yd for any k ≥ 0. This ends the proof. �

We notice from (8) that, if x1[(k + 1)T ] > 0, then
the available bandwidth d(kT ) is fully used. The next
theorem shows how to choose yd in order to ensure that
the queue length is strictly positive.

Theorem 2. If the desired queue length

yd > dmax(mRTT + 1/γ), (43)

then for any k ≥ mRTT + 1 the queue length is greater
than zero.

Proof. From (3) it follows that y(kT ) = 0 for
k < mRTT + 1. Furthermore, we notice that both (27)
and (38) lead to u(0) = γyd/α, with γ denoting γ1 or γ2,
respectively. Using the above observations and (43) with
(41), we notice that

y[(mRTT + 1)T ]
= αu(0) − h(mRTTT )
> dmax(γmRTT + 1) − dmax > 0. (44)

Now we shall demonstrate that the condition y(mT ) > 0
implies y[(m + 1)T ] > 0. From (42) and (43), we obtain

y[(m + 1)T ]
= γyd + (1 − γ)y(mT )

− γ
m−1∑

i=m−mRTT

h(iT ) − h(mT )

≥ γyd − γmRTTdmax − dmax

= γ

[
yd − dmax

(
mRTT +

1
γ

)]
> 0. (45)

It follows from (44) and (45) that, indeed, if (43) holds,
then y(kT ) > 0 for k ≥ mRTT + 1. This completes the
induction proof. �
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In order to be applied in a real network, any flow
control algorithm should generate transmission rates that
are always nonnegative and limited by some predictable,
finite value. This property is demonstrated in the next the-
orem.

Theorem 3. With the application of the proposed con-
troller, data transmission rates are always nonnegative
and upper bounded, i.e., for any k ≥ 0,

0 ≤ u(kT ) ≤ max(γyd/α, dmax/α) (46)

Proof. Let us assume that (46) holds for some m ≥ 0.
We shall prove that the proposition is true also for m + 1.
Using (40), we get

u[(m + 1)T ]

= γ

[
yd

α
−

m∑

i=0

u(iT ) +
1
α

m∑

i=0

h(iT )

]

= γ

[
yd

α
−

m−1∑

i=0

u(iT ) +
1
α

m−1∑

i=0

h(iT )

]

− γ

[
u (mT ) − 1

α
h (mT )

]

= (1 − γ)u(mT ) +
γ

α
h(mT ). (47)

From (40) we have u(0) = γyd/α. We conclude that (46)
indeed holds for any k ≥ 0. �

Let us finally notice that, if the source is not persis-
tent or if the round trip time is not known exactly, then a
similar approach as the one proposed by Pietrabissa et al.
(2006) can be adopted. In that paper an adaptive con-
troller combining the advantages of control-theoretic and
fuzzy-logic approaches was proposed to address the issue
of source saturation as well as uncertain, possibly time-
varying transmission delays. Furthermore, if the round
trip time is not known exactly, and in particular when
it is not a multiple of the discretisation period, then our
optimal controller can be equipped with a saturating ele-
ment and a similar approach to the one proposed by Bar-
toszewicz (2006) can also be effectively applied. How-
ever, when the round trip time is not known exactly, then
conditions stated in Theorems 1 and 2 become more re-
strictive.

4. Simulation results

To verify the properties of the proposed control strategy,
computer simulations have been performed. The sampling
time T was selected as 1 ms. The round trip time RTT
in the virtual circuit was assumed to be 8 ms. From this
follows mRTT = 8 and n = 9. The maximum avail-
able bandwidth dmax = 6 kb. The bandwidth actually
available for the data transfer is shown in Fig. 5. Sud-
den changes of large amplitude occur in the function d,
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Fig. 5. Available bandwidth.

Table 1. Parameters of the first controller.
w γ1 y′

d [kb] yd [kb]

10 0.9117 54.6 56
0.5 0.4899 60.3 62

which reflects the most difficult possible conditions in the
network. It is assumed that 3% of data is lost during the
transmission, which corresponds to α = 0.97.

The derived parameters for the first controller: the
gain γ1 obtained from (25), the minimum demand queue
length y′

d calculated from the condition (43), and the
queue length actually used in the simulation yd are shown
in Table 1. The results of the simulations are shown in
Figs. 6 and 7. The value of the control signal at the begin-
ning of the transmission process is shown in Fig. 8.
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Fig. 6. Buffer occupancy with the first controller for different
values of w.

Similar tests were performed with the second con-
troller. The weighting factor w2 was selected as 5 and the
resulting parameters of the second controller are shown
in Table 2. The gain γ2 was derived from (36), and y′

d

from (43). Simulation results are shown in Figs. 9 and 10.
Again, the value of the control signal at the beginning of
the transmission process is shown more clearly in Fig. 11.

It can be seen from the figures that the transmission
rates calculated by both the algorithms are always nonneg-
ative and upper bounded. Furthermore, the queue length
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Fig. 7. Transmission rates with the first controller for different
values of w.
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Fig. 8. Transmission rates with the first controller at the begin-
ning of transmission.
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Fig. 9. Buffer occupancy with the second controller for different
values of w1.

never exceeds its demand value, and for k ≥ mRTT + 1
it never decreases to zero. This means that there is no risk
of data loss resulting from buffer overflow, and that all of
the available bandwidth is used. Consequently, maximum
throughput possible in the network is achieved.

Table 2. Parameters of the second controller.
w1 γ2 y′

d [kb] yd [kb]

10 0.3779 63.9 66
0.5 0.1015 107.1 110
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Fig. 10. Transmission rates with the second controller for dif-
ferent values of w1.
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Fig. 11. Transmission rates with the second controller at the be-
ginning of transmission.

Both algorithms can be adjusted to specific require-
ments using the appropriate weighting factors. As could
be expected, changes in w of the first criterion have a sim-
ilar impact as changes of w1 for the second case. Larger
values of w and w1 result in faster tracking of the out-
put flow. This, in turn, allows allocating smaller buffers,
while still utilizing the full available bandwidth. On the
other hand, smaller w and w1 lead to smaller values of the
control signal at the beginning of the transmission process.
This also makes the control signal smoother, which is ad-
vantageous for transmission consistency. Changes in w2

for the second case have the opposite effect, as has already
been stated in the previous section.

In all the above simulations the main goal was to
fully utilize the available bandwidth. Therefore, the de-
mand queue length was selected according to Theorem 2.
However, the condition (43) may not be satisfied for two
reasons. Firstly, there may be not enough physical mem-
ory in the congested node. Secondly, we can deliberately
lower yd in order to reduce jitter and latency, and in this
way improve the Quality of Service (QoS) in the network.
Therefore, for the last simulation scenario we consider the
case of w1 = 10, w2 = 5 for the second functional, but
now we choose yd = 58 < y′

d. The results are presented
in Figs. 12 and 13. The unused bandwidth, which is equal
to d(kT ) − h(kT ), is presented in Fig. 14. As can be ob-



An optimal sliding mode congestion controller for connection-oriented communication networks. . . 95

served, the proposed control algorithm ensures fairly good
bandwidth utilization even with a lowered demand queue
length.
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Fig. 12. Buffer occupancy for lowered yd.
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Fig. 13. Transmission rate for lowered yd.
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Fig. 14. Unused bandwidth for lowered yd.

5. Conclusion

In this paper, two LQ optimal sliding-mode flow con-
trollers for a single virtual circuit in data transmission
networks were proposed. Possible data losses during the
transmission were explicitly taken into account. The de-
sign procedure was based on minimization of two differ-
ent quadratic cost functionals, and solving the resulting
matrix Ricatti equation. The closed-loop system stability

was demonstrated. The condition for full bandwidth con-
sumption was formulated and proved. It was also proved
that the rates generated by the controller are always non-
negative and upper bounded. Finally, it is worth point-
ing out that the results presented by Ignaciuk and Bar-
toszewicz (2008) may be regarded as a special case of the
more general analysis performed in this paper.
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