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This paper proposes a discretization technique for a descriptor differential system. The methodology used is both triangular
first order hold discretization and zero order hold for the input function. Upper bounds for the error between the continuous
and the discrete time solution are produced for both discretization methods and are shown to be better than any other
existing method in the literature.
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1. Introduction

In digital control, and in several areas of engineering, we
need to discretize continuous-time state-space equations.
The discretization process, though, introduces an error
between the continuous and the discretized solution.
More specifically, we study Linear Time Invariant (LTI)
differential systems of the form

Eẋ(t) = Ax(t) + Bu(t), (1)

with E, A ∈ F
n×n, which is the set of all square matrices

with elements in the field F = R or C, and det E = 0
and B ∈ F

n×l are constant matrices. We also assume that
state vector x(t) ∈ F

n×1, where each xi(t) : F �→ F, has
consistent initial conditions and that input vector u(t) ∈
F

l×1, where also each ui(t) : F �→ F.
In the special case where E is invertible and therefore

the system is the known state-space system, a zero-order
hold discretized model of (1) is given by Levine (2008).
A First Order Hold (FOH) discretized model of (1) by
extrapolation (resp. interpolation) of the first derivative of
the input is given by Toshiyuki and Mituhiko (1993) (resp.
Franklin et al., 1997). In the case where E is singular,
we may use the forward or backward Euler method,
or even the Gear method proposed by Sincovec et al.
(1981) in order to get a discretized singular model of (1).
In the literature on discretization methods for descriptor
differential systems, we mainly focus on two different
interesting methods. The first one (see Karageorgos
et al., 2010; 2011) is based on matrix pencil theory,
using the Weierstrass canonical form, and the second one

(see Karampetakis and Gregoriadou, 2011; Karampetakis,
2004; López-Estrada et al., 2012), which is also used is
the latest version of Wolfram Mathematica 9, is based on
the Laurent expansion of (sE − A)−1. Both the methods
are somehow equivalent using Zero Order Hold (ZOH)
approximation. This paper is an extension to the first
method, using triangular first order hold (interpolating
FOH) approximation.

Consequently, in this paper, we provide the following
interesting results: (a) two new upper bounds for the norm
of the difference between the continuous solution and the
discretized solution ‖x(kT )−xk‖ are given by extending
the already known upper bound suggested by Karageorgos
et al. (2011) for the zero order hold approximation and
providing a new upper bound for the first order hold
approximation, (b) the proposed bounds penalize our
choice for the sampling period T and thus we can estimate
a maximum period T if we demand the error to not exceed
a given value. Finally, ZOH and interpolating FOH are
compared via an example and advantages of interpolating
FOH over ZOH are presented.

2. Problem formulation and preliminaries

Linear generalized differential systems of the type
Eẋ(t) = Ax(t), E, A ∈ R

n×n with detE = 0, where
x ∈ R

n×1 and x0 is an initial value, are required in the
modelling of many physical, electrical and mechanical
problems. Systems of this type are related to matrix
pencil theory since the algebraic geometric and dynamic
properties stem from the structure of the associated pencil
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sE − A.
Given E, A ∈ F

m×n and an indeterminate s, the
matrix pencil sE − A is called regular when m = n and
det(sE − A) �= 0. In any other case, the pencil will be
called singular. The pencil sE − A is said to be strictly
equivalent to the pencil sẼ − Ã if and only if there exist
P, Q ∈ C

n×n such that P (sE − A)Q = sẼ − Ã, where
detP, det Q �= 0. It is known (Gantmacher, 1959) that
sE−A is strictly equivalent to its Weierstrass normal form
sEw−Aw, i.e., there exist nonsingular matrices P, Q such
that

P (sE − A) Q =
(

sIp − Jp 0
0 sHq − Iq

)

= sEw − Aw,

where Hq ∈ R
q×q is nilpotent and Jp ∈ R

p×p with p +
q = n,

Hq = blockdiag {Hq1 , . . . , Hqk
} ,

Hqi =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

μi×μi ,

i ≤ k with
∑k

i=1 μi = q,

Jp = blockdiag {Jσ1 (a1) , . . . , Jσ�
(a�)} ,

Jσi (ai) =

⎡
⎢⎢⎢⎢⎢⎣

ai 1 0 · · · 0
0 ai 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · ai

⎤
⎥⎥⎥⎥⎥⎦
∈ R

σi×σi ,

i ≤ �, with
∑�

i=1 σi = p. Here � ≥ 0 is the number of the
finite elementary divisors (f.e.d.) of sE − A of the form
(s − ai)

σi which uniquely characterize the block sIp−Jp.
The infinite elementary divisors (i.e.d.) of sE −A, which
uniquely characterize the block sHq − Iq , are given by

wμ1 , wμ2 , . . . , wμk ,

where μi are the sizes of the Jordan blocks Hqi , i ∈ k, of
Hq and they can be defined as the f.e.d.’s of the “dual”
pencil E − wA at w = 0. The relation between the
i.e.d. and the infinite pole-zero structure of sE − A is
given by Vardulakis and Karcanias (1983). The matrices
P, Q used for transforming sE − A to sEw − Aw are not
unique. A numerical algorithm is given by Duan (2010)
for the calculation of these matrices, whereas a theoretical
algorithm based on the finite and infinite generalized
eigenvectors of the matrix pencil sE − A is given by
Vardulakis (1991).

Now, we consider the transformation x(t) = Qy(t)
and obtain the following results. As it has been already
mentioned about the mathematical tools used during the
discretization process, only the Weierstrass Canonical
Form (WCF) is required. As this paper extends the
work of Karageorgos et al. (2010) using first order hold
approximation instead of zero order hold in order to get
better results, some commonly used lemmas are presented
without their proofs, although full references are provided.
We already know that the system (1) has the following
continuous time solution (see Dai, 1989; Karageorgos
et al., 2010; Koumboulis and Mertzios, 1999):

x(t)

= Qn,p

(
eJp(t−t0)yp(t0) +

∫ t

t0

eJp(t−s)Bp,lu(s) ds

)

− Qn,q

q∗−1∑
i=0

Hi
qBq,lu

(i)(t), (2)

where

Q =
[
Qn,p Qn,q

]
, B =

[
Bp,l

Bq,l

]
,

y(t0) =
[
yp(t0)
yq(t0)

]
= Q−1x(t0)

and u(i)(t) is the i-th derivative of the input function u(t).
However, (2) can be transformed in a more useful format.

We have

x(t)

= Qn,pe
Jp(t−t0)yp(t0) + Qn,qyq(t0)

+ Qn,p

∫ t

t0

eJp(t−s)Bp,lu(s) ds − Qn,qyq(t0)

− Qn,q

q∗−1∑
i=0

Hi
qBq,lu

(i)(t)

=
[
Qn,p Qn,q

] [eJp(t−t0) Op,q

Oq,p Iq

] [
yp(t0)
yq(t0)

]

+ Qn,p

∫ t

t0

eJp(t−s)Bp,lu(s) ds

+ Qn,q

⎛
⎝−yq(t0) −

q∗−1∑
i=0

Hi
qBq,lu

(i)(t))

⎞
⎠ .

In order to obtain consistent initial conditions for the
system (1) (see Karageorgos et al., 2010), we should
consider that [

yp(t0)
yq(t0)

]
= Q−1x(t0),

−yq(t0) =
q∗−1∑
i=0

Hi
qBq,lu

(i)(t0)),
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and as a result we obtain

x(t) = Q

[
eJp(t−t0) Op,q

Oq,p Iq

]
Q−1x(t0)

+ Qn,p

∫ t

t0

eJp(t−s)Bp,lu(s) ds

+ Qn,q

q∗−1∑
i=0

Hi
qBq,l

(
u(i)(t0) − u(i)(t))

)
.

Moreover, by definition, the state-transition matrix
of the autonomous linear descriptor differential system,
Eẋ(t) = Ax(t), is given by

Φ(t, t0) = Q

[
eJp(t−t0) Op,q

Oq,p Iq

]
Q−1.

Finally, after noticing that

Φ(t, s)Qn,p = Φ(t, s)
[
Qn,p Qn,q

] [ Ip,p

Oq,p

]

=
[
Qn,pe

Jp(t−s) Qn,q

] [ Ip,p

Oq,p

]

= Qn,pe
Jp(t−s),

we get

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, s)Qn,pBp,lu(s) ds

+ Qn,q

q∗−1∑
i=0

Hi
qBq,l

(
u(i)(t0) − u(i)(t)

)
. (3)

Now, let T > 0 be a constant sampling period. We
also assume that t0 = 0. We consider two cases. In
the first one, the input function u(τ) is constant in the
interval [kT, (k + 1)T ) and we approximate it by using
ZOH approximation,

u(τ) = u(kT ), ∀τ ∈ [kT, (k + 1)T ).

In the second case, the input function u(τ) is not constant
in the interval [kT, (k + 1)T ) and we approximate it
by using triangular first order hold (interpolating FOH)
approximation,

u(τ) = u(kT ) +
u((k + 1)T ) − u(kT )

T
(τ − kT ),

∀τ ∈ [kT, (k + 1)T ). In order to combine these formulas
into one, we write

u(τ) = u(kT ) + χtf
u((k + 1)T ) − u(kT )

T
(τ − kT ),

∀τ ∈ [kT, (k + 1)T ), where χtf = 1 or 0 depending
on whether we consider interpolating FOH or ZOH
approximation, respectively. For simplicity, hereafter, we

use the notation xk := x(kT ), ∀k = 0, 1, 2, . . . . From
Eqn. (3), by setting t = kT and t = (k + 1)T , we get

xk = Φ(kT, 0)x0 + Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
0 − u

(i)
k )

+
∫ kT

0

Φ(kT, s)Qn,pBp,lu(s) ds, (4)

xk+1 = Φ((k + 1)T, 0)x0

+ Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
0 − u

(i)
k+1)

+
∫ (k+1)T

0

Φ((k + 1)T, s)Qn,pBp,lu(s) ds.

(5)

Based on the group property of the flow, we arrive at
the following lemma.

Lemma 1. The following equalities hold:

Φ(T, 0)Φ(kT, s) = Φ((k + 1)T, s),
Φ(T, 0)Qn,q = Qn,q.

From Eqns. (4) and (5) and using the above lemma,
we multiply xk by Φ(T, 0) and then subtract from xk+1 to
finally get

xk+1 − Φ(T, 0)xk

= Qn,q

q∗−1∑
i=0

Hi
qBq,l((u

(i)
0 − u

(i)
k+1)

− Φ(T, 0)Qn,q︸ ︷︷ ︸
Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
0 − u

(i)
k )

+
∫ (k+1)T

kT

Φ((k + 1)T, s)Qn,pBp,lu(s) ds,

and therefore the following recursive formula is derived:

xk+1 = Φ(T, 0)xk

+ Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
k − u

(i)
k+1)

+
∫ (k+1)T

kT

Φ((k + 1)T, s)Qn,pBp,lu(s) ds.

(6)
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But

∫ (k+1)T

kT

Φ((k + 1)T, s)Qn,pBp,lu(s) ds

s=kT+w=
∫ T

0

Φ((k + 1)T, kT + w)Qn,p

× Bp,lu(kT + w) dw

=
∫ T

0

Φ(T − w, 0)Qn,p

× Bp,l

(
uk + χtf

uk+1 − uk

T
w

)
dw

=
∫ T

0

Φ(T − w, 0)Qn,pBp,luk dw

+ χtf

∫ T

0

Φ(T − w, 0)Qn,p

× Bp,l
uk+1 − uk

T
w dw. (7)

Finally, by setting λ = T −w in (7) and replacing in
(6), we get the following recursive formula:

xk+1 = Φ(T, 0)xk + Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
k − u

(i)
k+1)

+
∫ T

0

Φ(λ, 0) dλQn,pBp,luk

+ χtf

∫ T

0

Φ(λ, 0)(T − λ) dλ

× Qn,pBp,l
uk+1 − uk

T
. (8)

The relation (8) is the discretized model of (1) under ZOH
or interpolating FOH approximation.

Theorem 1. The solution of (3) under interpolating FOH
(χtf = 1) or ZOH (χtf = 0) approximation is given by
the following analytic formula:

xk

= Φ(kT, 0)x0 + Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
0 − u

(i)
k )

+
k−1∑
j=0

∫ T

0

Φ(jT + λ, 0) dλQn,pBp,luk−j−1

+ χtf

k−1∑
j=0

∫ T

0

Φ(jT + λ, 0)(T − λ) dλQn,pBp,l

× uk−j − uk−j−1

T
. (9)

Proof. First of all, for k = 0 in (8) we have the case

k = 1 in (9). We assume that this is true for k − 1, that is,

xk−1 = Φ((k − 1)T, 0)x0

+ Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
0 − u

(i)
k−1)

+
k−2∑
j=0

∫ T

0

Φ(jT + λ, 0)dλQn,pBp,luk−j−2

+ χtf

k−2∑
j=0

∫ T

0

Φ(jT + λ, 0)(T − λ)dλQn,pBp,l

× uk−j−1 − uk−j−2

T
,

and we prove it for k. By replacing xk−1 in the recursive
formula (8), we get

xk

= Φ(T, 0)

(
Φ((k − 1)T, 0)x0

+ Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
0 − u

(i)
k−1)

+
k−2∑
j=0

∫ T

0

Φ(jT + λ, 0) dλQn,pBp,luk−j−2

+ χtf

k−2∑
j=0

∫ T

0

Φ(jT + λ, 0)(T − λ) dλQn,pBp,l

× uk−j−1 − uk−j−2

T

)

+
∫ T

0

Φ(λ, 0) dλQn,pBp,luk−1

+ χtf

∫ T

0

Φ(λ, 0)(T − λ) dλQn,pBp,l
uk − uk−1

T

+ Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
k−1 − u

(i)
k )

or, equivalently,

xk

= Φ(kT, 0)x0 + Φ(T, 0)Qn,q︸ ︷︷ ︸
Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
0 − u

(i)
k−1)

+ Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
k−1 − u

(i)
k )

+
k−2∑
j=0

∫ T

0

Φ((j + 1)T + λ, 0) dλQn,pBp,luk−j−2
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+
∫ T

0

Φ(λ, 0) dλQn,pBp,luk−1

+ χtf

k−2∑
j=0

∫ T

0

Φ((j + 1)T + λ, 0)(T − λ) dλ

× Qn,pBp,l
uk−j−1 − uk−j−2

T

+ χtf

∫ T

0

Φ(λ, 0)(T − λ) dλQn,pBp,l
uk − uk−1

T
.

Now, by setting i = j + 1 in order to group similar terms,
we have

xk

= Φ(kT, 0)x0

+ Qn,q

q∗−1∑
i=0

Hi
qBq,l(u

(i)
0 − u

(i)
k−1 + u

(i)
k−1 − u

(i)
k )

+
k−1∑
i=1

∫ T

0

Φ(iT + λ, 0) dλQn,pBp,luk−i−1

+
∫ T

0

Φ(λ, 0) dλQn,pBp,luk−1

+ χtf

k−1∑
i=1

∫ T

0

Φ(iT + λ, 0)(T − λ) dλQn,pBp,l

× uk−i − uk−i−1

T

+ χtf

∫ T

0

Φ(λ, 0)(T − λ) dλ

× Qn,pBp,l
uk − uk−1

T
,

which completes the induction. �

3. Error analysis and upper bound

Having already found an analytic formula for the
discretized solution xk, we provide an analytic expression
for the norm of the difference between the continuous time
solution at the moments t = kT and the discrete points
xk of the discretized solution. Moreover, we bound this
norm and we end up with two upper bounds for ZOH and
interpolating FOH, respectively. From (3) and (9), we get

x(kT ) − xk

=
∫ kT

0

Φ(kT, s)Qn,pBp,lu(s) ds

−
k−1∑
j=0

∫ T

0

Φ(jT + λ, 0)Qn,pBp,l

×
(

uk−j−1 + χtf (T − λ)
uk−j − uk−j−1

T

)
dλ

or, by making the substitution T − λ = w,

x(kT ) − xk

=
∫ kT

0

Φ(kT, s)Qn,pBp,lu(s) ds

−
k−1∑
j=0

∫ T

0

Φ((j + 1)T − w, 0)Qn,pBp,l

×
(

uk−j−1 + χtfw
uk−j − uk−j−1

T

)
dw

=
k−1∑
j=0

∫ (j+1)T

jT

Φ(kT, s)Qn,pBp,lu(s) ds

−
k−1∑
j=0

∫ T

0

Φ((j + 1)T − w, 0)Qn,pBp,l

×
(

uk−j−1 + χtfw
uk−j − uk−j−1

T

)
dw.

By setting i = k − j − 1, we get

x(kT ) − xk

=
k−1∑
j=0

∫ (j+1)T

jT

Φ(kT, s)Qn,pBp,lu(s) ds

−
k−1∑
i=0

∫ T

0

Φ((k − i)T − w, 0)Qn,pBp,l

×
(

ui + χtfw
ui+1 − ui

T

)
dw

j=i
=

k−1∑
i=0

∫ (i+1)T

iT

Φ(kT, s)Qn,pBp,lu(s) ds

−
k−1∑
i=0

∫ T

0

Φ((k − i)T − w, 0)Qn,pBp,l

×
(

ui + χtfw
ui+1 − ui

T

)
dw.

We now set λ = w + iT and have

x(kT ) − xk

=
k−1∑
i=0

∫ (i+1)T

iT

Φ(kT, s)Qn,pBp,lu(s) ds

−
k−1∑
i=0

∫ (i+1)T

iT

Φ(kT − λ, 0)Qn,pBp,l

×
(

ui + χtf (λ − iT )
ui+1 − ui

T

)
dλ
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λ=s=
k−1∑
i=0

∫ (i+1)T

iT

Φ(kT, s)Qn,pBp,lu(s) ds

−
k−1∑
i=0

∫ (i+1)T

iT

Φ(kT, s)Qn,pBp,l

×
(

ui + χtf (s − iT )
ui+1 − ui

T

)
ds.

Thus, finally, we have

x(kT ) − xk

=
k−1∑
i=0

∫ (i+1)T

iT

Φ(kT, s)Qn,pBp,l

×
(

u(s) − ui − χtf (s − iT )
ui+1 − ui

T

)
ds. (10)

Having now in compact form the difference between
the continuous and the discretized solution, we have the
following interesting results.

Theorem 2. The upper bound of the error of (3) under
ZOH (χtf = 0) approximation is given by

‖x(kT ) − xk‖
≤ M1‖Qn,p‖‖Bp,l‖‖Q‖‖Q−1‖

×
{(e‖Jp‖T − ‖Jp‖T − 1

) (
e‖Jp‖kT − 1

)
‖Jp‖2

(
e‖Jp‖T − 1

)

+
√

q
kT 2

2

}
, (11)

while under interpolating FOH (χtf = 1) approximation
it is given by

‖x(kT ) − xk‖
≤ 1

8
M2T

2‖Qn,p‖‖Bp,l‖

× ‖Q‖‖Q−1‖
{

e‖Jp‖kT − 1
‖Jp‖ + kT

√
q

}
. (12)

Proof. For ZOH approximation (χtf = 0), we get

‖x(kT ) − xk‖
≤ ‖Qn,p‖‖Bp,l‖

×
k−1∑
i=0

∫ iT+T

iT

‖Φ(kT, s)‖‖u(s)− ui‖ ds.

But from Theorem 12.2.3 of Davidson and Donsig (2010),
we have that

‖u(s) − ui‖ ≤ (s − iT )‖u′(c)‖
with c ∈ (iT, iT + T ). Also, we have that

‖Φ(kT, s)‖ = ‖Q
[
eJp(kT−s) Op,q

Oq,p Iq

]
Q−1‖

≤ ‖Q‖
{
‖eJp(kT−s)‖ +

√
q
}
‖Q−1‖

and ‖eJpkT ‖ ≤ e‖Jp‖kT , and so we finally get

‖x(kT ) − xk‖
≤ M1‖Qn,p‖‖Bp,l‖‖Q‖e‖Jp‖kT ‖Q−1‖

×
k−1∑
i=0

∫ iT+T

iT

e−‖Jp‖s(s − iT ) ds

+ M1‖Qn,p‖‖Bp,l‖‖Q‖‖Q−1‖√q

×
k−1∑
i=0

∫ iT+T

iT

(s − iT ) ds,

where Mk = ‖u(k)(t)‖∞ , t ∈ [0, kT ]. By doing some
calculations, we get

k−1∑
i=0

∫ iT+T

iT

e−‖Jp‖s(s − iT ) ds

=
e‖Jp‖T − ‖Jp‖T − 1

‖Jp‖2
· 1 − e−‖Jp‖kT

e‖Jp‖T − 1

and

k−1∑
i=0

∫ iT+T

iT

(s − iT ) ds = k
T 2

2
,

and, finally, the upper bound formula for ZOH is

‖x(kT ) − xk‖
≤ M1‖Qn,p‖‖Bp,l‖‖Q‖‖Q−1‖

×
{(e‖Jp‖T − ‖Jp‖T − 1

) (
e‖Jp‖kT − 1

)
‖Jp‖2

(
e‖Jp‖T − 1

)

+
√

q
kT 2

2

}
.

Now for interpolating FOH approximation (χtf = 1), we
have that

‖x(kT ) − xk‖

≤ ‖Qn,p‖‖Bp,l‖
(

k−1∑
i=0

∫ (i+1)T

iT

‖Φ(kT, s)‖

× ‖u(s) − ui − (s − iT )
ui+1 − ui

T
‖ ds

)
.

The polynomial ui + (s − iT )ui+1−ui

T interpolates the
function u(s), and so

||u(s) − ui−(s − iT )
ui+1 − ui

T
||

≤ 1
4(n + 1)

M2

(
b − a

n

)n+1

=
1
8
M2T

2
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because n = 1 and b − a = (iT + T ) − iT = T . At this
point, we have

‖x(kT ) − xk‖

≤ 1
8
M2T

2‖Qn,p‖‖Bp,l‖
k−1∑
i=0

∫ (i+1)T

iT

‖Φ(kT, s)‖ ds.

Finally, because

e‖Jp‖kT
k−1∑
i=0

∫ (i+1)T

iT

e−‖Jp‖sds

= e‖Jp‖kT
k−1∑
i=0

(
e−‖Jp‖iT

‖Jp‖ − e−‖Jp‖(iT+T )

‖Jp‖
)

=
e‖Jp‖kT − 1

‖Jp‖ ,

we get that the upper bound for interpolating FOH is,

‖x(kT ) − xk‖
≤ 1

8
M2T

2‖Qn,p‖‖Bp,l‖‖Q‖‖Q−1

× ‖
{

e‖Jp‖kT − 1
‖Jp‖ + kT

√
q

}
.

�
The formulas (11) and (12), for ZOH and

interpolating FOH, respectively, are the upper bounds we
wanted to prove.

The difference of these two formulas from the
respective formulas of Karageorgos et al. (2010; 2011) is
the result of two factors. Firstly, the discretization of the
input function u(t) used in this paper is not only zero order
hold approximation but, in addition to this, we are also
using triangular first order hold discretization. Secondly,
a sharp upper bound for ‖Φ(kT, s)‖, which appears in
both the cases (ZOH and interpolating FOH), contributes
to a better general result. Now, we can proceed to the
comparison throughout an example.

4. Illustrative example

Let us now consider a system of the form Eẋ(t) =
Ax(t) + Bu(t), that is,

⎡
⎢⎢⎣
−1.5 2 1.5 0.5
0.5 0 −0.5 −0.5
0.5 −1 −0.5 0.5
0 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

0 0 −1 1
0.5 0 −0.5 −0.5
−0.5 1 1.5 −0.5
0.5 −1 −0.5 0.5

⎤
⎥⎥⎦

⎡
⎢⎢⎣
x1(t)
x2(t)
x3(t)
x4(t)

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
2
1
1

⎤
⎥⎥⎦ [u(t)

]
.

Then there exist nonsingular matrices

P =

⎡
⎢⎢⎣

1 1 1 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥⎦ , Q =

⎡
⎢⎢⎣
1 2 1 1
1 1 0 0
0 0 1 0
1 0 0 1

⎤
⎥⎥⎦

such that

PEQ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , PAQ =

⎡
⎢⎢⎣
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

Since there are not unique Q, P that transform sE −
A to sEw − Aw and the error depends on Q, we may
select the one with the least norm. However, we do not
have to proceed with such details. For this system we have
p = q = 2, n = 4. Assume also that u(t) = t3, k = 500
and T = 10−3. As a result, M1 = ‖u(1)(t)‖∞ = 3/4 and
M2 = ‖u(2)(t)‖∞ = 3 with t ∈ [0, kT ]. Moreover,

Q4,2 =

⎡
⎢⎢⎣
1 2
1 1
0 0
1 0

⎤
⎥⎥⎦ , B2,1 =

[
0
2

]
.

Therefore, ‖Q‖ = 2
√

3, ‖Q−1‖ =
√

21/2, ‖Q4,2‖ =√
8 and ‖B2,1‖ = 2. Applying these values to the

formulas (11) and (12), we get that the upper bound for
ZOH is 0.02529229 while for interpolating FOH it is
2.529615× 10−5, about 10−3 times smaller.

Also, we can estimate the maximum allowed
sampling period for which the error does not exceed
a given value. For instance, if we want the error
not to exceed 10−2 for k = 100, for ZOH we get
Tmax = 0.00153203 while for interpolating FOH Tmax =
0.0110291. This proves the fact that, due to the better
approximation that interpolating FOH offers instead of
ZOH, we do not need to sample our system so often in
order to get it under the maximum error allowed.

The last thing to do is to compare these two upper
bounds as steps (k) increase. Table 1 shows the values of
the upper bounds for T = 10−3. From this table we can
see that, although for small k ZOH is quite good,when k
increases interpolating FOH is significantly better.

5. Conclusion

In this paper, new upper bound formulas regarding the
discretization error of a singular descriptor system are
considered. These two bounds differ on the way we
approximate the input function, either zero order hold
or triangular first order hold (interpolating FOH). In
addition to this, the improvements of these sharper bounds
stem from the upper bound of ‖Φ(kT, s)‖ which yields
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Table 1. Comparison of upper bounds.
k ZOH FOH

1 4.0659 × 10−5 4.0664 × 10−8

2 8.1347 × 10−5 8.1357 × 10−8

3 1.2206 × 10−4 1.2208 × 10−7

4 1.6281 × 10−4 1.6283 × 10−7

5 2.0359 × 10−4 2.0361 × 10−7

10 4.0791 × 10−4 4.0796 × 10−7

100 0.0042190 4.2195 × 10−6

500 0.025292 2.5296 × 10−5

750 0.043766 4.3773 × 10−5

1000 0.069024 6.9037 × 10−5

a better overall result than that which was proposed
by Karageorgos et al. (2011). The whole theory is
illustrated by an example. The results presented in
this work and by Karageorgos et al. (2011; 2010) can
be further extended to descriptor systems with delay
(Jugo, 2002; Chen and Wang, 1999), descriptor fractional
systems (Kaczorek, 2013) or even more to autoregressive
moving average representations. Alternatively, we can
use the fundamental matrix sequence of the matrix pencil
sE − A, in order to extend the results presented by
Karampetakis and Gregoriadou (2011) to the triangular
first order hold method and compare with the existing
results of this work. Instead of the Weierstrass canonical
form, other canonical forms can also be used like the
ones presented by Kaczorek (2003). Other hold methods
can also be applied, e.g., the first order hold method
(backward-Euler approximation of the derivative of the
input) that can be combined with several hold methods
for the approximation of the derivative of the inputs.

Instead of studying the use of zero order hold
devices, we can also study, with the same approach that
we employ in this work, the use of fractional order hold
devices (or generalized first order (Jury, 1958)) that can
improve, if properly tuned, the performance of hybrid
control systems (Basterretxea et al., 2008).
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