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In this addendum we address some unintentional omission in the description of the swimming model in our recent paper

(Khapalov, 2013) .

Keywords: swimming models, coupled PDE/ODE systems, nonstationary Stokes equation.

In our recent work (Khapalov, 2013) we introduced the
following mathematical model for a swimmer whose body
consists of finitely many subsequently connected parts
Si(zi(t) linked by rotational and elastic Hooke forces:
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In the above, ) is a bounded domain in R® with
boundary 92 of class C?, y(z,t) and p(z,t) are respec-
tively the velocity and the pressure of the fluid at point
x = (x1,22,23) €  at time ¢, while v is the kinematic
viscosity constant.

The swimmer in (1)—(3) is modeled as a collection of
n open connected bounded sets S;(z;(t)),s = 1,...,n,
of non-zero measure, identified with the fluid within the
space they occupy. The points z;(t) are their respective
centers of mass. The sets S;(z;(t)) are viewed as the
given sets S;(0) (“0” stands for the origin) that have been
shifted to the respective positions z; () without changing
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their orientation in space. Respectively, fori = 1,...,n,
- 1, if € 57(21(75)),
fila,t) = { 0, if x € O\Si(z(t)).

Our goal in this addendum is to address the follow-
ing unintentional omission in the description of the force
term in (3). Namely, the forces described in this term are
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intended to be internal relative to the swimmer. However,
the form of (3) satisfies this condition in terms of forces
applied to z;(t) as the centers of mass of S;(z;(¢)) only
if the sets .5;(0)’s have identical measure (for details, see
Khapalov, 2010; 2013).

In the general case, one needs to make some addi-
tional normalizing adjustments in the magnitudes of the
respective terms in (3) which take into account the size of
supports S;(z;(t)), for example, as follows:
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The added extra coefficient (mes (5;(0))~! at each
characteristic function &;(z,t) ensures that all the forces
of the swimmer are internal (see also the respective dis-
cussion in the end of Chapter 11 of the book by Khapalov
(2010) for the 2-D case). In the case of sets S;(z;(t))
of identical measure, the aforementioned (identical) extra
coefficients can be viewed as included in k;’s and v;’s.

The above change of the forcing term in (3) to (4) is
essentially a typing error, which does not affect the rest of
our previous work (Khapalov, 2013).
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