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A novel method for feature extraction and recognition called Kernel Fuzzy Discriminant Analysis (KFDA) is proposed in
this paper to deal with recognition problems, e.g., for images. The KFDA method is obtained by combining the advantages
of fuzzy methods and a kernel trick. Based on the orthogonal-triangular decomposition of a matrix and Singular Value
Decomposition (SVD), two different variants, KFDA/QR and KFDA/SVD, of KFDA are obtained. In the proposed method,
the membership degree is incorporated into the definition of between-class and within-class scatter matrices to get fuzzy
between-class and within-class scatter matrices. The membership degree is obtained by combining the measures of features
of samples data. In addition, the effects of employing different measures is investigated from a pure mathematical point of
view, and the t-test statistical method is used for comparing the robustness of the learning algorithm. Experimental results
on ORL and FERET face databases show that KFDA/QR and KFDA/SVD are more effective and feasible than Fuzzy
Discriminant Analysis (FDA) and Kernel Discriminant Analysis (KDA) in terms of the mean correct recognition rate.
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1. Introduction

Face recognition has been investigated in various areas
such as pattern recognition, image processing, and
computer vision. In practice, face recognition is a
very difficult problem due to a substantial variation in
light direction, different face poses, and diversified facial
expressions. Linear Discriminant Analysis (LDA) is
a well-known supervised classifier in statistical pattern
recognition, which is widely used as a dimensionality
reduction technique in face recognition, but it cannot
be applied directly to small sample problems (Raudys
and Jain, 1991) due to the singularity of the within-class
scatter matrix. In order to use LDA for small sample
problems such as face recognition, much research has
been done (e.g., Gao et al.,2008; Koc and Barkana, 2011;

Duda et al., 2012; Fukunaga, 1990; Hastie et al., 1991;
1994; 1995; Liu et al., 2008; Jain and Zongker, 1997; Lee
et al., 2001; Pal and Eluri, 1998; Swets and Weng, 1996;
Belhumeur and Kriegman, 1997; Yang and Yang, 2003;
2001; Hong and Yang, 2005; Friedman, 1989).

The most popular approach, the Fisher face, was
proposed by Swets and Weng (1996) as well as Belhumeur
and Kriegman (1997). There, Principal Component
Analysis (PCA) is first used to reduce the dimension of
the original space and then the classical Fisher Linear
Discriminant Analysis (FLDA) is applied to reduce the
space dimension. A limitation of the Fisher face is
that some effective discriminatory information may be
lost and the PCA step cannot guarantee the transformed
within-class scatter matrix to be nonsingular. Woźniak
and Krawczyk (2012) present a significant modification to
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the AdaSS (Adaptive Splitting and Selection) algorithm.
The method is based on simultaneous partitioning the
feature space and an assignment of a compound classifier
to each of the subsets.

In order to deal with the singularity problem, a
popular method is to add a singular value perturbation
to the within-class scatter matrix (e.g., Hong and Yang,
2005). Penalized Discriminant Analysis (PDA) is another
regularized method (e.g., Hastie et al., 1994; 1995). Its
goals are not only to overcome small sample problems
but also to smooth the coefficients of discriminant vectors.
The methods based on the null subspace have LDA+PCA
and direct-LDA (e.g., Chen et al., 2000; Yu and Yang,
2001). Zhuang and Dai (2005; 2007) develop an Inverse
Fisher Discriminant Analysis (IFDA) method, which
modifies the procedure of PCA and derives regular and
irregular information from the within-class scatter matrix
by the inverse Fisher discriminant criterion.

Recently, many kernel-based algorithms have
been proposed, such as Support Vector Machines
(SVMs) (Vapnik, 1998), Kernel Fisher Discriminant
Analysis (KFDA), Kernel Principal Component Analysis
(KPCA) (Schölkopf et al., 1998), Kernel Canonical
Correlation Analysis (KCCA) (Liu and Xue, 2012),
kernel fuzzy Support Vector Regressions (SVRs) (Loog
et al., 2001), particle swarm optimization Kernel-based
Principal Component Analysis (KPCA) and support
vector machines for an electric Power Quality (PQ)
problem classification (Pahasa and Ngamroo, 2012),
Weighted Kernel Discriminant Analysis (WKDA) (Gao
and Fan, 2011), or the range space of the between-class
scatter matrix principal component analysis method
(PCA/range(Sb)) (Gao et al., 2012). We can also mention
here the within-class scatter matrix null space median
method (M-N(Sw)) (Gao et al., 2013).

Świercz (2010) proposed a classification algorithm
which is based on the matching shape idea of
non-stationary signals available from observations. By
taking advantage of the technology of fuzzy sets (Zadeh,
1965), some studies have been carried out for fuzzy
pattern recognition (e.g., Kwak and Pedrycz, 2005; Keller
et al., 1985; Zheng et al., 2006b; 2005a; Wu and Zhou,
2006; Yang et al., 2009). Zheng et al. (2006b) proposed
a kernel Fisher discriminant algorithm with fuzzy set
theory (FKFD). The key idea of FKFD is that KPCA
transformation is implemented in the original image space
to transform all samples into a low-dimension space with a
kernel trick, and then the FKNN algorithm is implemented
in the KPCA transformed space.

In this paper, inspired by the above works, we
extend Fuzzy Discriminant Analysis (FDA) to a nonlinear
model and obtain a new learning method called kernel
fuzzy discriminant analysis. The main idea of KFDA is
that the measure computation and the fuzzy membership
matrix U are implemented in the original image space

with the help of the FKNN algorithm, and then the
kernel transformation is implemented with a kernel
trick and a fuzzy membership matrix U . A key step
of measure is how to incorporate the contribution of
each training sample into the fuzzy membership matrix
U . Detailed descriptions will be displayed in the
following. Meanwhile, based on QR decomposition
and SVD, we get two different variants, KFDA/QR
and KFDA/SVD, of KFDA. Since QR decomposition
on a small size matrix is adopted, two superiorities
of our method are their computational efficiency and
their ability of avoiding singularities. In the proposed
method, the membership degree is incorporated into
the definition of between-class and within-class scatter
matrices to get fuzzy between-class and within-class
scatter matrices. According to the recognition rates, we
compare our method with FDA/QR, FDA/SVD, KDA/QR
and KDA/SVD under different measures and kernel
functions. Experimental results on ORL and FERET face
databases show that KFDA compares favorably with FDA
and KDA.

The rest of this paper is organized as follows. Linear
discriminant analysis, Kernel Discriminant Analysis
(KDA) and fuzzy discriminant analysis are briefly
introduced and discussed in Section 2. Detailed
descriptions of KFDA/QR, KFDA/SVD and different
measures are produced in Section 3. In Section 4, in order
to demonstrate the efficiency of the method we proposed,
many experiments are done under different measures.
Conclusions and future work are summarized in Section 5.

2. Review of LDA, KDA and FDA

2.1. LDA. In this subsection, we first introduce some
notation. Given a data matrix X = [x1, . . . , xN ] ∈
R

n×N , where x1, . . . , xN ∈ R
n are samples, we consider

finding a linear transformation G ∈ R
n×l that maps

each xi to yi ∈ R
l with yi = GT xi. Assume that the

original data in X are partitioned into c classes as X =
[X1, . . . , Xc], where Xi ∈ R

n×ni contains data points of
the i-th class and

∑c
i=1 ni = N . In discriminant analysis,

between-class, within-class and total scatter matrices are
respectively defined as follows (Fukunaga, 1990):

Sb =
1
N

c∑

i=1

ni(mi − m0)(mi − m0)T ,

Sw =
1
N

c∑

i=1

∑

x∈Xi

(x − mi)(x − mi)T ,

St =
1
N

N∑

i=1

(xi − m0)(xi − m0)T ,

(1)

where mi = (1/ni)
∑ni

j=1 xj is the centroid of the i-th

class and m0 = (1/N)
∑N

j=1 xj is the global centroid of
the training data set.
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LDA aims to find an optimal transformation G such
that the class structure of the original high-dimensional
space is preserved in the low-dimensional space. From
(1), we can easily show that St = Sb + Sw and see that
the traces

(Sb) =
1
N

c∑

i=1

ni‖mi − m0‖2
2

and

(Sw) =
1
N

c∑

i=1

∑

x∈Xi

‖x − mi‖2
2

measure the closeness of vectors within the classes and
the separation between classes, respectively.

In the low-dimensional space resulting from the
linear transformation G, the between-class, within-class
and total scatter matrices become SL

b = GT SbG,
SL

w = GT SwG and SL
t = GT StG, respectively. An

optimal transformation G would maximize trace(SL
b ) and

minimize trace(SL
w). Common optimization problems in

LDA include (see Fukunaga, 1990)

max
G

tr{(SL
w)−1SL

b } and min
G

tr{(SL
b )−1SL

w}. (2)

The optimization problems in (2) are equivalent to
finding generalized eigenvectors satisfying Sbg = λSwg
with λ �= 0. The solution can be obtained by using
the eigen-decomposition to the matrix S−1

w Sb if Sw is
nonsingular or S−1

b Sw if Sb is nonsingular. It was
shown by Fukunaga (1990) that the solution can also be
obtained by computing the eigen-decomposition of the
matrix S−1

t Sb if St is nonsingular. There are at most
c − 1 eigenvectors corresponding to nonzero eigenvalues
since the rank of the matrix Sb is bounded from above
by c − 1. Therefore, the number of retained dimensions
in LDA is at most c − 1. A stable way to compute
the eigen-decomposition is to apply SVD on the scatter
matrices. Details can be found in the work of Swets and
Weng (1996).

2.2. KDA. KDA is a kernel version of LDA to deal
with feature extraction and classification of nonlinear
characteristics. The basic idea of KDA is to firstly project
original patterns into a high-dimensional feature space F
by an implicit nonlinear mapping φ : R

n → F and then
to the use LDA in the feature space F .

Let us consider a set of N training samples
{x1, x2, . . . , xN} taking values in an n-dimensional
space. Let c be the number of classes and ni be the
number of training samples in the i-th class, i = 1, . . . , c.
Obviously, N =

∑c
i=1 ni. In general, the Fisher criterion

(Fukunaga,1990; Zheng et al., 2006b) can be defined as

max
w

J(w) =
wT Sφ

b w

wT Sφ
t w

, (3)

where Sφ
b = 1

N

∑c
i=1 ni(m

φ
i − mφ

0 )(mφ
i − mφ

0 )T and

Sφ
t = 1

N

∑N
i=1(φ(xi) − mφ

0 )(φ(xi) − mφ
0 )T are the

between-class and total scatter matrices defined in the
feature space F , respectively, where mφ

i is the mean
vector of the mapped training samples in the i-th class
and mφ

0 is the mean vector of all mapped training samples.
The optimization problem (3) can be transformed into the
following eigenvalue problem:

Sφ
b w = λSφ

t w. (4)

Let Φ(X) = [φ(x1), . . . , φ(xN )] and k : R
n ×

R
n → R be a kernel function. The kernel matrix

K = (kij) ∈ R
N×N corresponding to the kernel k

can be defined by kij = k(xi, xj) = 〈φ(xi), φ(xj)〉,
where φ : R

n → F is a feature map and F is a
feature space of the kernel k. It is evident that K =
Φ(X)T Φ(X). For any j ∈ {1, . . . , N}, let φ̃(xj) =
φ(xj) − 1

N

∑N
i=1 φ(xi) be the centered mapped data and

Φ̃(X) = [φ̃(x1), . . . , φ̃(xN )] = Φ(X)(I − 1N×N/N),
where I is an N × N identity matrix and 1N×N is the
N ×N matrix of all ones. The inner product matrix K̃ for
the centered mapped data can be obtained by

K̃ = Φ̃(X)T Φ̃(X)

= (I − 1N×N/N)T K(I − 1N×N/N).
(5)

According to reproducing kernel theory (Schölkopf
et al., 1998), the eigenvector w lies in the span of
{φ̃(x1), . . . , φ̃(xN )} and then there exist coefficients
bi, i = 1, 2, . . . , N , such that

w =
N∑

i=1

biφ̃(xi) = Φ̃(X)b, (6)

where b = (b1, . . . , bN)T .
Let W = diag(s1, . . . , sj , . . . , sc), where sj is an

nj ×nj matrix whose elements are 1/nj . Substituting (6)
into (3), we obtain

max
b

J(b) =
bT K̃WK̃b

bT K̃K̃b
. (7)

In general, the vector b1 corresponding to the
maximal value of J(b) is an optimal discriminant
direction. However, in some cases, it is not enough to
only use one optimal discriminant direction to feature
extraction. Hence, it is often necessary to obtain t
(t > 1) optimal discriminant directions. Assume that
b1, . . . , bt are t optimal discriminant directions and B =
[b1, b2, . . . , bt]. Then B should satisfy

B = argmax
B

tr
(BT S∗

b B

BT S∗
t B

)
, (8)
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where S∗
b = K̃WK̃, S∗

t = K̃K̃ . The optimization
problem (8) can be transformed into the following
generalized eigenvalue problem:

S∗
b a = λS∗

t a. (9)

The solution to the problem (9) can be obtained by
solving the generalized eigenvalue problem. Suppose
that λ1, λ2, . . . , λt are the t largest eigenvalues of the
problem (9) sorted in descending order and b1, . . . , bt are
the corresponding eigenvectors. We can obtain the KDA
transform matrix by

W = [w1, . . . , wt] = Φ̃(X)[b1, . . . , bt] = Φ̃(X)B.
(10)

For any input vector x, its low-dimension feature
representation yx can be defined by

yx = WT φ̃(x)

= BT Φ̃(X)T φ̃(x)

= AT (k̃(x1, x), k̃(x2, x), . . . , k̃(xN , x))T .

(11)

2.3. FDA. Kwak and Pedrycz (2005) proposed the
fuzzy Fisher face method for recognition via fuzzy sets.
A fuzzy c class partition of these vectors specifies the
degree of membership of each vector to the classes. The
membership matrix U = [uij ] (i = 1, 2, . . . , c, j =
1, 2, . . . , N) can be obtained by the Fuzzy k-Nearest
Neighbor (FKNN) (Keller et al., 1985). The FKNN will
be discussed in Section 3.1. Taking into account the
membership grades, the mean vector of each class m̃i is
calculated as follows:

m̃i =

∑N
j=1 uijxj

∑N
j=1 uij

. (12)

The between-class fuzzy scatter matrix SFb and the
within-class fuzzy scatter matrix SFw incorporate the
membership values in their calculation

SFb =
c∑

i=1

ni(m̃i − m0)(m̃i − m0)T , (13)

SFw =
c∑

i=1

ni∑

j=1

(xj
i − m̃i)(x

j
i − m̃i)T . (14)

The optimal fuzzy projection matrix G of the fuzzy
Fisher face follows the expression

G = arg max
G

|GT SFbG|
|GT SFwG| . (15)

Finally, PCA plus fuzzy LDA are used in small size
sample cases.

3. Concept of kernel fuzzy discriminant
analysis

LDA and FDA are linear learning algorithms and they
cannot deal with nonlinear problems. KDA is a kernel
version of LDA which deals with feature extraction and
classification of nonlinear characteristics. The basic idea
of KDA can be achieved mainly via reproducing kernel
theory.

The main idea of KFDA is that measure computation
and the fuzzy membership matrix U are implemented
in the original images space with the help of the
FKNN algorithm, and then the kernel transformation is
implemented with the kernel trick and fuzzy membership
matrix U . In the second step, the original patterns are
projected from the input space R

n into the feature space
F by an implicit nonlinear mapping φ : R

n → F :
x → Φ(x). We do not need to calculate the mapping
in the high-dimension feature space because the kernel
function can do it implicitly. Then the dimension disaster
problem can be avoided. The heart of the matter is how
to incorporate the contribution of each training sample
into the fuzzy membership matrix U with the help of a
measure. In this paper, the fuzzy membership matrix U is
determined via a measure of all features of each training
sample. That is to say, the measure controls the influence
of the fuzzy membership degree. In this method, the fuzzy
membership degree is incorporated into the definition
of between-class and within-class scatter matrices to get
fuzzy between-class and within-class scatter matrices.
The fuzzy membership degree and each class center are
obtained with the FKNN algorithm (Keller et al., 1985).

In general, in the higher dimension feature space
F , LDA can be achieved by maximizing the following
Fisher criterion (e.g., Fukunaga, 1990; Yang et al., 2005;
Schölkopf et al., 1998):

max
v

J(v) =
vT Sφ

Fbv

vT Sφ
Ftv

, (16)

where Sφ
Fb = 1

N

∑c
i=1 ni(m̃

φ
i − mφ

0 )(m̃φ
i − mφ

0 )T

and Sφ
Ft = 1

N

∑N
j=1(φ(xj) − mφ

0 )(φ(xj) − mφ
0 )T are

the between-class fuzzy and total fuzzy scatter matrices
defined in the feature space F , respectively. Here m̃φ

i

is the mean vector of the mapped training samples in
the i-th class and mφ

0 is the mean vector of all mapped
training samples. The optimization problem (16) can be
transformed into the following eigenvalue problem:

Sφ
Fbv = λSφ

Ftv. (17)

Let a = (a1, a2, a3, . . . , aN−1, aN )T , M =
diag(n1, . . . , nj, . . . , nc), where nj is the number of
training samples in the j-th class. We define the
between-class fuzzy scatter and total fuzzy scatter
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matrices of the centered samples in the feature space F ,
respectively,

Sφ
Fb =

1
N

c∑

i=1

ni(m̃
φ
i − mφ)(m̃φ

i − mφ)T

=
1
N

c∑

i=1

ni(Φ̃(X)UT ei)(Φ̃(X)UT ei)T

=
1
N

Φ̃(X)UT
c∑

i=1

nieie
T
i U Φ̃(X)T

=
1
N

Φ̃(X)UT MU Φ̃(X)T ,

(18)

Sφ
Ft =

1
N

N∑

j=1

(φ(xj) − mφ)(φ(xj) − mφ)T

=
1
N

N∑

j=1

(Φ̃(X)Ej)(Φ̃(X)Ej)T

=
1
N

Φ̃(X)
N∑

j=1

EjE
T
j Φ̃(X)T

=
1
N

Φ̃(X)EΦ̃(X)T

=
1
N

Φ̃(X)Φ̃(X)T ,

(19)

where
ei = [ 0, . . . , 0

︸ ︷︷ ︸
0+···+(i−1)

, 1︸︷︷︸
i

, 0, . . . , 0
︸ ︷︷ ︸

c−i

]T ,

Ej = [ 0, . . . , 0
︸ ︷︷ ︸

0+···+(j−1)

, 1︸︷︷︸
j

, 0, . . . , 0
︸ ︷︷ ︸

N−j

]T .

Therefore, we can obtain the following equation:

max
a

J(a) =
aT K̃UT MUK̃a

aT K̃K̃a
. (20)

In general, the vector a1 corresponding to the
maximal value of J(a) is the optimal discriminant
direction. However, in some cases, it is not enough to
only use one optimal discriminant direction for feature
extraction. Hence, it is often necessary to obtain t
(t > 1) optimal discriminant directions. Assume that
a1, . . . , at are t optimal discriminant directions and A =
[a1, a2, . . . , at]. Then A should satisfy

A = arg max
A

tr
(AT S′

bA

AT S′
tA

)
, (21)

where S′
b = K̃UT MUK̃, S′

t = K̃K̃. The optimization
problem (21) can be transformed into the following
generalized eigenvalue problems:

S′
ba = λS′

ta. (22)

The solution of the problem (22) can be obtained by
solving the generalized eigenvalue problem. Suppose that
λ1, λ2, . . . , λt are the t largest eigenvalues of the problem
(22) sorted in descending order and a1, . . . , at are the
corresponding eigenvectors. We can obtain the KFDA
transform matrix by

V = [v1, . . . , vt] = Φ̃(X)[a1, . . . , at] = Φ̃(X)A. (23)

For any input vector x, its low-dimension feature
representation yx can be defined by

yx = V T φ̃(x)

= AT Φ̃(X)T φ̃(x)

= AT (k̃(x1, x), k̃(x2, x), . . . , k̃(xN , x))T .

(24)

3.1. Measure of neighbor samples. In this subsection,
we shall introduce six familiar different measures. Let
X = [X1, X2, . . . , Xp]T be a total sample with p features.
{xi = (xi1, xi2, . . . , xip)T }n

i=1 (i = 1, 2, . . . , n) contains
n samples. Every sample can be seen as a point in a
p-dimensional space. Let d(xi, xj) be a measure between
xi and xj , where xi and xj are samples. Six different
measures are used in our paper. In addition, Cover (1965)
defined the relation of the sample size and the feature
space dimension. The measures in question are

I. Euclidean measure,

d(xi, xj) =
[ p∑

k=1

(xik − xjk)2
]1/2

,

II. absolute measure,

d(xi, xj) =
p∑

k=1

|xik − xjk|,

III. Minkowski measure,

d(xi, xj) = [
p∑

k=1

|xik − xjk|m]1/m,

where m ≥ 1,

IV. Chebyshev measure,

d(xi, xj) = max
1≤k≤p

|xik − xjk|,

V. minimum measure,

d(xi, xj) = min
1≤k≤p

|xik − xjk|,
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VI. variance weighted measure,

d(xi, xj) =
[ p∑

k=1

(xik − xjk)2

S2
k

]1/2

,

where

S2
k =

1
n − 1

n∑

i=1

(xik − xk)2,

xk =
1
n

n∑

i=1

xik

(i = 1, 2, . . . , n, k = 1, 2, . . . , p)

3.2. Fuzzy k-nearest neighbor algorithm. In our
method, fuzzy membership degrees and each class center
are obtained with the FKNN algorithm. In addition, there
are other similar k-Nearest Neighbor (KNN) methods
(Aydilek and Arslan, 2012). With the FKNN algorithm,
the computations of the membership degree can be
realized through a sequence of steps:

Step 1: Compute six different measure matrices between
pairs of feature vectors in the training set.

Step 2: Set the diagonal elements of the six different
measure matrices as infinity.

Step 3: Sort the distance matrix (treat each of its columns
separately) in ascending order. Collect the class labels
of the patterns located in the closest neighborhood of the
pattern under consideration (as we are concerned with k
neighbors, this returns a list of k integers).

Step 4: Compute the membership degree to Class i for the
j-th pattern using the expression proposed by Keller et al.
(1985),

uij =

⎧
⎪⎨

⎪⎩

0.51 + 0.49 × (nij/k), if i is the same as the j-th

label of the pattern.

0.49 × (nij/k), otherwise.

In the above expression nij stands for the number of
the neighbors of the j-th datum (pattern) that belong to the
i-th class. As usual, uij satisfies two obvious properties:

c∑

i=1

uij = 1, 0 <

N∑

j=1

uij < N.

Therefore, the fuzzy membership matrix U can be
achieved with the help of the FKNN: U = [uij ] (i =
1, 2, . . . , c; j = 1, 2, . . . , N ).

3.3. KFDA/QR algorithm. To solve the problem (21),
we considered two stages: the first stage is to maximize
the pseudo between-class scatter matrix S′

b by the QR
method and the second stage is to solve a generalized
eigenvalue problem. The key problem of the first stage
is to deal with the following optimization problem:

Â = arg max
ÂT Â=I

tr(ÂT S′
bÂ). (25)

We can see that M is a c × c block diagonal symmetric
matrix. It is easy to decompose M into the form M =
M1M

T
1 , where M1 = diag(

√
n1, . . . ,

√
nj , . . . ,

√
nc)

is a c × c matrix and nj is the number of training
samples in the j-th class. Consequently, S′

b =
(K̃UT M1)(K̃UT M1)T = K1(K1)T , where K1 is an
N × c matrix.

In general, the number of classes is smaller than
that of training samples. In this case, we can easily
prove that rank(S′

b) ≤ c − 1. When c is much smaller
than the number of training samples, we can apply the
QR technique to decompose K1 and obtain an efficient
method for kernel fuzzy discriminant analysis. In fact,
if K1 = (Q1 Q2)

(
R
0

)
is the QR decomposition of K1,

where R ∈ R
r×c is a row full rank matrix, r = rank(S′

b)
and Q1 ∈ R

N×r and Q2 ∈ R
N×(N−r) are column

orthogonal matrices, we can verify that Q1 is a solution
to the problem (25).

Theorem 1. For any orthogonal matrix G ∈ R
r×r, Â =

Q1G is a solution to the problem (25).

Proof. Since GT G = GGT = Ir and QT
1 Q1 = Ir, we

have (Q1G)T (Q1G) = Ir and

tr((Q1G)T S′
b(Q1G)) = tr(QT

1 S′
bQ1GGT )

= tr(QT
1 S′

bQ1),

which indicates that the conclusion is true. �

Theorem 2. Let r = rank(S′
b) and K1 = Q1R be the QR

decomposition of K1. Let S̃t = QT
1 S′

tQ1, S̃b = QT
1 S′

bQ1

and G be a matrix whose columns are the eigenvectors
of (S̃b)−1S̃t corresponding to the t largest eigenvalues.
Then Q1G is an optimal solution to the problem (21).

Proof. By the QR decomposition of K1, we know
that S̃b = QT

1 S′
bQ1 = R1R

T
1 is a nonsingular matrix.

According to the definition of the pseudo-inverse of a
matrix, we can deduce that

(S′
b)

+

= (K1(K1)T )+

= (
[

Q1 Q2

]
[

RRT 0
0 0

]
[

Q1 Q2

]T )+

=
[

Q1 Q2

]
[

(RRT )−1 0
0 0

]
[

Q1 Q2

]T
.
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and then

(S′
b)

+S′
tg = (

[
Q1 Q2

]
[

(RRT )−1 0
0 0

]

× [
Q1 Q2

]T )S′
tg = λg,

which is equivalent to
[

(RRT )−1

0

]

QT
1 S′

t

[
Q1 Q2

]
[

QT
1

QT
2

]

g

= λ

[
QT

1

QT
2

]

g.

Hence,

(RRT )−1QT
1 S′

tQ1Q
T
1 g = (S̃b)−1S̃tQ

T
1 g = λQT

1 g,

which implies that QT
1 g is an eigenvector of (S̃b)−1S̃t

corresponding to the eigenvalue λ. Therefore, the
conclusion of the theorem is true. �

By Theorem 2, we can propose Algorithm 1.

Algorithm 1. KFDA/QR.
Step 1. Select a measure type from Section 3.1. With
the help of the FKNN algorithm, compute the fuzzy
membership matrix U .

Step 2. Select a kernel type and compute the kernel matrix
K and K̃.

Step 3. Compute matrices S′
b = K̃UT MUK̃ and S′

t =
K̃K̃ .

Step 4. Let S′
b = K1K

T
1 and calculate the QR

decomposition of K1: K1 = Q1R.

Step 5. Let S̃t = QT
1 S′

tQ1 and S̃b = QT
1 S′

bQ1.

Step 6. Compute the eigenvectors, denoted by G,
of the matrix (S̃b)−1S̃t corresponding to the t largest
eigenvalues.

Step 7. Let A = Q1G.

Step 8. For any input vector x, its low-dimensional feature
representation by KFDA/QR is

yx = AT Φ̃(X)T φ(x)

= GT QT
1 (I − 1N×N/N)T (k(x1, x), . . . , k(xN , x))T .

3.4. KFDA/SVD algorithm. To solve the problem
(21), we reconsidered the SVD of S′

b:

S′
b =

[
Ub1 Ub2

]
[

Σb1 0
0 0

] [
UT

b1

UT
b2

]

,

where Ub1 ∈= R
N×r and Ub2 ∈ R

N×(N−r) are column
orthogonal matrices, Σb1 ∈= R

r×r is a diagonal matrix

with non-increasing positive diagonal components and
rank(S′

b) = r. It is obvious that the matrix Sb =
UT

b1S
′
bUb1 = Σb1 is nonsingular. Let St = UT

b1S
′
tUb1.

We thus have Algorithm 2.

Algorithm 2. KFDA/SVD.
Step 1. Select a measure type from Section 3.1. With
the help of the FKNN algorithm, compute the fuzzy
membership matrix U .

Step 2. Select a kernel type and compute the kernel matrix
K and K̃.

Step 3. Let S′
b = K̃UT MUK̃ and S′

t = K̃K̃.

Step 4. Compute the SVD of S′
b:

S′
b =

[
Ub1 Ub2

]
[

Σb1 0
0 0

] [
UT

b1

UT
b2

]

.

Step 5. Let St = UT
b1S

′
tUb1 and Sb = UT

b1S
′
bUb1.

Step 6. Compute the eigenvectors of the matrix (St)−1Sb,
denoted by G̃, corresponding to the t largest eigenvalues.

Step 7. Let B = Ub1G̃.

Step 8. For any input vector x, its low-dimensional feature
representation by KFDA/SVD is

yx = BT Φ̃(X)T φ(x)

= G̃T UT
b1(I − 1N×N/N)T (k(x1, x), · · · , k(xN , x))T .

4. Experiments and analysis

We evaluate the performance of the KFDA/QR and
KFDA/SVD algorithms in face recognition tasks. The
publicly available face databases, namely, ORL and
FERET, are used in the experiments.

All experiments are performed on a PC (2.40 GHZ
CPU, 2G RAM) with MATLAB 7.1. Six face recognition
methods, namely, KFDA/QR, KFDA/SVD, FDA/QR,
FDA/SVD, KDA/QR and KDA/SVD, are tested and
compared. For each method, the recognition procedure
consists of the following steps:

(i) Six different face recognition procedures are
implemented on original images with respect to the
number of projection vectors.

(ii) The parameter k of the FKNN algorithm is set to 3,
and the parameter m of the Minkowski measure is
set to 3.

(iii) The nearest neighbor classifier is used.

It is known that appropriate kernel function
selection is important to achieve a better performance
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in kernel-based learning methods. Generally speaking,
there are two classes of widely used kernel functions: a
polynomial kernel and a Gaussian kernel. In order to
evaluate the efficiency of QR decomposition and SVD in
the KFDA/QR and KFDA/SVD algorithms, respectively,
we take into consideration the polynomial kernel (26)
and the Gaussian kernel (27). Figure 1 shows a block
diagram of our simple system. In addition, the example
in Appendix explains how to incorporate the contribution
of each training sample into the fuzzy membership matrix
U with the help of the measures

k(x, y) = (x · y + 1)p, (26)

k(x, y) = exp(−‖x − y‖2/2σ2). (27)

Input face images

Test  images Training  images

Select method

Select measure, kernel, and parameter

Produce projection matrix

Output resultsClassifier

Training images

Fig. 1. Simple experiment diagram.

4.1. Experiments with the ORL face database. The
ORL face database (Liu, 2006) contains 40 persons, each
having 10 different images. Images of the same person
are taken at different times under slightly varying lighting
conditions and with various facial experiments. Some
people are captured with or without glasses. The heads in
the images are slightly titled or rotated. The images in the
database are manually cropped and recalled to 112 × 92.
In order to reduce the size of the image, we obtain the
size of 28 × 23 pixels. In the experiments, 8 images
are randomly taken from 10 images as training samples
and the rest are used as testing samples. In order to
make full use of the available data and to evaluate the
generalization power of the algorithms more accurately,
we adopt across-validation strategy and run the system

30 times. Figure 2 shows several sample images of some
persons in ORL.

Fig. 2. Sample images of some persons in the ORL database.

In our experiments, the parameters p (from 1 to 6,
the step is 0.5) and σ (from 1 to 50, the step is 1) are
determined by the across-validation strategy. So, for the
ORL database, p = 2 and σ = 12 are the optimal choice.

We tested the performance of KFDA/QR,
KFDA/SVD, FDA/QR and FDA/SVD with different
measures from Section 3.1. For convenience, the
Euclidean measure, absolute measure, Minkowski
measure, Chebyshev measure, minimum measure and
variance weighted measure are substituted for d1, d2, d3,
d4, d5 and d6, respectively. KDA/QR and KDA/SVD
do not rely on any measure. This is due to the fact that
the contribution of the measure is only made through the
fuzzy membership matrix U . The experimental results
are shown in Table 1. In addition, in Table 1, the number
of projection vectors is 39.

According to Table 1, we have the following
conclusion:

(i) For the ORL data set, according to the mean
correct recognition rate, KFDA/QR and KFDA/SVD
outperform other methods under the Euclidean
measure, absolute measure, Chebyshev measure,
minimum measure and variance weighted measure
with respect to the polynomial kernel p = 2.

(ii) According to Standard Deviation (SD), KFDA/QR
outperforms KFDA/SVD with respect to six different
measures. Therefore, QR decomposition plays
an important role in eigenvalue calculation of the
matrix.

(iii) For each algorithm, the standard deviation that is
obtained by using the QR decomposition method is
smaller than that of SVD.

(iv) According to maximum correct recognition rate
(MaxR), the minimum measure outperforms
other measures. In addition, the highest correct
recognition rate of KFDA/QR, KFDA/SVD,
FDA/QR, FDA/SVD, KDA/QR and KDA/SVD is
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Table 1. Maximum, minimum and mean correct recognition
rate (%) (MaxR, MinR and MeanR) of different al-
gorithms and their Standard Deviation (SD) on ORL
(polynomial kernel p = 2, ME denotes measure).

Algorithm ME MaxR MinR MeanR (SD)

KFDA/QR 97.21 96.45 97.08±0.166
KFDA/SVD d1 97.21 96.05 97.08±0.263

FDA/QR 97.21 96.05 97.08±0.285
FDA/SVD 96.58 94.89 96.05±0.590
KFDA/QR 97.59 97.01 97.17±0.161

KFDA/SVD d2 97.42 96.41 97.17±0.178
FDA/QR 97.28 96.13 97.12±0.318

FDA/SVD 97.25 94.99 96.58±0.679
KFDA/QR 97.18 96.58 96.92±0.169

KFDA/SVD d3 97.17 96.12 96.92±0.232
FDA/QR 97.55 96.46 97.21±0.256

FDA/SVD 97.46 95.41 96.21±0.442
KFDA/QR 96.80 95.99 96.42±0.230

KFDA/SVD d4 96.86 95.88 96.42±0.277
FDA/QR 96.45 95.59 95.96±0.250

FDA/SVD 96.44 95.47 95.96±0.288
KFDA/QR 97.70 96.77 97.21±0.272

KFDA/SVD d5 97.75 96.78 97.21±0.292
FDA/QR 97.13 96.22 96.75±0.255

FDA/SVD 96.87 96.19 96.46±0.167
KFDA/QR 97.28 97.05 97.12±0.043

KFDA/SVD d6 97.33 96.98 97.12±0.094
FDA/QR 97.47 96.88 97.12±0.140

FDA/SVD 96.78 96.02 96.37±0.238
KDA/QR 97.06 96.12 97.01±0.168

KDA/SVD 78.95 76.11 78.25±0.855

97.70%, 97.75%, 97.55%, 97.46%, 97.06% and
78.95%, respectively.

Further experiments using the Gaussian kernel and
different measures will have to be employed to provide a
more valuable comparison. The experimental results are
given in Table 2.

According to Table 2, we have the following
conclusion:

(i) For each method, MeanR will slowly increase as the
number of projection vectors increases.

(ii) According to MeanR, for each method which based
on QR decomposition, is superior to the ones based
on SVD.

(iii) Long projection vectors do not lead to a higher
correct recognition rate. Meanwhile, KFDA/QR and
KFDA/SVD are sensitive to the measure.

(iv) According to MeanR, for the Gaussian kernel, the
minimum measure and variance weighted measure
outperform other measures.

Table 2. Mean correct recognition rate (%) of different algo-
rithms on ORL (Gaussian kernel σ = 12, ME denotes
measure, the number of projection vectors is 5, 15, 25
and 35, respectively).

Algorithm ME 5 15 25 35

KFDA/QR 84.50 96.12 97.67 97.50
KFDA/SVD d1 85.08 95.42 96.37 97.17
KFDA/QR 84.83 96.17 97.42 97.33

KFDA/SVD d2 85.29 95.62 96.67 97.29
KFDA/QR 84.25 96.04 97.25 97.58

KFDA/SVD d3 84.79 95.50 96.42 97.46
KFDA/QR 84.12 94.83 96.79 96.79

KFDA/SVD d4 83.21 94.04 95.79 96.58
KFDA/QR 83.83 95.58 97.50 97.67

KFDA/SVD d5 85.87 95.00 96.83 97.71
KFDA/QR 85.37 96.08 97.71 97.42

KFDA/SVD d6 85.21 95.58 96.79 97.21
FDA/QR 85.73 95.94 97.28 97.15

FDA/SVD 84.77 95.79 97.00 97.12
KDA/QR 82.88 95.75 97.25 97.25

KDA/SVD 66.92 76.67 77.62 78.25

(v) From the MeanR perspective, the correlation
between the measure and the correct classification
accuracy in FDA is smaller than in KFDA.

(vi) According to Table 2, the highest correct recognition
rates of KFDA/QR, KFDA/SVD, FDA/QR,
FDA/SVD, KDA/QR and KDA/SVD are 97.71%,
97.71%, 97.28%, 97.12%, 97.25% and 78.25%,
respectively.

In addition, compared with the polynomial kernel,
the effectiveness of the Gaussian kernel is significant.
However, it takes much more computing time. We
perform a contrast test of elapsed times between the
polynomial kernel and the Gaussian one. And then, the
average time that is obtained by using different measures
is recorded. The elapsed times of the polynomial kernel
and Gaussian one are listed in Fig. 3.

The results of Fig. 3 clearly show the superiority
of the polynomial kernel. In addition, we can see
that no matter what kernel (polynomial or Gaussian) we
use, the elapsed time of KFDA/QR is less than that
of KFDA/SVD. Therefore, in the following experiment,
we will explore the performance of different measures
with the help of a 2-polynomial kernel (on ORL). The
experimental results are shown in Figs. 4–9.

According to the results in Figs. 4–9, the proposed
approach outperforms FDA and KDA in terms of the mean
correct recognition rate. In addition, we can see that the
mean correct recognition rate will slowly increase as the
number of projection vectors increases.

MeanR is very affected by what we use as measure
on recognition tasks. Meanwhile, we can clearly see that
KFDA/QR outperforms FDA/QR and KDA/QR with the
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Fig. 3. Mean time consumption (minutes) on ORL: KFDA/QR (a), KFDA/SVD (b).

Table 3. Different classification methods on ORL using the t-test (reference data t0.05(29) = 1.699).
KFDA/QR vs. FDA/QR KFDA/QR vs. KDA/QR KFDA/SVD vs. FDA/SVD KFDA/SVD vs. KDA/SVD

Null hypothesis H0: u1 − u3 ≤ 0 H0: u1 − u5 ≤ 0 H0: u2 − u4 ≤ 0 H0: u2 − u6 ≤ 0
Alternative hypothesis H1: u1 − u3 > 0 H1: u1 − u5 > 0 H1: u2 − u4 > 0 H1: u2 − u6 > 0

t = 0.05 < 1.699, t = 1.87 > 1.699, t = 9.45 > 1.699, t = 114.57 > 1.699
d1 accept H0, reject H1 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1

t = 0.86 < 1.699, t = 4.16 > 1.699, t = 4.63 > 1.699, t = 118.52 > 1.699
d2 accept H0, reject H1 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1

t = −5.81 < 1.699, t = −1.97 < 1.699, t = 7.39 > 1.699, t = 115.80 > 1.699
d3 accept H0, reject H1 accept H0, reject H1 reject H0, accept H1 reject H0, accept H1

t = 7.13 > 1.699, t = −11.83 < 1.699, t = 6.07 > 1.699, t = 111.50 > 1.699
d4 reject H0, accept H1 accept H0, reject H1 reject H0, accept H1 reject H0, accept H1

t = 7.74 > 1.699, t = 3.23 > 1.699, t = 11.20 > 1.699, t = 109.63 > 1.699
d5 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1

t = 0.03 < 1.699, t = 3.77 > 1.699, t = 17.44 > 1.699, t = 116.27 > 1.699
d6 accept H0, reject H1 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1
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Fig. 4. Mean correct recognition rate curves with the Euclidean measure on ORL: QR decomposition (a), SVD (b).

help of the absolute measure and the variance weighted
measure. The main reason is that the fuzzy between-class
and within-class scatter matrices are constructed using
different fuzzy membership matrices U . Therefore, for
recognition tasks, a measure should be considered. It
is worth noting that the SVD of KFDA only slightly
improves for recognition tasks.

In addition, we found that the differences between

the results for different classification methods are very
small. So, we need to derive a t-test statistic. Details can
be found in the works of Demsar (2006) and Dietterich
(1998). The computations of t-test statistics can be
realized through a sequence of steps:

Step 1: Establish a null hypothesis: H0: u1 = u2.

Step 2: Compute the t statistic: t = d/(sd/
√

n), where
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Fig. 5. Mean correct recognition rate curves with the absolute measure on ORL: QR decomposition (a), SVD (b).
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Fig. 6. Mean correct recognition rate curves with the Minkowski measure on ORL: QR decomposition (a), SVD (b).
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Fig. 7. Mean correct recognition rate curves with the Chebyshev measure on ORL: QR decomposition (a), SVD (b).

d is the mean value of differences between the sample,
sd is the standard deviation of difference values, n is the
number of samples.

Step 3: According to degrees of freedom, determine the
significance level α (generally speaking α = 0.05), the
look-up table and the contrast.

Step 4: According to the t value, we make a decision

(reject or accept H0).
For convenience, the mean recognition rates of

KFDA/QR, KFDA/SVD, FDA/QR, FDA/SVD, KDA/QR
and KDA/SVD are substituted for u1, u2, u3, u4, u5

and u6, respectively. The results are listed in Table 3.
According to the t value of the results in Table 3, we
can see that the measure plays an important role in
the classification task. Meanwhile, in most cases, the
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Fig. 8. Mean correct recognition rate curves with the minimum measure on ORL: QR decomposition (a), SVD (b).
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Fig. 9. Mean correct recognition rate curves with the variance weighted measure on ORL: QR decomposition (a), SVD (b).

proposed approach outperforms FDA and KDA in terms
of the mean correct recognition rate. So, it is necessary
to combine the advantages of the fuzzy method and the
kernel trick under different measures.

4.2. Experiments with the FERET face database.
The FERET face database (Phillips, 2004) is a result of
the FERET program, which was sponsored by the US
Department of Defense through the DARPA program.
The FERET face database contains 14051 gray scale
images from 1199 different subjects including pose,
facial expression, and illumination variations. In the
experiments, 200 individuals with 1000 images are
selected. Each person has 5 images. Two images are
randomly taken from these images as training samples and
the rest are used as testing samples. In order to reduce the
size of the image, we obtain the size of 20 × 20 pixels.

In order to make full use of the available data and
to evaluate the generalization power of algorithms more
accurately, we adopt a across-validation strategy and run
the system thirty times. Figure 10 shows several sample

images of some persons in FERET. For the Gaussian
kernel, the methods such as KFDA/QR and KFDA/SVD
need more elapsed time. Therefore, the polynomial kernel
is used for experiments. The parameters p (from 1 to 6,
the step is 0.5) are determined by the across-validation
strategy. So, for FERET, p = 6 is the optimal choice,
the number of projection vectors is 199. According to the

Fig. 10. Sample images of some persons in FERET.

results in Table 5, we have the following conclusions:

(i) For the FERET data set, according to MeanR
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Table 5. Different classification methods on FERET using the t-test (reference data t0.05(29) = 1.699).
KFDA/QR vs. FDA/QR KFDA/QR vs. KDA/QR KFDA/SVD vs. FDA/SVD KFDA/SVD vs. KDA/SVD

Null hypothesis H0: u1 − u3 ≤ 0 H0: u1 − u5 ≤ 0 H0: u2 − u4 ≤ 0 H0: u2 − u6 ≤ 0
Alternative hypothesis H1: u1 − u3 > 0 H1: u1 − u5 > 0 H1: u2 − u4 > 0 H1: u2 − u6 > 0

t = −45.82 < 1.699, t = 109.44 > 1.699, t = 65.08 > 1.699, t = 227.91 > 1.699
d1 accept H0, reject H1 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1

t = −44.18 < 1.699, t = 112.39 > 1.699, t = 115.38 > 1.699, t = 259.73 > 1.699
d2 accept H0, reject H1 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1

t = −22.52 < 1.699, t = 105.26 > 1.699, t = 66.85 > 1.699, t = 230.15 > 1.699
d3 accept H0, reject H1 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1

t = 62.94 > 1.699, t = 70.56 > 1.699, t = 78.78 > 1.699, t = 212.55 > 1.699
d4 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1

t = 253.80 > 1.699, t = 72.45 > 1.699, t = 47.83 > 1.699, t = 209.00 > 1.699
d5 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1

t = −51.68 < 1.699, t = 89.01 > 1.699, t = 89.61 > 1.699, t = 236.22 > 1.699
d6 accept H0, reject H1 reject H0, accept H1 reject H0, accept H1 reject H0, accept H1

Table 4. Maximum, minimum and mean correct recognition
rate (%) (MaxR, MinR and MeanR) of different algo-
rithms and their Standard Deviation (SD) on FERET
(polynomial kernel p = 6, ME denotes measure).

Algorithm ME MaxR MinR MeanR (SD)

KFDA/QR 51.25 51.10 51.16±0.444
KFDA/SVD d1 51.30 50.80 51.16±0.177

FDA/QR 54.22 53.27 53.73±0.310
FDA/SVD 45.85 45.45 45.62±0.122
KFDA/QR 52.10 51.86 51.99±0.072

KFDA/SVD d2 51.29 50.86 51.09±0.131
FDA/QR 53.45 53.03 53.23±0.123

FDA/SVD 45.86 45.13 45.46±0.221
KFDA/QR 51.16 51.01 51.09±0.044

KFDA/SVD d3 51.29 50.88 51.08±0.139
FDA/QR 52.67 51.85 52.24±0.279

FDA/SVD 46.98 44.09 45.52±0.454
KFDA/QR 49.96 49.78 49.88±0.062

KFDA/SVD d4 50.19 49.58 49.88±0.181
FDA/QR 45.97 44.25 45.38±0.403

FDA/SVD 43.88 42.11 42.16±0.422
KFDA/QR 49.64 49.50 49.57±0.040

KFDA/SVD d5 49.98 48.74 49.57±0.277
FDA/QR 44.48 44.15 44.31±0.108

FDA/SVD 46.74 46.01 46.32±0.226
KFDA/QR 50.90 50.58 50.74±0.110

KFDA/SVD d6 51.08 50.38 50.70±0.210
FDA/QR 52.47 52.02 52.29±0.131

FDA/SVD 45.72 45.01 45.28±0.205
KDA/QR 46.74 45.94 46.33±0.249

KDA/SVD 32.64 30.21 31.23±0.422

and MaxR, FDA/QR outperforms other methods.
However, FDA/SVD does not have a strong
advantage for recognition problems. The reason may
be in the low efficiency of projection vectors that is
obtained by SVD.

(ii) KFDA outperforms other methods with the help of
the Chebyshev measure and minimum measure.

(iii) For each algorithm, SD that is obtained by using the
QR decomposition method is smaller than that of
SVD (except for the Euclidean measure). In addition,
KFDA/QR and KFDA/SVD are more sensitive to the
measure.

(iv) The highest correct recognition rate of KFDA/QR,
KFDA/SVD, FDA/QR, FDA/SVD, KDA/QR and
KDA/SVD is 52.10%, 51.30%, 54.22%, 46.98%,
46.74% and 32.64%, respectively.

(v) For the FERET data set, the MaxR of every method
is not high, mainly because of the following reasons:
on the one hand, a small amount of training samples
are used, while on the other, long projection vectors
are used. For the FERET data set, we also derive a
t-test statistic, as shown in Table 4. We can see that
the t value change is big. This suggests that there
are very big differences between the mean correct
recognition rates of each method.

5. Conclusion and future work

In this paper, we proposed two kinds of methods of
kernel-based fuzzy discriminant analysis: KFDA/QR and
KFDA/SVD for feature extraction with combination of
different measures via QR decomposition and the singular
value decomposition technique. Through the two methods
we can find lower-dimensional nonlinear features with
significant discriminant power, and the two methods can
be viewed as a generalization of FDA and KDA. In the
proposed method, the fuzzy membership degree matrix
U that is obtained by combining the measure of features
of samples data is incorporated into the definition of
between-class and within-class scatter matrices to get
fuzzy between-class and within-class scatter matrices. So,
for us, how to incorporate the contribution of each training
sample into the fuzzy membership matrix U with the help
of the measure is a research priority. Experimental results
confirm that KFDA is not only feasible, but also achieves
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a better recognition performance in the ORL and FERET
face databases in terms of the mean correct recognition
rate.

Therefore, in order to improve the recognition rate,
we should consider the effect of the measure. The future
work on this subject will still be investigation of the
influence of the measure and the kernel parameter on
classification and recognition tasks. In addition, exploring
new algorithms to solve the corresponding optimization
problems is also a further research direction.
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Appendix

Here we give a simple example which explains how
to incorporate the contribution of each training sample
into the fuzzy membership matrix U with the help of
a measure. The Chebyshev and minimum measures are
used for test. We consider nine two-dimensional patterns
belonging to three-classes as below:

S =

No. Feature1 Feature2 Class

1 0.3 0.4 1
2 0.4 0.2 1
3 0.3 0.2 1
4 0.5 0.4 2
5 0.6 0.5 2
6 0.6 0.4 2
7 0.9 0.7 3
8 0.8 0.7 3
9 0.9 0.8 3

The distance matrix comes with the following entries
(employing the Chebyshev measure):

A1 =

No. 1 2 3 4 5 6 7 8 9

1 0 0.2 0.2 0.2 0.3 0.3 0.6 0.5 0.6
2 0.2 0 0.1 0.2 0.3 0.2 0.5 0.5 0.6
3 0.2 0.1 0 0.2 0.3 0.3 0.6 0.5 0.6
4 0.2 0.2 0.2 0 0.1 0.1 0.4 0.3 0.4
5 0.3 0.3 0.3 0.1 0 0.1 0.3 0.2 0.3
6 0.3 0.2 0.3 0.1 0.1 0 0.3 0.3 0.4
7 0.6 0.5 0.6 0.4 0.3 0.3 0 0.1 0.1
8 0.5 0.5 0.5 0.3 0.2 0.3 0.1 0 0.1
9 0.6 0.6 0.6 0.4 0.3 0.4 0.1 0.1 0

The diagonal elements are replaced by infinity (Inf):

A2 =

No. 1 2 3 4 5 6 7 8 9

1 Inf 0.2 0.2 0.2 0.3 0.3 0.6 0.5 0.6
2 0.2 Inf 0.1 0.2 0.3 0.2 0.5 0.5 0.6
3 0.2 0.1 Inf 0.2 0.3 0.3 0.6 0.5 0.6
4 0.2 0.2 0.2 Inf 0.1 0.1 0.4 0.3 0.4
5 0.3 0.3 0.3 0.1 Inf 0.1 0.3 0.2 0.3
6 0.3 0.2 0.3 0.1 0.1 Inf 0.3 0.3 0.4
7 0.6 0.5 0.6 0.4 0.3 0.3 Inf 0.1 0.1
8 0.5 0.5 0.5 0.3 0.2 0.3 0.1 Inf 0.1
9 0.6 0.6 0.6 0.4 0.3 0.4 0.1 0.1 Inf

Next, the distance matrix is sorted (which is done
separately for each column of the matrix):

A3 =

No. 1 2 3 4 5 6 7 8 9

1 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1
3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.3
4 0.3 0.2 0.3 0.2 0.3 0.3 0.3 0.3 0.4
5 0.3 0.3 0.3 0.2 0.3 0.3 0.4 0.3 0.4
6 0.5 0.5 0.5 0.3 0.3 0.3 0.5 0.5 0.6
7 0.6 0.5 0.6 0.4 0.3 0.3 0.6 0.5 0.6
8 0.6 0.6 0.6 0.4 0.3 0.4 0.6 0.5 0.6
9 Inf Inf Inf Inf Inf Inf Inf Inf Inf

If we consider k = 3 neighbors, then the classes
of the i-th nearest point of the j-th input vector are as
follows:

A4 =

Class 1 2 3 4 5 6 7 8 9

1 2 2 2 1 0 1 0 0 0
2 1 1 1 2 2 2 1 1 1
3 0 0 0 0 1 0 2 2 2

Similarly to the above procedure, the distance matrix
comes with the following entries (employing the
minimum measure):

B1 =

No. 1 2 3 4 5 6 7 8 9

1 0 0.1 0 0 0.1 0 0.3 0.3 0.4
2 0.1 0 0 0.1 0.2 0.2 0.5 0.4 0.5
3 0 0 0 0.2 0.3 0.2 0.5 0.5 0.6
4 0 0.1 0.2 0 0.1 0 0.3 0.3 0.4
5 0.1 0.2 0.3 0.1 0 0 0.2 0.2 0.3
6 0 0.2 0.2 0 0 0 0.3 0.2 0.3
7 0.3 0.5 0.5 0.3 0.2 0.3 0 0 0
8 0.3 0.4 0.5 0.3 0.2 0.2 0 0 0.1
9 0.4 0.5 0.6 0.4 0.3 0.3 0 0.1 0

The diagonal elements are replaced by infinity (Inf):

B2 =

No. 1 2 3 4 5 6 7 8 9

1 Inf 0.1 0 0 0.1 0 0.3 0.3 0.4
2 0.1 Inf 0 0.1 0.2 0.2 0.5 0.4 0.5
3 0 0 Inf 0.2 0.3 0.2 0.5 0.5 0.6
4 0 0.1 0.2 Inf 0.1 0 0.3 0.3 0.4
5 0.1 0.2 0.3 0.1 Inf 0 0.2 0.2 0.3
6 0 0.2 0.2 0 0 Inf 0.3 0.2 0.3
7 0.3 0.5 0.5 0.3 0.2 0.3 Inf 0 0
8 0.3 0.4 0.5 0.3 0.2 0.2 0 Inf 0.1
9 0.4 0.5 0.6 0.4 0.3 0.3 0 0.1 Inf
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Next, the distance matrix is sorted (which is done
separately for each column of the matrix):

B3 =

No. 1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0 0
2 0 0.1 0 0 0.1 0 0 0.1 0.1
3 0 0.1 0.2 0.1 0.1 0 0.2 0.2 0.3
4 0.1 0.2 0.2 0.1 0.2 0.2 0.3 0.2 0.3
5 0.1 0.2 0.3 0.2 0.2 0.2 0.3 0.3 0.4
6 0.3 0.4 0.5 0.3 0.2 0.2 0.3 0.3 0.4
7 0.3 0.5 0.5 0.3 0.3 0.3 0.5 0.4 0.5
8 0.4 0.5 0.6 0.4 0.3 0.3 0.5 0.5 0.6
9 Inf Inf Inf Inf Inf Inf Inf Inf Inf

If we consider k = 3 neighbors, then the classes
of the i-th nearest point of the j-th input vector are as
follows:

B4 =

Class 1 2 3 4 5 6 7 8 9

1 1 2 2 2 1 1 0 0 0
2 2 1 1 1 2 2 1 1 1
3 0 0 0 0 0 0 2 2 2

According to the results, we can see that A4 is totally
different from B4. Meanwhile, A4 and B4 constitute
the fuzzy membership matrix U . Therefore, different
measures will affect the composition of between-class and
within-class scatter matrices.

Received: 14 March 2013
Revised: 10 July 2013
Re-revised: 5 September 2013


