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The Probability Density Function (PDF) is a key concept in statistics. Constructing the most adequate PDF from the ob-
served data is still an important and interesting scientific problem, especially for large datasets. PDFs are often estimated
using nonparametric data-driven methods. One of the most popular nonparametric method is the Kernel Density Estimator
(KDE). However, a very serious drawback of using KDEs is the large number of calculations required to compute them,
especially to find the optimal bandwidth parameter. In this paper we investigate the possibility of utilizing Graphics Pro-
cessing Units (GPUs) to accelerate the finding of the bandwidth. The contribution of this paper is threefold: (a) we propose
algorithmic optimization to one of bandwidth finding algorithms, (b) we propose efficient GPU versions of three bandwidth
finding algorithms and (c) we experimentally compare three of our GPU implementations with the ones which utilize only
CPUs. Our experiments show orders of magnitude improvements over CPU implementations of classical algorithms.

Keywords: bandwidth selection, graphics processing unit, probability density function, nonparametric estimation, kernel
estimation.

1. Introduction

The paper is about implementing some Kernel Density
Estimator (KDE) bandwidth selection techniques with
the support of Graphics Processing Units (GPUs). We
propose modifications of classical algorithms to perform
parallel and concurrent computations to accelerate very
time-consuming operations while calculating the optimal
KDE, which heavily depends on the so-called bandwidth
or smoothing parameter. These estimators estimate the
Probability Density Function (PDF), which is an elegant
tool in the exploration and presentation of data.

One of the most serious drawbacks of practical
usage of KDEs is that exact kernel nonparametric
algorithms scale quadratically (see Section 3.2 for precise
mathematical formulas). To overcome this problem, two
main approaches may be used. In the first one, many

authors propose various approximate methods for KDEs.
We give a short summary of these methods in Section 2.1.
In this paper we investigate the second approach, where
exact methods for KDEs are used. The problem of
fast computation of PDFs is especially important when
we work which really big datasets, typically stored in
(relational) databases. Among the huge amount of
applications of PDFs there are important ones related to
databases and data exploration. They can be successfully
used, for example, in Approximate Query Processing
(AQP) (Gramacki et al., 2010), query selectivity estima-
tion (Blohsfeld et al., 1999) and clustering (Kulczycki and
Charytanowicz, 2010).

In the paper we concentrate on the problem of finding
an optimal bandwidth and implement and test only exact
algorithms since they can be treated as reference ones
and they always give the most accurate results. Such
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exact implementation might be a useful tool, for example,
for verification of the results returned by approximate
methods.

To make the exact approach practically usable, all
substantial time consuming computations are performed
using massively parallel computing capabilities of modern
GPUs. We compare this implementation (later called the
GPU implementation) with two other implementations:
an SSE implementation and a sequential implementation.
The former utilizes two benefits of modern CPUs: SSEs
(Streaming SIMD Extensions), allowing us to perform
the same instructions on multiple values in parallel, as
well as a multicore architecture, allowing us to process
several threads in parallel on several distinct cores. The
latter is a simple implementation of algorithms presented
in Sections 3.2 and 5.1. The speedups we obtain using
GPUs are in the range of one to three orders of magnitude
in comparison with non-GPU-based approach.

The remainder of the paper is organized as follows.
In Section 2 we cover the necessary background material.
In Section 3 we turn our attention to some preliminary
information on kernel estimators of PDFs and the
potential using of PDFs in the database area. We also give
detailed mathematical formulas for calculating optimal
bandwidth parameters using three different methods.
In Section 4 we provide a brief review of the GPU
architecture. In Section 5 we cover all the necessary
details on the optimization of the base algorithms. In
Section 6 we show how to utilize the algorithms presented
in previous sections. The practical experiments carried out
are presented in Section 7. In Section 8 we conclude our
paper.

2. Related works

2.1. Computation of probability density functions.
The PDF is one of the most important and fundamental
concepts in statistics and it is widely used in exploratory
data analysis. There exist a lot of parametric forms of
density functions. A very complete list of PDFs can
be found, for example, in the works of Johnson et al.
(1994; 1995). On the other hand, if the parametric
form of the PDF is unknown or difficult to assume, one
should consider nonparametric methods. One of the most
popular nonparametric those by methods is the KDE.
Three classical books on KDEs are those by Silverman
(1986), Simonoff (1996), as well as Wand and Jones
(1995).

There are two main computational problems related
to the KDE: (a) evaluating the kernel density esti-
mate f̂(x, h) (or f̂(x, H); see Section 3.1 for a brief
explanation on differences between h and H), (b) find-
ing an optimal bandwidth parameter h (or H), which is
investigated in this paper.

A plethora of techniques have been proposed for

accelerating computational times of the first problem. The
naive direct evaluation of the KDE at m evaluation points
for n source points requires O(mn) kernel evaluations.
Evaluation points can be, of course, the same as
source points, and then the computational complexity is
O(n2). The most commonly used method to reduce the
computational burden for the KDE is the technique known
as binning or discretising (Wand and Jones, 1995). In
such a case, the density estimation is evaluated at grid
points g � n, rather than source points. The binning
strategy reduces the required kernel evaluations to O(mg)
(or to O(g) if the evaluation points are the same as grid
points). Another approach is based on using the Fast
Fourier Transformation (FFT), as proposed by Silverman
(1982). Using the FFT requires that the source points
are on an evenly spaced grid and then one can evaluate
the KDE at an evenly spaced grid in O(n log n). If
the source points are irregularly spaced, the pre-binning
strategy should be applied first. The resulting KDE is
also evaluated at regular evaluation points. If irregular
target points are required, a sort of interpolation based
on neighboring evaluation points should be applied. In
the FFT-based approach, however, there is a potential
setback connected with an aliasing effect which is not
completely binning. This problem is investigated in detail
by Hendriks and Kim (2003). Another technique is
based on the Fast Gauss Transform (FGT) introduced by
Greengard and Strain (1991), and can be viewed as an
extension of the Improved Fast Gauss Transform (IFGT)
(Yang et al., 2003). The method is called by the authors
ε-exact (Raykar et al., 2010) in the sense that the constant
hidden in O(m + n) depends on the desired accuracy
which can be chosen arbitrarily. Some preliminary work
using the GPU approach was done by Michailidis and
Margaritis (2013). However, the authors miss the most
important part: bandwidth optimization, which is the main
subject of this paper.

As for the problem of accelerating computational
times for finding the optimal bandwidth h (or H),
relatively less attention is paid in the literature. An
attempt at using the Message Passing Interface (MPI) was
presented by Łukasik (2007). Raykar and Duraiswami
(2006) give an ε-exact algorithm (the idea is similar to
the one presented by Raykar et al. (2010)) to accelerate
finding the optimal bandwidth.

2.2. Bandwidth selection for kernel density estimates.
The bandwidth selection problem is probably the most
important one in the KDE area. Currently available
selectors can be roughly divided into three classes
(Sheather, 2004; Silverman, 1986; Wand and Jones,
1995). In the first class one uses very simple and easy to
calculate mathematical formulas. They were developed to
cover a wide range of situations but do not guarantee being
close enough to the optimal bandwidth. They are often
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called rules-of-thumb methods. The second class contains
methods based on least squares and cross-validation ideas
as well as more precise mathematical arguments, but they
require much more computational effort. However, in
reward for it, we get bandwidths more accurate for a wider
range of density functions. In the paper these methods
will be abbreviated as LSCV. The third class contains
methods based on plugging in estimates of some unknown
quantities that appear in formulas for the asymptotically
optimal bandwidth. Here we abbreviate these methods as
PLUGIN.

3. Mathematical preliminaries

In this section we give some preliminary information on
kernel density estimation as well as on how to use it in
the database area. Most of this section is devoted to
precise recipes for calculation of the optimal bandwidth
h and H . We also propose some slight but important
modifications of the reference mathematical formulas (see
Section 5). The modifications play a very important
role during GPU-based and SSE-based fast algorithm
implementations for calculating the bandwidth.

3.1. Kernel density estimation. Let us consider
a continuous random variable X (in general
d-dimensional), and let us assume its PDF f exists
but is not known. Its estimate, usually denoted by f̂ , will
be determined on the basis of a random sample of size
n, that is, X1, X2, . . . , Xn (our experimental data). In
such a case, the d-dimensional kernel density estimator
f̂(x, h) of the actual density f(x) for the random sample
X1, X2, . . . , Xn is given by the following formula:

f̂(x, h) = n−1
n∑

i=1

Kh (x−Xi)

= n−1h−d
n∑

i=1

K

(
x−Xi

h

)
, (1)

where

Kh(u) = h−dK(h−1u) (2)

and K(·) is the kernel function-a symmetric function that
integrates to one. In practical applications, K(·) is very
often the Gaussian normal formula

K(u) = (2π)−d/2 exp
(
−1

2
uT u

)
. (3)

Here n is the number of samples, d is the task
dimensionality, x = (x1, x2, . . . , xd)T , Xi =
(Xi1, Xi2, . . . , Xid)T , i = 1, 2, . . . , n, Xij is the i-th
observation of the random variable Xj , h is a positive
real number called the smoothing parameter or bandwidth.

Other commonly used kernel functions are Epanechnikov,
uniform, triangular and biweight (Li and Racine, 2007).
One can prove that selection of a particular kernel function
is not critical in most practical applications as all of
them guarantee obtaining similar results (Wand and Jones,
1995). However, in some applications, like, e.g., query
selectivity estimation (Blohsfeld et al., 1999), kernels
with finite support may be more adequate. On the other
hand, the bandwidth is the parameter which exhibits a
strong influence on the resulting estimate. If we have
bandwidth h, we can determine the estimator f̂(x, h) of
the unknown d-dimensional density function f(x) using
the formula (1).

Equation (1) assumes that the bandwidth h is
the scalar quantity, independently of the problem
dimensionality. This is the simplest and the least complex
variant of the bandwidth. On the other hand, the most
general and complex version assumes that the so-called
bandwidth matrix H is used instead of the bandwidth
scalar h. The size of the matrix H is d × d. This matrix
is positive definite and symmetric by definition. So, an
equivalent of the formula (1) is now defined as follows:

f̂(x, H) = n−1
n∑

i=1

KH (x−Xi)

= n−1|H |−1/2
n∑

i=1

K
(
H−1/2(x−Xi)

)
, (4)

where

KH(u) = |H |−1/2K(H−1/2u) (5)

and K(·) is defined by (3).
A version between the simplest and the most

complex is also considered in the literature (Duong, 2004)
and is based on simplifying the unconstrained bandwidth
matrix H to its constrained equivalent where all the
off-diagonal entries are zeros by definition. In the paper
we do not consider this case.

3.2. Formulas for bandwidth selection. In the
following section we present detailed mathematical
formulas for calculating bandwidths (optimal in some
sense) using the PLUGIN and the LSCV methods
mentioned earlier. The PLUGIN method is designed
only for 1D problems, known in the literature as uni-
variate problems. However, the method can be used
also for solving nD problems when using the so-called
product kernel approach. Then, the PLUGIN method
can be used d times, for each dimension separately.
Contrary to PLUGIN, the LSCV method is designed for
both 1D and nD problems (known in the literature as
multivariate problems). Three different LSCV versions
can be considered, while only two were implemented
by the authors. The simplest one (with the smallest
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computational complexity) assumes that the bandwidth
h is the scalar quantity, independently of the problem
dimensionality (see Eqn. (1)). On the other hand, the
most computational complex version assumes that the
bandwidth matrix H is used, instead of the scalar h (see
Eqn. (4)). This matrix is positive definite and symmetric.

Below, in the next three subsections, we give very
condensed recipes for calculating the optimal bandwidth
using the PLUGIN and two LSCV approaches: the
simplified one for evaluating optimal h (that is, if the
density estimate is calculated from (1); this variant will be
called LSCV_h) and the general multivariate variant of the
method (that is, if the density estimate is calculated from
(4); this variant will be called LSCV_H). All the necessary
details on the methods as well as details on deriving
particular formulas can be found in many source materials
(e.g., Silverman, 1986; Simonoff, 1996; Wand and Jones,
1995). Particular formulas for PLUGIN and LSCV_h
approaches were adopted directly from Kulczycki (2005;
2008) with only a slight change in some symbols to make
them compatible with the classical book by Wand and
Jones (1995).

The formulas given in the next three subsections
assume that the Gaussian kernel is used. Extension
toward supporting other kernel types is also possible.
However, we must point out that for non-Gaussian kernels
the convolution formulas given by (16) and (23) have
no analytical forms and numerical methods based on
approximation theory should be used. Details can be
found in the work of Kulczycki (2005).

All the methods presented below determine the
optimal bandwidth on the basis of the input random
variable and commonly used optimality criterion based
on minimization of the Mean Integrated Squared Error
(MISE) and its asymptotic approximation (AMISE).

3.2.1. PLUGIN. This method is used for calculating
an optimal bandwidth h for univariate problems (using
it for multivariate problems is briefly indicated in
Section 3.2). First we calculate the variance and the
standard variation estimators of the input data (Eqn. (6)).
Then we calculate some more complex formulas (Eqns.
(7)–(11)). The explanation of their essence is beyond the
scope of the paper and can be found in many books on
kernel estimators, e.g., the three above-mentioned books.
Finally, after completing all the necessary components
we can substitute them into Eqn. (12) to get the sought
optimal bandwidth h.

1. Calculate the value of variance V̂ and standard
deviation σ̂ estimators:

V̂ =
1

n− 1

n∑

i=1

X2
i −

1
n(n− 1)

(
n∑

i=1

Xi

)2

,

σ̂ =
√

V̂ . (6)

2. Calculate the estimate Ψ̂NS
8 of the functional Ψ8:

Ψ̂NS
8 =

105
32
√

πσ̂9
. (7)

3. Calculate the value of the bandwidth of the kernel
estimator of the function f (4) (4th derivative of the
function f , that is, f (r) = drf/dxr):

g1 =

(
−2K6(0)

μ2(K)Ψ̂NS
8 n

)1/9

,

K6(0) = − 15√
2π

, μ2(K) = 1. (8)

4. Calculate the estimate Ψ̂6(g1) of the functional Ψ6:

Ψ̂6(g1) =
2

n2g7
1

n∑

i=1

n∑

j=1,i<j

K(6)

(
Xi −Xj

g1

)

+ nK(6)(0),

K6(x) =
1√
2π

(
x6 − 15x4 + 45x2 − 15

)
e−

1
2x2

.

(9)

5. Calculate the bandwidth of the kernel estimator of
the function f (2):

g2 =

(
−2K4(0)

μ2(K)Ψ̂6(g1)n

)1/7

,

K4(0) =
3√
2π

, μ2(K) = 1. (10)

6. Calculate the estimate Ψ̂4(g2) of the functional Ψ4:

Ψ̂4(g2) =
2

n2g5
2

n∑

i=1

n∑

j=1,i<j

K(4)

(
Xi −Xj

g2

)

+ nK(4)(0),

K4(x) =
1√
2π

(
x4 − 6x2 + 3

)
e−

1
2 x2

. (11)

7. Calculate the final value of the bandwidth h:

h =

(
R(K)

μ2(K)2Ψ̂4(g2)n

)1/5

,

R(K) =
1

2
√

π
, μ2(K) = 1. (12)
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3.2.2. LSCV_h. This method is used for calculating
the optimal bandwidth h for both univariate and
multivariate problems (determined by the parameter d),
that is, applicable to the formula (1). The task is
to minimize the objective function (13) which will
be minimized according to the sought bandwidth h.
After determining the search range of the bandwidth h
(Eqn. (18)) as well as the starting bandwidth h (Eqn. (17)),
we search for a h which minimizes the objective function
(13).

1. Calculate covariance matrix Σ, its determinant
det(Σ) and its inverse Σ−1.

2. Let Xi be the i-th column of the input matrix X .
The LSCV_h method yields minimization of the
objective function g(h):

g(h)

= h−d
[
2n−2

n∑

i=1

n∑

j=1,i<j

T

(
Xi −Xj

h

)

+ n−1R(K)
]
, (13)

where

T (u) = (K ∗K)(u)− 2K(u), (14)

K(u)

= (2π)−d/2 det(Σ)−1/2 exp
(
−1

2
uT Σ−1u

)
,

(15)

(K ∗K)(u)

= (4π)−d/2 det(Σ)−1/2 exp
(
−1

4
uT Σ−1u

)
.

(16)

3. Calculate the approximate value of the bandwidth h:

h0 =
(

R(K)
μ2(K)2R(f ′′)n

)1/(d+4)

,

R(K)
μ2(K)2

=
1

2dπd/2d2
, R(f ′′) =

d(d + 2)
2d+2πd/2

.

(17)

4. Let the range in which we search for a minimum of
g(h) be heuristically found as

Z(h0) = [h0/4, 4h0] . (18)

The optimal bandwidth h is equal to

arg min
h∈Z(h0)

g(h). (19)

3.2.3. LSCV_H. This method is used for calculating
the optimal bandwidth matrix H for both univariate and
multivariate problems, that is, applicable to the formula
(4). In this variant of the LSCV method the objective
function is defined by Eqn. (20). Now our goal is to
find such a bandwidth matrix H which will minimize
this objective function. This is a classical nonlinear
optimization problem and it can be solved by using, for
example, the well-known Nelder–Mead method (Nelder
and Mead, 1965). This method needs a starting matrix
which can be calculated from the rule-of-thumb heuristic
equation (25) of Wand and Jones (1995).

We know that the bandwidth matrix H is always
symmetric and its size is d × d. So, only d(d + 1)/2
independent entries exist. As a consequence, there is
no need to evaluate the objective function for the full H
matrix. It is sufficient to use vech(H), where vech (vector
half) operator takes a symmetric d × d matrix and stacks
the lower triangular half into a single vector of length
d(d + 1)/2.

1. Let

g(H)

= 2n−2
n∑

i=1

n∑

j=1,i<j

TH(Xi −Xj)

+ n−1R(K), (20)

where

TH(u) = (K ∗K)H(u)− 2KH(u), (21)

KH(u)

= (2π)−d/2|H |−1/2 exp
(
−1

2
(u)T H−1(u),

)

(22)

(K ∗K)H(u)

= (4π)−d/2|H |−1/2 exp
(
−1

4
(u)T H−1(u)

)
,

(23)

R(K) = 2−dπ−d/2|H |−1/2. (24)

2. Find H which minimizes g(H). Start from

Hstart = (4/(d + 2))1/(d+4)n−1/(d+4)Σ1/2. (25)

4. General processing on graphics
processing units

Modern graphics cards are powerful devices performing
highly parallel single-instruction multiple-data
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computations. Newly developed APIs such as NVIDIA
CUDA (NVIDIA Corporation, 2012) and OpenCL allow
us to relatively easily develop programs which utilize this
computing power for computations not necessarily related
to computer graphics (Sawerwain, 2012). We prepared
our implementations using NVIDIA CUDA API, which
is very universal and has implementations specific for
NVIDIA GPUs as well as for other platforms (Farooqui
et al., 2011). As we implemented and tested our solutions
on NVIDIA GPUs, below we give a short description of
these GPUs and their capabilities.

NVIDIA GPUs are composed of many
multiprocessors. Each multiprocessor (SM) is composed
of several streaming processors (SP). Each streaming
processor is capable of performing logical and integer
operations as well as single precision floating point
ones. Each multiprocessor contains a number of warp
schedulers (dependent on graphics cards’ architecture).
Each warp scheduler may contain one or two dispatch
units which execute one or two independent instructions in
groups of SPs. Consequently, each SP in a group performs
the same instruction at the same time (SIMD). Current
graphics cards may contain up to 15 SMs with 192 SPs
each (Kepler architecture (NVIDIA Corporation, 2013)).
This shows that the GPUs are capable of running
thousands of threads in parallel (and even more
concurrently). Each NVIDIA graphics card has an
assigned compute capability (denoted as CC for brevity)
version which specifies which features are supported
by the given graphics card. Each multiprocessor also
contains a small but fast on-chip memory called shared
memory.

The tasks are not assigned to SMs directly. Instead,
the programmer first creates a function called a kernel,
which consists of a sequence of operations which need
to be performed concurrently in many threads. To
distinguish them from kernels used in kernel-based
density estimates, we will call these functions gpu-
kernels. Next, the threads are divided into equally sized
blocks. A block is a one, two or three dimensional
array of at most 1024 threads (or 512 threads on graphics
cards with CC≤1.3), where each thread can be uniquely
identified by its position in this array. The obtained
blocks form the so-called computation grid. When the
gpu-kernel is started, all of the blocks are automatically
distributed among the SMs. Each SM may process more
than one block, though one block may be executed at
only one SM. Threads in a single block may communicate
by using the same portion of the SM shared memory.
Threads run in different blocks may only communicate
through the very slow global memory of the graphics
card. Synchronization capabilities of the threads are
limited. Threads in a block may be synchronized but
global synchronization is not possible, though a (costly)
workaround exists. Threads in a block are executed

in 32 thread SIMD groups called warps (this is a
consequence of having one warp scheduler per several
SPs). Consequently, all of these threads should perform
the same instruction. If the threads with a warp perform
different code branches, all branches are serialized and
threads not performing the branch are masked.

The programmer implementing an algorithm
using CUDA API must take into account all of
these low level GPU limitations to obtain the most
efficient implementations. The GPU implementations of
algorithms computing the smoothing coefficient presented
in this paper adhere to all of above given efficient CUDA
programming rules.

5. Optimization of basic algorithms

In this section we describe optimizations of standard
equations presented in Section 3.2. First, we identify
some compute-intensive parts in the mathematical
formulas. Then we present some details on the parallel
algorithm for the most costly parts of the LSCV method
(which is the most computer power demanding method).
For details on other methods, please refer to the work of
Andrzejewski et al. (2013).

5.1. Basic formula modifications. The equations for
algorithm LSCV_h may be reformulated to require fewer
operations. Let us consider Eqn. (15):

K(u) = (2π)−d/2|Σ|−1/2 exp
(
−1

2
uT Σ−1u

)
.

As can be determined from Eqn. (13), u is always equal
to (Xi −Xj)/h. Let us therefore reformulate Eqn. (15):

K̃(v) = K(v/h)

= (2π)−d/2|Σ|−1/2 exp
(
−1

2
v

h

T
Σ−1 v

h

)

= (2π)−d/2|Σ|−1/2 exp
(
−1

2
1
h2

vT Σ−1v

)
.

(26)

Set

S(v) = vT Σ−1v. (27)

If we substitute this into Eqn. (26), we obtain

K̃(v) = (2π)−d/2|Σ|−1/2 exp
(
−1

2
1
h2

S(v)
)

. (28)

Analogous changes can be made to Eqn. (16):

(K̃ ∗ K̃)(v)

= (4π)−d/2|Σ|−1/2 exp
(
−1

4
1
h2

S(v)
)

. (29)
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These changes can be next propagated to Eqns. (13) and
(14):

T̃ (v) = T
( v

h

)
= (K̃ ∗ K̃)(v)− 2K̃(v), (30)

g(h)

= h−d
[
2n−2

n∑

i=1

n∑

j=1,i<j

T̃ (Xi −Xj)

+ n−1R(K)
]

(31)

It is easy to notice that the values of S(v) are scalars, and
moreover, they are constant, independent of the value of
the parameter h of the function g(h). Consequently, they
may be precalculated for each combination of two vectors
X at the start of the algorithm and used multiple times
during the search for the minimum of g(h).

Let us determine the complexity of evaluating the
function g(h) before and after modifications. Calculating
a single exponent value in either K(u) or (K ∗ K)(u)
requires O(d2) operations. These functions need to be
calculated O(n2) times, which leads to the complexity of
O(n2d2). Let nh be the number of times the function
g(h) needs to be calculated during the search for its
minimum. The total complexity of the unmodified
algorithm LSCV_h is therefore O(nhn2d2)

Precalculating a single value of S(v) requires O(d2)
operations. As n(n − 1)/2 of S(v) values need to be
precomputed, the complexity of precomputing of these
values is O(n2d2). However, since the values of S(v)
may be reused, computing g(h) has only the complexity
of O(n2). Consequently, the total complexity of the
modified algorithm LSCV_h is O(n2(d2 + nh)).

The approach described above cannot unfortunately
be used for optimizing the algorithm LSCV_H. This is due
to the fact that the expression (Xi−Xj)T H−1(Xi−Xj)
found in Eqns. (22) and (23) (which is an equivalent of
S(v)) depends on H . Consequently, this expression must
be recomputed each time the function g(H) is evaluated.

5.2. Identification of some compute-intensive parts
in the mathematical formulas. Let us take a closer
look at Eqns. (6), (9), (11), (20) and (31). All of
these (among other operations) compute sums of a
large number of values. As such, sums are performed
multiple times and constitute a large part of the number
of basic mathematical operations computed in these
equations. Accelerating them would significantly increase
the algorithm performance. Consequently, in general, we
need an algorithm which, for a given single-row matrix A,
would compute

R(A) =
n∑

i=1

Ai. (32)

The process of using the same operation multiple times
on an array of values to obtain a single value (sum,
multiplication, minimum, maximum, variance, count,
average, etc.) is called the reduction of an array. Parallel
reduction of large arrays is a known problem (Harris,
2007; Xavier and Iyengar, 1998).

Let us consider the first equation in (6). It contains
two sums. One of these sums is a sum of values of a scalar
function computed based on values stored in a matrix.
Formally, given a single-row matrix A and a function
fun(x), this sum is equivalent to

Rfun(A) =
n∑

i=1

fun(Ai). (33)

Parallel computation of such sums can be performed
by using a simple modification of parallel reduction
algorithms. We omit here the technical details.

Let us now consider Eqns. (9) and (11). Given a
single row matrix A of size n and a function fun(x), both
of these equations contain double sums of function values
equivalent to

RRfun(A) =
n∑

i=1

n∑

j=1,i<j

fun(Ai −Aj). (34)

As can be easily noticed, the function fun(x) is evaluated
for differences between combinations of values from the
single-row matrix A. These differences may be computed
using an algorithm similar to the matrix multiplication
algorithm presented by NVIDIA Corporation (2012).
Consecutive reduction of the obtained values is performed
using the known and previously mentioned algorithm. To
cope with the fact that we compute differences between
each pair of values (we compute a triangle matrix of
differences), we utilize a scheme similar to the one used
for accelerating LSCV methods (see Section 5.3).

Similar sums can also be found in Eqns. (20) and
(31). These sums, given any matrix A and the function
fun(x), are equivalent to

RRv
fun(A) =

n∑

i=1

n∑

j=1,i<j

fun(A:,i −A:,j), 1 (35)

where A:,i is the i-th column of matrix A. In these
equations, however, each argument of the function fun(x)
is a vector and evaluation of this function is much more
complex. Moreover, in both cases the function fun(x) can
be expressed as fun(x) = fun1(fun2(x)), where

fun2(x) = xT Mx, (36)

M is any matrix and fun1(y) is any scalar function.

1The v superscript stands for vector.
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Consider now Eqn. (31). Here, the function
fun(x) is an equivalent of the function T̃ (v) presented in
Eqn. (30). The function T̃ (v) is evaluated using functions
K̃(v) (Eqn. (28)) and (K̃ ∗ K̃)(v) (Eqn. (29)). These
functions, in turn, can be evaluated based on the value
of the function S(v) (Eqn. (27)), which is an equivalent
of fun2(x). As was mentioned in Section 5.1, the S(v)
values can be precomputed and used each time Eqn. (31)
is computed. We can therefore split the problem of
evaluating the sums in Eqn. (31) into two problems: (a)
evaluating fun2(x) (S(v)) and (b) finding a sum of values
of a scalar function introduced earlier.

Similar observations can also be made for Eqn. (20).
Here, the function fun(x) is an equivalent of the function
TH(Xi − Xj) presented in Eqn. (21). The function
TH(Xi − Xj) is evaluated using functions KH(Xi −
Xj) (Eqn. (22)) and (K ∗ K)H(Xi − Xj) (Eqn. (23)).
Exponents of both functions KH(Xi − Xj) and (K ∗
K)H(Xi−Xj) contain (Xi−Xj)T H−1(Xi−Xj), which
is an equivalent of fun2(x). Unfortunately, here the values
of fun2 cannot be precomputed as matrix H−1 is different
every time Eqn. (20) is evaluated.

5.3. Parallel processing of computation intensive
parts of selected formulas of LSCV_H. Let us recall
Eqns. (20) and (31). Both contain sums which are
equivalent to

sum(A) =
n∑

i=1

n∑

j=1,i<j

fun(A:,i −A:,j)

=
n∑

i=1

n∑

j=1,i<j

fun1(fun2(A:,i −A:,j)), (37)

where A is any d × n matrix, fun1 is any scalar function
and fun2(x) = xT Mx, where M is also any matrix.

As was suggested in Section 5.2, the parallel
processing of such sums can be split into two problems:
evaluating fun2 and then reducing the resulting values
using the previously introduced algorithm. Note also that
n (the size of the database sample) can be very large.
Consequently, these equations (among other operations)
compute sums of a large number of values. As such sums
are performed multiple times and constitute a large part
of the basic mathematical operations performed in these
equations, accelerating them would significantly increase
the algorithm performance. The process of using the same
operation multiple times on an array of values to obtain a
single value (sum, multiplication, minimum, maximum,
variance, count, average, etc.) is called the reduction of
an array. Parallel reduction of large arrays is a known
problem (Xavier and Iyengar, 1998) and has an efficient
solution for GPUs (Harris, 2007). Before the reduction of
values is performed, however, the values of function fun
need to be computed.

Consequently, we need an algorithm which, for a
given A matrix, would find a triangular matrix B = [bi,j ],
i = 1, . . . , n, j = i + 1, . . . , n, such that

bi,j = fun(A:,i −A:,j) = fun1(fun2(A:,i −A:,j)).
(38)

As each value of fun function value may be computed
independently, the parallel computation algorithm
seems obvious. We propose a scheme derived from
the matrix multiplication algorithm presented by
NVIDIA Corporation (2012). Consider the scheme
presented in Fig. 1. A matrix is divided into chunks of
k vertical vectors (columns). The triangular result matrix
is divided into tiles of size k × k (notice that tiles on
the matrix diagonal contain excessive positions). Each
tile corresponds to some combination of two chunks of
matrix A. The row of a tile within the triangular matrix
is indexed by q and the column is indexed by l. For each
tile, a group of k × k threads is started. First, a subset
of threads in a block copies the corresponding chunks
into the cache memory. Next, each thread in the tile
computes a function value based on two vectors retrieved
from the cached chunks. Each thread detects whether or
not it is over or on the main diagonal. If it is below the
diagonal, it stops further computations. If it is over the
main diagonal, it computes of value fun and stores it in
the output array. The linear position in the output array
may be computed using the equation for a sum of the
arithmetic progression, based on the thread coordinates
within the triangular array. Notice that the order of stored
values is unimportant, as they are subsequently only
arguments for functions whose values are later reduced
(summed up).

First, as fun(�x) = fun1(fun2(�x)) and the fun1
function is scalar, it is easy to notice that the main problem
is parallel evaluation of fun2. When a thread finalizes
computation of fun2, it can use the obtained value to
compute fun1 and therefore fun . Consequently, we shall
now derive an efficient order of performing operations
needed to evaluate fun2 within a tile for an array storing
A that is row-major aligned in the computers’ memory.

For simplicity, let us assume that the tile considered
does not lie on the main diagonal. We shall denote the
tile of the matrix containing the values of fun as a k × k
submatrix Y . Each such tile corresponds to two d × k (d
is the number of rows in A) chunks E and F of the matrix
A. Let us assume that chunks E and F start at columns
qk + 1 and lk + 1, respectively.

Let
i = qk + r, j = lk + p, (39)

where r, p = 1, . . . , k. Consequently, A:,i = A:,qk+r =
E:,r and A:,j = A:,lk+p = F:,p. Let vr,p = E:,r − F:,p =
A:,i − A:,j be all of the arguments of the fun2 function
within a tile. From the definition of the function fun2 and
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Fig. 1. Parallel computation of the fun function values.

the new notation introduced above, we know that

yr,p = fun2(vr,p) = (vr,p)T Mvr,p. (40)

Let us extract the first matrix multiplication operation
from Eqn. (40):

zr,p = (vr,p)T M. (41)

The zr,p value is a horizontal vector of d scalars:

zr,p = [zr,p
a ]a=1,...,d , (42)

where each value zr,p
a is a result of a dot product between

the vector vr,p and the a-th column of the M matrix:

zr,p
a = (vr,p)T M:,a =

d∑

c=1

vr,p
c mc,a. (43)

Let us now substitute Eqn. (42) into Eqn. (40):

yr,p = zr,pvr,p = [zr,p
a ]a=1,...,d vr,p. (44)

As vr,p is a vertical vector of d values, the above
expression is a dot product of vectors zr,p and vr,p

yr,p = [zr,p
a ]a=1,...,d [vr,p

a ]a=1,...,d =
d∑

a=1

zr,p
a vr,p

a . (45)

Substituting Eqn. (43) into Eqn. (45), we obtain

yr,p =
d∑

a=1

(
d∑

c=1

vr,p
c mc,a

)
vr,p

a . (46)

Recall that vr,p
x = ex,r − fx,p. Substituting this into (46),

we obtain

yr,p =
d∑

a=1

(
d∑

c=1

(ec,r − fc,p)mc,a

)
(ea,r − fa,p). (47)

As each yr,p value is computed independently of
other yr,p values, we can extend the above equation
to compute the whole row Yr,: of matrix Y . This is
accomplished by replacing each occurrence of the column
number p with the colon, which means “all available
values”. To retain the correctness of terms that are not
dependent on p (such as ec,r), we introduce the following
notation. By [x]k we denote a horizontal vector of k
values equal to x. All terms that are not dependent
on p are converted into horizontal vectors of k values.
Consequently, the row r of the tile matrix Y may be
computed as follows:

Yr,: =
d∑

a=1

(
d∑

c=1

([ec,r]k − Fc,:)mc,a

)
([ea,r]k − Fa,:).

(48)
Notice that (48) expresses a single tile row in terms of

either single matrix values (ex,r and σ̄c,a) or chunk rows
(Fx,:). Let us rewrite the above equation in algorithmic
form:

For each r = 1, . . . , k, perform the following steps:

1. Yr,: ← [0]k.

2. For each a = 1, . . . , d, perform the following
steps:

(a) part ← [0]k;

(b) for each c = 1, . . . , d, perform the
following step:

part ← part +mc,a ∗ ([ec,r]k − Fc,:);
(c) Yr,: ← Yr,: + part · ([ea,r]k − Fa,:).

3. Output Yr,:.

As we assume row-major order storage of the matrix
A, the rows Fx,: are stored in linear portions of the
memory, which allows efficient accesses. Notice that
each access to a chunk row is accompanied by an access
to a single value in both the M matrix and the second
chunk (E). Unfortunately, these accesses to memory are
not to consecutive memory addresses. Notice, however,
that there are only two such accesses per one large linear
access to the chunk row. Moreover, as M and E are small,
they can be easily fit within the cache memory for faster
access.

A GPU implementation of this scheme is constructed
as follows. Each tile is processed by a block of 256
threads (k = 16). Such a block size allows the best
utilization of GPU multiprocessors for modern computer
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capabilities. Each block caches E and F chunks in shared
memory for efficient retrieval. We have limited the lengths
of vectors to up to 16 values (d ≤ 16) to simplify
the copying of data to shared memory and subsequent
processing (256 threads can copy 16 vectors of 16 values
in parallel). The array for M is stored in row major order
in constant memory. Each thread warp (32 consecutive
threads) processes two rows of Y . It can be easily shown
that a proper implementation avoids any global and shared
memory access conflicts which would cause serialization
of thread execution. Threads in blocks which process tiles
on the main diagonal detect whether they are above or
below the main diagonal and stop further computations
where appropriate.

As starting triangular computation grids is not
possible, we adapted the following solution. First, the
number of tiles needed to perform all of computations
is calculated. Next, a two dimensional grid containing
at least the required number of blocks is started. Each
block, based on its location within the grid, computes its
unique number. Finally, based on this number, the block
is assigned to some tile in the triangular matrix.

6. Algorithm implementations

In this section we describe how to utilize the algorithms
presented in Sections 3 and 5 to create efficient GPU
implementations of the PLUGIN, LSCV_h and LSCV_H
algorithms.

6.1. PLUGIN. In our implementation we utilize
parallel reduction algorithms we implemented to compute
the variance estimator (Step 1, Section 3.2.1, Eqn. (6))
and for computing sums in Steps 4 and 6 (Section 3.2.1,
Eqns. (9) and (11)). The remaining steps (2, 3, 5 and
7) are all simple equations that are inherently sequential
and therefore cannot be further optimized. Nonetheless,
they require a very small number of operations and can
therefore be performed on a CPU in negligible time.

6.2. LSCV_h. Our implementations of the LSCV_h
algorithm use the modified equations presented in
Section 5.1. Consequently, the algorithm is performed
using the following steps:

1. Compute the covariance matrix of X : Σ.

2. Compute the determinant of the matrix Σ: det(Σ).

3. Compute the inverse of the matrix Σ: Σ−1.

4. Compute the approximate value of the bandwidth
(see Eqn. (17)).

5. Determine the range in which we search for
a minimum of the objective function g(h) (see
Eqn. (18)).

6. Compute S(vi,j) for all vi,j = Xi − Xj such that
i = 1, . . . , n and j = i + 1, . . . , n (see Eqn. (27)).

7. Search for a minimum of the objective function g(h)
within the range computed previously (Step 5). Each
time the objective is evaluated, its modified version
(see Eqn. (31)) should be used, which can be
computed based on precomputed values of S(v).

Steps 1 to 5 of the algorithm in all implementations
are performed sequentially on a CPU without using
SSE instructions. Although computing the covariance
matrix could be performed easily in parallel by using an
algorithm similar to the one presented in Section 5.3, we
did not implement that as this step takes very little time
compared with the last steps of the algorithm LSCV_h
presented above. The values of the S(v) function are
precomputed using the algorithm presented in Section 5.3
(the function S(v) is an equivalent of the fun2 function).
The last step (minimization of the function g(h)) is
performed by a “brute force” search for a minimum on
the grid, where the density of a grid is based on a user
specified parameter and should be sufficiently dense. Note
that, as was stated in Section 3.2.2, other approaches to
minimization of g(h) are also possible. In this paper,
however, we present implementations of the “brute force”
method.

Searching for a minimum of g(h) is performed as
follows. First, the user specifies nh, the number of
different h values to be tested. Based on nh and the width
of the range Z(h0) (Eqn. (18)) the h values to be tested
are determined. The values of g(h) for each distinct h are
computed in parallel. This is done by a gpu-kernel started
on a grid with nh thread rows and a sufficient number of
threads in each row to perform complete reduction of all of
the precomputed values of S(v). The gpu-kernel performs
the following operations:

• Each thread based on its y-coordinate within a
computation grid computes the tested argument h.

• Reduction is performed on the precomputed values
of S(v). For each retrieved value of S(v) and based
on the grid row dependent h argument value, the
function T̃ (v) (fun function equivalent) is computed
and these computed values are then added.

• Reduction is performed independently in each row
of the computational grid, i.e., each row reduces the
same set of S(v) values but for different h argument
values.

As computation grids are limited to 65535 rows, if nh >
65535, the work is split into several consecutive kernel
executions.

To find the final values of g(h), for each value
obtained during the reduction step a single thread
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is started, which performs remaining operations of
Eqn. (31). The computed values of g(h) are copied to
computer memory and an argument for which the function
g(h) has a minimal value is found.

6.3. LSCV_H. The LSCV_H algorithm can use
any numerical function minimization algorithm capable
of minimizing the function g(H) (see Eqn. (20)).
Such algorithms are often inherently sequential as they
are based on an iterative improvement of results of
the previous iteration. Consequently, the only parallel
approach to such algorithms would require to start
multiple parallel instances of this algorithm, each starting
from a different starting point in the hope of finding a
better result after a fixed number of steps. However, the
number of steps needed to converge to a local optimum
cannot be reduced. Possibly, for some specific algorithms,
some steps could be parallelized, but this is not a subject
of this paper.

Still, there is one thing that can be improved here.
Notice that an iterative optimization algorithm needs to
compute the objective function at least once per iteration
to assess the currently found solution. Our objective
function g(H) can take a long time to evaluate, and while
it is being computed other optimization algorithm steps
cannot be processed. Consequently, the time of finding
an optimal matrix H can be improved if we optimize
computing of g(H). As was mentioned in Section 5.3, the
most expensive part of this equation is basically the same
as in the function g(h) (the nested sums of the function
fun). Consequently, the same algorithms may be utilized
to compute this function.

There are some differences, however. In LSCV_h
the matrix used to evaluate S(v) (fun2 function
equivalent) was constant and the values of S(v) could be
precalculated. In LSCV_H, the same matrix is different
each time g(H) is computed. Consequently, to evaluate
g(H), both steps, computing exponents and reducing the
value of T have to be performed each time. To make this
solution a little bit more cache friendly, we combine both:
the exponent finding algorithm described in Section 5.3
and the reduction algorithm presented by Harris (2007)
into one kernel.

7. Experiments

7.1. Environment and implementation versions. For
the purpose of experiments we implemented the PLUGIN,
LSCV_h and LSCV_H algorithms (see Section 6), each
in three versions: (a) sequential implementation, (b) SSE
implementation and (c) GPU implementation. LSCV_H
only implemented the computing of the objective function
g(H), as this is the only element of this algorithm that
has influence on its performance. The objective function
in implementation our of LSCV_h is evaluated a fixed

number of times (nh = 150). In all versions we used
the ALGLIB library (Bochkanov and Bystritsky, 2013)
to perform the matrix square root. Each implementation
uses single precision arithmetic. Below we give a short
description of each of the versions.

• Sequential implementation: A “pure C”
straightforward sequential implementation of
the formulas presented in Sections 3.2.1 (algorithm
PLUGIN), 3.2.2 and 5.1 (algorithm LSCV_h) as well
as 3.2.3 (algorithm LSCV_H). This implementation
does not take into account any knowledge about
the environment it is going to be executed in. It is
not cache aware. The only cache awareness in this
implementation is reflected in loop construction and
memory storage which avoids non linear memory
access (up to transposing matrices if necessary). This
implementation does not use any SSE instructions
and is single threaded.

• GPU implementation: Implementation that
executes costly computations on GPU using CUDA
API. This implementation is highly parallel and
uses thousands of threads. Implementation tries to
utilize multiple GPU memory types, including very
fast shared memory, which may be treated as a user
programmable cache. Implementation also uses C++
templates to automatically create several versions of
each gpu-kernel with unrolled loops.

• SSE implementation: Implementation that tries
to utilize all ways of accelerating performance
available on CPUs, i.e., it utilizes SSE instructions,
multiple threads (to utilize multiple CPU cores and
HyperThreading capabilities) and is cache aware.
OpenMP (Chapman et al., 2007) is used for thread
management. Our implementation also uses C++
templates to automatically create several versions of
each function with unrolled loops.

Experiments were performed on a computer with
an Intel Core i7 CPU working at 2.8 GHz, an NVIDIA
GeForce 480GTX graphics card and 8 GB of DDR3
RAM. The CPU supports SSE4 instruction set, has 4
cores and HyperThreading capability. The GPU has
15 multiprocessors, each composed of 32 streaming
processors. All implementations were run under the Linux
operating system (Arch Linux distribution, 3.3.7 kernel
version).

7.2. Experiments and datasets. We performed
several experiments testing the influence of the number
of samples (n) and their dimensionality (d) on the
performance of all of the implementations introduced in
Section 7.1. The input sample sizes and dimensionalities
for each of the algorithms were as follows:
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• algorithm PLUGIN: n = 1024, 2048, . . . , 32768,
d = 1,

• algorithm LSCV_h: n = 64, 128, . . . , 1024, d =
1, . . . , 16,

• algorithm LSCV_H: n = 1024, 2048, . . . , 16384,
d = 1, . . . , 16.

All processing times measured for GPU
implementations include data transfer times between
the GPU and the CPU. From the obtained processing
times we calculated speedups achieved for each algorithm
and its implementation:

• SSE over sequential implementation,

• GPU over sequential implementation,

• GPU over SSE implementation.

The results are presented in the next section.
As the input data do not influence the processing

times of the tested implementations (except maybe for
the LSCV_H method, where the performance of a
minimization algorithm depends on the dataset, but in
our implementation we skip this part), we supply random
dataset for each algorithm/sample size/dimensionality
size combination. In other words, each implementation
of an algorithm is tested in the same conditions.

Some of the tested instances might seem too small,
especially the ones with high dimensionality. We
would like to stress, however, that the purpose of these
experiments was only to test the influence of the instance
size on the implementation performance (as stated earlier,
algorithms are not data dependent). Moreover, sizes
of instances were limited by the slowest (sequential)
implementation.

7.3. Experimental results. Let take a look at Fig. 2(a).
It presents speedups of our GPU implementation of
PLUGIN over the sequential implementation. As can be
noticed, the GPU implementation is about 500 times faster
than the sequential equivalent. Moreover, notice that
the bigger the instance, the greater speedup is obtained.
Figure 2(b) presents speedups of our SSE implementation
of PLUGIN over the sequential equivalent. The obtained
speedups are about 32. Notice that similarly as with
the GPU implementation, the obtained speedup grows as
the size of the instance increases. Figure 2(c) presents
speedups of our SSE implementation of PLUGIN over
the sequential implementation. The maximum obtained
speedup is about 16 and the speedup grows as the size of
the instance increases.

Let us now take a look at Fig. 3. It presents speedups
of GPU and SSE implementation of LSCV_h over the
sequential equivalent (Figs. 3(a) and 3(b), respectively)
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Fig. 2. Total speedups of all implementations of PLUGIN.
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and the speedup of the GPU implementation over the
SSE implementation (Fig. 3(c)). Each curve represents
a different data dimensionality. The speedups achieved
here are as follows:

• The GPU implementation is about 550 times faster
than the sequential implementation.

• The SSE implementation is about 20 times faster
than the sequential implementation.

• The GPU implementation is about 20 times faster
than the SSE implementation.

Notice that, in all cases, the speedup increases with
respect to the number of samples. This is due to the
following observations. The algorithm’s complexity is
O(n2(d2 + nh)) (see Section 5.1). Given the fact that
d and nh are constant, the complexity is reduced to
O(n2). This means that the processing time of any
implementation is given by a second-order polynomial.
As the speedup here is determined by a ratio of slower to
faster implementations, its value could be determined by
a ratio of two polynomials. As n → 0, this ratio tends to
be equal to a ratio of constant terms whereas for n → ∞
the same ratio tends to be equal to the ratio of coefficients
of the highest order term (here, the second order).

Another interesting observation is that for each
dimensionality the speedup limit is slightly different. This
is due to the compiler optimization in which loops are
unrolled, and for each dimensionality the compiler creates
a different version of used procedures. Consequently,
each curve represents in fact a slightly different program.
Moreover, the bigger the dimensionality, the higher the
speedup but the difference between consecutive speedups
is diminishing. Let us recall that the algorithm complexity
LSCV_h is O(n2(d2+nh)). For specified constant values
of n and nh (arbitrarily set as 150), the complexity is
reduced to O(d2). Consequently, the processing times
may be determined by a second-order polynomial where
the dimensionality is an independent variable. As the
speedup is calculated by dividing the processing times of
the slower implementation by the times achieved by the
faster implementation, it is basically a proportion of two
second order polynomials, which has a limit as d→∞.

Finally, let us analyze Fig. 4, which presents
speedups of our GPU implementation and SSE
implementations of LSCV_H over the sequential
implementation (Figs. 4(a) and 4(b), respectively)
and the speedup of the GPU implementation over the
SSE implementation (Fig. 4(c)). Similarly as in the
algorithm LSCV_h, we tested processing times for data
dimensionalities equal to d = 1, . . . , 16 and computed
speedups based on the obtained values. The speedups
achieved here are as follows:

• The GPU implementation is 290 times faster than the
sequential implementation.
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• The SSE implementation is 20 times faster than the
sequential implementation.

• The GPU implementation is 10 times faster than the
SSE implementation.

Most of the discussion for the algorithm LSCV_h
presented earlier can also be used to explain the results
obtained for implementations of LSCV_H. Recall that
our implementation LSCV_H is not complete. We only
tested the processing time needed to evaluate g(H) (Eqn.
(20)). Let us determine the complexity of evaluating
g(H). The function g(H) contains double sums which
add O(n2) TH(Xi − Xj) function values. Evaluation of
TH(Xi − Xj) requires O(d2) operations. Consequently,
the computation order of the function g(H) is O(n2d2).
This, in turn, leads to the earlier discussion of representing
function processing times with second order polynomials
with either n or d as an independent variable, and the
second variable constant.

Several other observations can be made. First,
take a look at Fig. 4(a). Curves for dimensionalities
d = 1, . . . , 3 are different from the rest of the
observed ones. Notice that here the speedup seems to
drop with an increase in the number of samples (n).
These observations, however, though look differently
than previously analysed on other figures, also fit our
earlier discussion regarding limits of the speedup function
defined as a ratio between two second-order polynomials.
Such an observation means that probably the constant part
of the polynomial is smaller for the GPU implementation
than for the sequential implementation. However, in such
a case this would mean that the GPU implementation
requires a smaller initialization time than the sequential
version. This is certainly not true, as the GPU
implementation needs to perform several additional tasks,
such as data transfer to device memory. This phenomenon
may be explained as follows. Even though the number
of dimensions is low, the outer loops of the sequential
implementation are dependent on n2 (they iterate over
every combination of two samples from the dataset).
This means that there is a constant (we assume n =
16384) processing time required for processing those
loops (branch prediction, etc.). Low values of d mean that
the inner loops, which evaluate Eqn. (21), require less time
and therefore constitute a lesser percentage of the whole
algorithm processing time. The same situation does not
influence the GPU implementation much, as outer loop
iterations are performed in parallel. Consequently, less
time is wasted on n2 dependent loop processing costs.
This, in turn, leads to the conclusion that for high n
and low d the speedup is higher. Now, let us assume
that n = 1024. Low values of n mean low outer loop
processing costs and GPU typical initialization costs start
to dominate, which leads to smaller speedups for low
values of d. This can be also noticed in Fig. 4(a). One

Table 1. Processing times for largest instances in the experi-
ments.

Implementation [ms]
Algorithm

(instance size) GPU SSE Seq.
PLUGIN

(n = 32768) 87.9 1442.3 47435.3
LSCV_h

(n = 1024, d = 16) 14.7 344.1 8283.6
LSCV_H

(n = 16384, d = 16) 184.2 2320 53258.8

could ask why the same phenomenon was not observed
for the LSCV_h algorithm. This stems from the fact that
in that algorithm the values of Eqn. (30) (counterpart of
Eqn. (21)) are computed only once, and other algorithm
tasks dominate.

Finally, in Table 1, for illustrative purposes only, we
present a comparison of processing times obtained for
largest instances in each of the experiments.

8. Conclusions and future work

In the paper we have presented some methods of how
to efficiently compute the so-called bandwidth parameter
used in computing Kernel Probability Density Functions
(KPDFs). The functions can be potentially used in
various database and data exploration tasks. One possible
application is the task known as approximate query
processing. However, a serious drawback of the KPDF
approach is that computations of the optimal bandwidth
parameter (crucial in the KPDF) are very time consuming.
To solve this problem, we investigated several methods of
optimizing these computations. We utilized two SIMD
architectures, the SSE CPU architecture and the NVIDIA
GPU architecture, to accelerate computations needed to
find the optimal value of the bandwidth parameter. We
tested our SSE and GPU implementations using three
classical algorithms for finding the optimal bandwidth
parameter: PLUGIN, LSCV_h and LSCV_H. Detailed
mathematical formulas are presented in Section 3.2. As
for the algorithm LSCV_h, we proposed some slight but
important changes in the basic mathematical formulas.

The changes allow us to precompute some values
which may be later reused many times. The details
can be found in Section 5.1. The fast SSE and CUDA
implementations are also compared with a simple
sequential one. All the necessary details on using the
GPU architecture for fast computation of the bandwidth
parameter are presented in Section 5, and the final notes on
how to utilize the algorithms are given in Section 6. Our
GPU implementations were about 300–500 times faster
than their sequential counterparts and 12–23 times faster
than their SSE counterparts. SSE implementations were
about 20–30 times faster than sequential implementations.
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Fig. 4. Total speedups of all LSCV_H algorithm implementa-
tions.

The above results confirm the great usability of modern
processing units. All the codes developed have been
made publicly available and can be downloaded from
www.cs.put.poznan.pl/wandrzejewski/
_sources/hcode.zip.

In the future, we plan to extend our research in
many areas. With respect to GPU utilization, we
plan on (i) utilizing new capabilities offered by the
Kepler architecture (such as dynamic parallelism), (ii)
extending our solutions to use multiple graphics cards
simultaneously, (iii) utilizing the high performance of
double precision computations on the Fermi and Kepler
architectures and testing the observed trade-off between
accuracy and performance, and finally (iv) testing the
performance of our solutions on many different graphics
cards models (with different numbers of CUDA cores
and different compute capabilities). With respect to the
versatility of our solutions, we plan on (i) extending our
algorithms to support different kernel types (currently
we support only Gaussian kernels) and (ii) developing
incremental methods which would allow updating the
bandwidth instead of recalculating it every time when
a dataset is changed (sometimes very insignificantly).
This would allow us to use our solutions even in real
transactional database systems.
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University of Technology, Poznań.
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