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A novel method is presented for mining fuzzy association rules that have a temporal pattern. Our proposed method
contributes towards discovering temporal patterns that could otherwise be lost from defining the membership functions
before the mining process. The novelty of this research lies in exploring the composition of fuzzy and temporal association
rules, and using a multi-objective evolutionary algorithm combined with iterative rule learning to mine many rules.
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1. Introduction

Knowledge discovery in databases is the process
of acquiring useful information from databases
(Piatetsky-Shapiro, 1990). Data mining is one step of this
process where the goal is to discover knowledge that is
accurate, comprehensible and interesting (Freitas, 2002).
There are two tasks of data mining that are distinguished
by the use of the information discovered: predictive
for classification or prediction tasks, and descriptive for
providing information about patterns and relationships in
data.

Association rule mining is a well-established method
of data mining that identifies significant correlations
between Boolean items in transactional data (Agrawal
et al., 1993). Fuzzy sets (Zadeh, 1965) are used to model
quantitative attributes with fuzzy association rule mining
(Chan and Au, 1997). In the market basket problem,
an example of a typical fuzzy association rule is shown
below:

IF pizza is high quantity THEN beer is high quantity.

This paper uses fuzzy sets to represent numeric
values to provide a smoother transition between
boundaries of crisp intervals, and to better handle
uncertainty. This is common in descriptive tasks
such as association rule mining (e.g., Chan and
Au, 1997; Hong et al., 2008), but also more generally
in predictive tasks (e.g., Alcalá et al., 2007b; Casillas
et al., 2005; Venturini, 1993).

For mining fuzzy association rules in the traditional
manner, the following procedure is often used:

1. Define linguistic labels (Zadeh, 1975) and
membership function parameters.

2. Mine the rules using the linguistic labels.

This two stage procedure presents an interesting
problem because some temporal rules can be lost as a
result of the first stage. The traditional method assumes
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that the fuzzy association rules are static, meaning
they do not change between when the first and last
transactions occurred, and so they hold across the entire
dataset. However, real-world datasets can have underlying
temporal patterns.

There are temporal periods (e.g., a Friday) of the
dataset where there can be more significant rules that
use different membership functions. These different
membership functions may not be captured in the
traditional method because the measurement of support is
taken across the entire dataset. These rules may occur at
the intersection of membership function boundaries and
so they are represented as less significant rules, despite
being more prominent in a temporal period of the dataset.
Less significant rules are lost because they fall below the
minimum support threshold.

Figure 1 demonstrates how one item in a rule may
have a membership function (marked with dashed line)
that occurs more prominently in a temporal period of a
dataset. This pattern is inadequately represented with the
medium and high membership functions in that temporal
period. Although traditional approaches do find temporal
patterns of fuzzy association rules, they may not discover
all significant patterns because some rules may contain
membership functions that lie on the intersection of
boundaries. For this reason, our proposed approach does
not set the membership functions before mining to provide
some flexibility for discovering these rules.
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Fig. 1. Example of a membership function (dashed line)
occurring at the intersection of two adjacent descriptive
membership functions in a temporal period of a dataset.

This paper reports on a proposed method, and a
methodology of analysis, for temporal fuzzy association
rule mining that uses fuzzy numbers to overcome the
problem of losing rules. The ability and efficacy of
the following two aspects of the proposed approach are
analysed:

• Discovery of a temporal fuzzy association rule in a
single temporal period.

• Discovery of a temporal fuzzy association rule in
multiple temporal periods.

Our proposed method outlines how to discover
fuzzy association rules that can be lost with traditional

approaches. An approximate Fuzzy Rule-Based System
(FRBS) approach is chosen because the flexibility in the
definition of membership functions allows temporal fuzzy
association rules to be discovered with fuzzy numbers.
Simultaneously searching the itemset space, the temporal
space and the membership function space is a complex
problem, so a Genetic Algorithm (GA) is used. The search
space is complex because of its size, and its continuous
space (membership function parameters) and discrete
space (market basket items). Searching this combination
of search spaces with an exhaustive search method is
prohibitive, because it requires partitioning the continuous
space into fixed fuzzy sets. Our motive is to avoid fixing
the fuzzy sets in order to provide flexibility in discovering
rules that occur at the intersection of membership function
boundaries.

A Multi-Objective Evolutionary Algorithm (MOEA)
and Iterative Rule Learning (IRL) are used to mine
multiple rules. Our previous work (Matthews et al.,
2011b; 2011a) is improved by changing the chromosome
representation from itemsets to rules, modifying the
fitness function, introducing a method of IRL for a
multi-objective evolutionary algorithm, and an improved
methodology for augmenting patterns.

This paper is organised as follows. Section 2 presents
an overview of related works on association rule mining,
Section 3 discusses the choice of an approximate FRBS,
Section 4 describes the MOEA and IRL for mining
temporal fuzzy association rules, Section 5 presents the
experimental setup and methodology, Section 6 discusses
results, and conclusions are drawn in Section 7.

2. Association rule mining

Association rule mining is an exploratory and descriptive
rule induction process of identifying significant
correlations between items in Boolean transaction
datasets (Agrawal et al., 1993) used for data analysis
and interpretation. Association rules are expressed as an
implication of the form X ⇒ Y where the antecedent and
consequent are sets of Boolean items with X ∩ Y = ∅.

A dataset contains a set of N transactions T =
{t1, t2, . . . , tN}. Each transaction comprises a subset
of items, referred to as an itemset, from M items
I = {i1, i2, . . . , iM}. To extract association rules
from datasets, the support-confidence framework was
introduced with the Apriori algorithm by Agrawal and
Srikant (1994). The support count of an itemset measures
the number of transactions that contain an itemset. The
support count for an itemset, σ(X), is defined as

σ(X) = |{ti|X ⊆ ti, ti ∈ T }|. (1)

The support, s, determines the strength of a relationship
by measuring how often the rule occurs in a dataset
according to
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s(X ⇒ Y ) =
σ(X ∪ Y )

N
. (2)

The confidence, c, determines how frequently the items
in the consequent occur in transactions containing
the antecedent, which measures the reliability of the
inference, and is defined as

c(X ⇒ Y ) =
σ(X ∪ Y )
σ(X)

. (3)

These measures have minimum thresholds that are
used by a deterministic method to extract rules from the
dataset.

2.1. Temporal association rule mining. The term
temporal association rule has an ambiguous meaning
because it can cover a broad area of temporal data
mining (Mitsa, 2010). This paper focuses on discovering
association rules where the frequency of their occurrence
(i.e., support) changes throughout a temporal dataset,
which is a different temporal pattern to that of sequential
rules (Agrawal and Srikant, 1995).

Temporal patterns in association rules can be of great
benefit to businesses. For example, interesting temporal
patterns may coincide with large sports events (e.g., Saleh
and Masseglia, 2010) or when unforeseen events occur,
such as hurricanes (e.g., Leonard, 2005). As suggested
by Yoo and Shekhar (2009), this knowledge can be
used to improve the operation of supply chains and the
visibility of items during key times. The importance of
this problem lies in the ability to discover and adapt to
changes with well-informed information. Many domains
can benefit from knowledge that has a temporal aspect;
within business timely actions are a key to success,
whilst for scientific applications it stands to enhance
insight and understanding. A review of association rules
by Laxman and Sastry (2006) shows that incorporating
temporal information can realise greater descriptive and
inferential power. It can also provide an additional aspect
of interestingness (Freitas, 2002).

Methods based on the support-confidence framework
discard rules that fall below the minimum support
threshold. Some of these rules can have a relatively
high support over a short period of time so these are
temporal association rules. The lifespan property (Ale
and Rossi, 2000) for Boolean association rules is an
example that measures support across a subset of a
dataset from when the items were first made available
to when they stopped being available, or taken off the
shelf. This captures an element of the dynamic nature of
a dataset because the support measure is not static across
the dataset. For example, some supermarket items may
be sold only during particular seasonal periods, resulting
in annual support values dropping below a minimum

threshold, despite having sufficient support values in a
seasonal period. The lifespan property does not consider
datasets where the frequency of rules may increase in
temporal periods, whilst still occurring throughout the
entire dataset.

Cyclic association rules (Özden et al., 1998) have
support measures that change during an item’s lifespan
and these rules can analyse fluctuations of nonseasonal
items. The dataset is partitioned to a desired time
granularity and rules are induced from each partition.
Cyclic patterns are identified by representing support
values of association rules in the partitions as binary
sequences and performing pattern matching. These rules
are considered to be fully periodic because they repeatedly
occur at regular intervals.

Partially periodic rules (Han et al., 1998) do not
have the same consistent regularity that is found in fully
periodic ones. The cyclic behaviour is found in only some
periods of the dataset, and it is not repeated regularly to
allow some cycles to be skipped.

Calendar-based schemas (Li et al., 2003) define the
temporal intervals for discovering association rules so the
requirement of prior knowledge is reduced. A calendar
pattern is defined from calendar units such as day, week
and month. The Apriori algorithm was modified to
discover temporal patterns using calendar-based schemas.

These works illustrate the types of temporal patterns
that can potentially be extracted with our proposed
method. The importance of temporal patterns in
association rules has been discussed with some real-world
examples. The temporal feature of the patterns that
this paper discovers is one aspect of what makes this a
challenging problem.

2.2. Fuzzy association rule mining. In addition to
the temporal aspect of this problem, the area of fuzzy
association rule mining is relevant. Association rule
mining represents the occurrence of items with Boolean
attributes. Quantitative association rule mining extends
this by discovering rules in quantitative attributes of a
dataset. Srikant and Agrawal (1996) introduced mining
quantitative association rules by analysing correlations
between the intervals of item attributes. The quantitative
values are first discretised uniformly and each discretised
interval is mapped to an item in the mining process.

Maeda et al. (1995) introduced the idea that
fuzzy sets can enhance the interpretability and improve
robustness to noise for knowledge representation in data
mining. Fuzzy association rules were introduced to
express quantitative attributes with linguistic labels in
a way that is more natural to human reasoning. Chan
and Au (1997) proposed F-APACS for mining fuzzy
association rules, and this improved the representation
with inaccuracies in physical measurements. These
are linguistic approaches that provide a linguistic
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interpretation of numerical values by experts. Fuzzy
association rules also deal with unnatural boundaries of
crisp intervals (Kuok et al., 1998). The crisp boundary
problem (also referred to as the sharp boundary problem)
exists because an attribute may occur near a boundary
of a crisp interval but still has the same set membership
as if it were in the middle of a crisp interval. Fuzzy sets
overcome this because they provide variability in set
membership near the boundaries of fuzzy sets. Hong and
Lee (2008) reviewed fuzzy association rule mining.

Defining crisp intervals of attributes from this
discretisation process, and also partitioning with fuzzy
sets, can cause information to be lost (Mata et al., 2002).
A loss of information can occur because rules are
generated from the intervals and so these rules are
totally dependent on how the intervals are constructed.
Soft computing techniques can overcome this issue;
for example, in the work of Mata et al. (2002), a GA
evolves attribute intervals to produce rules. Evolutionary
algorithms, such as GAs, are suitable for association
rule mining because they can search complex spaces
and address difficult optimisation problems, which has
led to much recent interest in this data mining problem
(Herrera, 2008). A review of evolutionary algorithms in
association rule mining was conducted by del Jesus et al.
(2011).

Evolutionary algorithms are often used for
discovering intervals specific to rules (Mata et al., 2002).
However, when representing attributes with fuzzy sets,
the method often used is to define the membership
functions first and then mine the rules with an exhaustive
search process. Typical methods for defining membership
functions for fuzzy association rules are clustering
(e.g., Kaya and Alhajj, 2003), expert knowledge (e.g.,
Chan and Au, 1997) and GAs (e.g., Hong et al., 2008).
Simultaneously evolving both membership functions
and fuzzy rules in FRBSs is particularly suitable for
FRBS controllers (Homaifar and McCormick, 1995)
and approximate fuzzy association rules (Matthews
et al., 2011b; 2011a). In these works, the purpose
of simultaneously evolving both the definition of
membership functions and rule induction focuses on
improving accuracy (accuracy is discussed in more detail
in the next section). Previous approaches for discovering
temporal patterns in fuzzy association rules (Matthews et
al., 2011b; 2011a) use an approximate FRBS approach
because the focus on accuracy allows the discovery of
hidden temporal patterns.

There are some works that are close to the
problem that this paper addresses, but they are not
the same. Martı́nez-Ballesteros et al. (2011) mine a
multi-dimensional time series for temporal patterns of
association rules. Lee and Lee (2004) used fuzzy sets
to describe calendar expressions of temporal patterns.
Weng (2011) investigated the temporal property of not

discovering rare fuzzy itemsets, which is different to our
research, because we focus on how the fuzzy sets are
defined instead of only the temporal property. Matthews
et al. (2011b; 2011a) focused on the composition of fuzzy
and temporal association rule mining, which is extended
in this paper.

3. Approximate approach

There are two different approaches to using fuzzy sets for
representing numeric values in a Mamdani FRBS. The
choice of an approximate Mamdani FRBS approach over
a linguistic Mamdani FRBS approach is discussed here.
It should be noted that the approach in this paper is not a
FRBS because it is has no inferencing mechanism but is
built on the same principles as FRBSs.

For representing numeric values in a Mamdani FRBS
there is the linguistic approach that labels fuzzy sets
with linguistic labels to allow an expert to interpret
their meaning (e.g., Chan and Au, 1997; Kuok et al.,
1998). An approximate FRBS approach does not label
the fuzzy sets with linguistic labels (e.g., Homaifar
and McCormick 1995; Matthews et al., 2011b; 2011a).
Instead, fuzzy numbers are used (Klir et al., 1997). These
approaches have a well-known compromise between
the interpretability and accuracy of using linguistic or
approximate FRBS approaches, and that makes this an
important decision. Interpretability can be classified as
either complexity-based or semantic-based (Gacto et al.,
2011), and this paper states the type of interpretability
when it is referred to. Complexity-based interpretability
aims to reduce the complexity of a model (e.g., the number
of association rules) and semantic-based interpretability
maintains the semantics of a model so it is understandable
by humans.

It was highlighted by Cordón et al. (2001, p. 16)
that a Mamdani FRBS using linguistic labels has a rigid
partitioning of the membership functions representing the
input and output spaces, and this limits the flexibility. It
is this lack of flexibility that can prevent some temporal
rules from being discovered because there may be
rules that occur at the intersection of these membership
function boundaries, which were defined before the
mining process.

If a linguistic approach were to be used, it would
require numerous linguistic labels to achieve the
desired level of granularity for discovering all temporal
patterns. As a consequence of more linguistic labels, the
number of rules increases and so the complexity-based
interpretability is reduced (Cordón et al., 2001, p. 16),
which counteracts the purpose of a linguistic approach.

Approximate Mamdani FRBSs overcome these
problems by allowing some flexibility in rule structure
(Cordón et al., 2001). This flexibility allows an
increase in the degrees of freedom and expressiveness
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that the rules can take because each rule has its own
distinct membership functions. Flexibility is crucial for
discovering temporal patterns because it allows rules
to be discovered that would have previously fallen on
the intersections of membership function boundaries.
This is an important factor in choosing an approximate
FRBS approach. Such an approach is good for expressing
temporal patterns because it provides a mechanism
to model the fine detail of temporal patterns that are
otherwise lost with a linguistic approach. A flexible
approach to the definition of fuzzy sets also allows
complex problems to be modelled with as many rules as
required. This means that many temporal patterns with
many different fuzzy sets can be discovered.

However, the flexibility of an approximate FRBS
approach creates a lack of semantic-based interpretability,
because the membership functions are not assigned
linguistic labels. Despite this, it is a step towards
discovering these patterns that would otherwise be lost.
Assigning linguistic labels to fuzzy sets can cause a loss
of rules, because the fuzzy sets are inflexible and they
have low membership functions where their boundaries
intersect with other fuzzy sets. So, the accuracy of an
approximate FRBS approach is required to discover these
temporal patterns.

Although the semantic-based interpretability is lost
because there are no linguistic labels, efforts have been
made to enhance the complexity-based interpretability
of the shape of membership functions. An objective
of the evolutionary algorithm (see Section 4.3.3) is to
restrict the membership function’s shape to an ideal width
so that its semantic-based interpretability is increased.
This is considered an improvement in semantic-based
interpretability because the shape of the membership
function is a factor in interpreting its meaning. For
example, a very thin membership could cover such a small
section of its domain that it becomes difficult to ascertain
its meaning. This objective provides a mechanism for
preventing the membership functions from evolving to
cover the entire input domain, whilst allowing enough
accuracy to represent a temporal pattern.

As seen from the literature in Section 2.2, there are
approximate FRBS approaches for mining quantitative
association rules using crisp intervals that are not defined
before the mining process (e.g. Mata et al., 2002).
Representing the quantitative attributes with fuzzy sets
extends other approaches by better handling uncertainty
and overcoming the crisp boundary problem.

4. Multi-objective evolutionary search and
optimisation

A MOEA was applied to this problem because of several
key features of this class of algorithms that are discussed
here.

Many problems have two or more objectives, often
competing, where a trade-off between these objectives
is required to solve a problem. A MOEA is a method
for solving this that uses populations of candidates
solutions to explore many different possible trade-offs.
A common feature of many MOEAs is the concept of
Pareto dominance. An objective vector of a solution is
said to dominate the objective vector of another solution
if no component is smaller and at least one is greater than
the components of the other solution’s objective vector
(Deb, 2005). In other words, a solution is said to be Pareto
optimal when no change in the solution will improve one
objective without degrading another objective. The set of
Pareto optimal solutions is known as the Pareto set and
the corresponding set of objectives for those solutions is
known as the Pareto front.

The decision variable space for this problem contains
variables for the items, the membership functions and
the temporal periods. It is a challenging problem to
simultaneously search this space because the membership
functions for rules can be different for different temporal
periods of the dataset. There are multiple temporal
patterns that can be present in the dataset and a MOEA
provides a method for discovering some of these rules.
It is likely there are numerous trade-off solutions so the
Pareto set will have a cardinality greater than one. The
variety in the Pareto set is important because it is not
the final solution itself; instead, the Pareto set is used
by an expert in decision making (Hopgood, 2012). This
applies to association rule mining because not all rules
discovered may be interesting to an expert, despite the
strength in interestingness measures. Matthews et al.
(2011b) evolve one rule in each run of a GA and this
work (also Matthews et al., 2011b) extends that with a
MOEA to yield several rules from one run of a GA. Pareto
dominance creates numerous trade-off solutions for the
multi-objective problem and this feature was used to yield
multiple temporal patterns. IRL also produced multiple
rules and this is discussed in detail in Section 4.2.

The support and confidence measures are competing
objectives (Bayardo and Agrawal, 1999) and MOEAs
are often used to mine association rules because of their
ability to handle competing objectives. Previous MOEAs
for association rule mining have focused on Boolean
data (e.g., Ghosh and Nath, 2004) and quantitative
datasets (e.g., Miller and Yang, 1997), but not the
composition of temporal and quantitative, which is a
significant step in problem dimensionality. From the
plethora of MOEAs, the Nondominated Sorting Genetic
Algorithm II (NSGA-II) (Deb et al., 2002) was selected
for its popularity (Alcalá et al., 2007a) and ability to
maintain a diverse set of solutions suitable for extracting
multiple patterns. Previous works have used the NSGA-II
for subgroup discovery (Carmona et al., 2010), a closely
related area, motif sequence discovery (Kaya, 2009), a
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different form of temporal mining, and also predictive
tasks (Ben Aicha et al., 2013).

4.1. Representation. A chromosome of mixed
types represents an entire association rule. A Michigan
approach and a mixed coding scheme were used to
represent the temporal period and fuzzy association rules.
A chromosome, C, was defined as

C = (el, eu, i1, a1, b1, c1, A1, . . . , ik, ak, bk, ck, Ak),
(4)

where the lower temporal endpoint is el, the upper
temporal endpoint is eu, items are integers denoted with
i (e.g., pizza), the basic parameters of the asymmetrical
triangular membership functions are real numbers
indicated with a, b and c for association rules with k
items and a binary value in A determines if the clause
belongs to the antecedent or consequent part of the rule.
Unconstrained learning (Cordón and Herrera, 1997) is
applied to the membership functions where no restrictions
are placed on intervals except that a ≤ b ≤ c. All parts
are randomly initialised according to the following: each
item i is distinct, the triangular membership function
parameters are a ≤ b ≤ c, and at least one antecedent
and one consequent are present in a rule. Additionally,
the minimum temporal support (Matthews et al., 2011b;
2011a) restricts the temporal distance between the
endpoints based on

eu − el ≥ minTempSup. (5)

The minimum temporal support defines the smallest
granularity of a temporal period that can be evolved. This
is similar to a unit representation in a calendar-based
schema because the length of the temporal period is
defined. But, it is also different because the temporal
period can start and end at any transaction, which allows
flexibility in where the temporal period occurs in the
dataset. Without minimum temporal support, solutions
evolve to cover very few transactions because this yields
a stronger support value.

4.2. Iterative rule learning. IRL is a process where
one rule is chosen from one run of a GA. The GA is run
many times to produce a set of rules. This is an approach
first used in the work of Venturini (1993), where a GA
continues to extract classification rules when there are
still examples labelled “uncovered”. In this paper, IRL
was performed by maintaining a set of final rules evolved
from each run of the GA. This final rule set contains all
discovered rules and is considered the final result of this
data mining method. A MOEA produces many solutions
as the final output of one run and so only the rules from
the Pareto front are used in IRL because these show the

best trade-off solutions. Figure 2 illustrates the process of
IRL with a MOEA.

Start

Run MOEA

Max number of iterations?

Add rules from
Pareto front to
final rule set

Finish

No

Yes

Fig. 2. Process of iterative rule learning.

Chromosomes are penalised in the fitness function if
the candidate rule matches a rule from the final rule set,
similarly as in the work of Mata et al. (2002). A match
was determined based on the following criteria:

• The same clauses of the rule. The parts of a
clause that are compared are the items, the gene that
identifies the consequent or antecedent part of the
rule, and the fuzzy sets. The following similarity
measure, based on intersection, union and cardinality
(Dubois and Prade, 1980, p. 24), compares two fuzzy
sets, E and F ,

S(E,F ) =
‖(E ∩ F )‖
‖(E ∪ F )‖ , (6)

where the notation ‘‖·‖’ represents scalar cardinality.
If the similarity of the two fuzzy sets is greater than
a threshold, then the clauses are considered to be a
match.

• The temporal endpoints have an overlap above a
threshold.

Candidate chromosomes that have previously been
discovered, because they are present in the final rule set,
are penalised by setting their fitness to 0. This penalisation
method helps to guide search away from previously
discovered rules so that the final rule set is diverse. IRL
was terminated after a set number of iterations.

4.3. Objectives. The fitness objectives are designed to
search the multi-dimensional objective space. Temporal
fuzzy support and confidence measure how good a rule is,
but they are not used as thresholds in this approach. The
following objectives are minimised to zero.

4.3.1. Temporal fuzzy support. The temporal fuzzy
support objective guides evolution towards discovering
rules that occur more frequently in temporal periods of the
dataset. Modified from the work of Ale and Rossi (2000)
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to include a fuzzy representation, this was redefined to a
minimisation function as

TemporalFuzzySupport(C) (7)

= 1 −
(∑eu

j=el
FuzzySupport(C(j)

X ∩ C
(j)
Y )

eu − el

)
,

with the same definitions as before: X and Y are itemsets,
j is a dataset transaction, and el and eu are endpoints. The
FuzzySupport (Hong et al., 2001) uses minimum for the
intersection operation.

The minimum temporal support prevents solutions
evolving towards the smallest time interval that produces
the highest temporal support, e.g., covering 1 transaction
would give a temporal support of 100 (or 0 in the case of
this minimisation objective).

4.3.2. Confidence. The confidence identifies how
common the antecedent is among other transactions. This
was redefined to a minimisation function as

Confidence(C) (8)

= 1 −
(∑eu

j=el
FuzzySupport(C(j)

X ∩ C
(j)
Y )∑eu

j=el
FuzzySupport(C(j)

X )

)
.

4.3.3. Membership function widths. The aim of
this objective was to prevent the membership function
parameters from evolving to cover the entire attribute
domain. Covering the entire domain would yield a high
fuzzy support value for a rule because the rule would
then be present in many transactions. The Root Mean
Square Error (RMSE) measures the difference between
the membership function widths and an ideal width by

RMSE =

√√√√1
k

k∑
j=1

(w − (cj − aj))
2, (9)

where the ideal width is w. The purpose of the ideal
width was to prevent solutions evolving towards a width
of 0 that would be detrimental to the semantic-based
interpretability of the membership function.

4.4. Genetic operators. The crossover operator
consists of four separate methods for operating on
different sections of the chromosome that have their own
constraints.

The section of a chromosome containing the lower
and upper endpoints are crossed over with uniform
crossover and the feasibility of offspring was ensured by

satisfying the minimum temporal support constraint on
endpoints el and eu, see Eqn. (5).

For the itemsets found in the next section of a
chromosome, uniform crossover was adapted to ensure
that the offspring do not contain duplicate items. The
method of crossover of itemsets by Matthews et al. (2010)
was extended to include membership functions. The
advantage of this method is that the ordering of items
remains unless a duplicate is present in the itemset.
A summary of each stage of the crossover is briefly
described here.

Stage 1.
Merge the chromosomes from two selected parents
into an intermediate array so that no two items from
the same parent are adjacent.

Stage 2.
Check each item in the array for duplicate values
against the remaining items. If a duplicate is found,
the duplicate item is swapped with the next item.
The result is that all duplicate items are adjacent and
the items can now be selected from the intermediate
array to form offspring.

Stage 3.
Select items from the intermediate array by iterating
over every even index value. A random integer (0 or
1) is added to the index and the indexed item is added
to the offspring. If a 0 is generated, it is checked for
duplicates with the preceding item, and if a duplicate
is found, it adds 1 to the index, otherwise it adds 0.

Membership functions only have crossover
performed when the items are the same, for example,
crossover of membership functions is performed on items
pizza and pizza, but not for items pizza and beer. This
prevents crossing over membership function parameters
from different items that would lose the semantics
of the membership functions and it would be more
exploratory (i.e., mutation) than exploitative. For items
that do not match, the membership functions remain
unchanged by copying them across to the offspring.
For matching items, the parent centric BLX-α (PBX-α)
(Lozano et al., 2004) crossover operator was applied to
the continuous attributes of the membership functions
parameters. The PBX-α crossover operator has a
higher probability of producing offspring within the
neighbourhood of its parents, rather than the entire search
space. The α parameter controls the diversity that this
operator introduces to a population.

The gene that determines whether the clause is part
of the antecedent or consequent was randomly swapped.
This was only swapped for items that match; the same
method that was used for the membership functions was
applied to this gene as well.
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Mutation operates in an identical manner to
initialisation. A gene was chosen at random and its allele
is randomly created whilst ensuring it is feasible.

5. Methodology

The methodology is described for analysing the ability of
the approximate FRBS approach for discovering temporal
fuzzy association rules for single and multiple patterns.
To demonstrate the efficacy of our proposed approach,
several experiments were conducted on datasets with
different features. The datasets are introduced first,
followed by the methodology, and then the parameters’
settings for the MOEA are given.

5.1. Dataset generation. The IBM Quest Synthetic
Data Generator1 (Agrawal and Srikant, 1994) was
extended to include quantitative attributes based on a
method similar to that of Hong et al. (2008) with a
simulated dataset. This generates market basket datasets,
and it can be considered a benchmark because it has
been used in many works (e.g., Agrawal and Srikant,
1994; Özden et al., 1998; Li et al., 2003; Matthews et
al., 2011b; 2011a). The generated datasets are some of
very few datasets that have time-stamped transactions,
quantities of items, and a variable number of items in
each transaction (variable size shopping baskets are
unlike time-series data). The quantities of items sold in
a transaction were randomly generated from a uniform
distribution in the range 1–20 and assigned to each item
in a transaction. The dataset had these features: 1000
transactions, 50 items and an average transaction size of
10. This dataset was used as the basis for all experiments
conducted.

Each transaction was identified with a transaction
ID and this was assumed to be recorded in the order
that transactions occur so the dataset can be considered
temporal. This assumption has also been made in other
works focusing on temporal data mining (e.g., Yoo and
Shekhar, 2009).

5.2. Augmentation. Temporal association rules
were augmented into datasets to provide a controlled
experiment for assessing our proposed approach. The
augmented patterns act as targets, and the aim of our
approach was to discover these target patterns. The
augmented patterns are single points on the universe of
discourse. These points are intended to represent points
that can occur at the intersection of membership function
boundaries for a descriptive approach. Discovering the
augmented patterns with fuzzy numbers (approximate

1Original source code no longer available. See alternative, http:
//www.cs.nmsu.edu/˜cgiannel/assoc_gen.html (last ac-
cessed 5th December 2010).

approach) can demonstrate how the loss of rules can be
avoided. It should be noted that a comparative analysis
with existing approaches, which use a descriptive FRBS
approach, is not performed, because the aim of our
work is to assess the ability of an approximate FRBS
approach with a MOEA in a complex search space. The
augmentation method is now described.

The Apriori algorithm was used to identify Boolean
association rules. The minimum support was set to
2.5% and minimum confidence set to 50%. Boolean
association rules were chosen from the results of the
Apriori algorithm, and each rule was augmented in a new
copy of the dataset. The criteria for choosing rules are
described in the next paragraph. After selecting a rule,
augmentation occurs by first identifying the transactions
that contain the chosen rule. A temporal period of the
dataset was chosen that has an arbitrary number of these
transactions containing the rule. This temporal period
was within the smallest temporal granularity defined by
the minimum temporal support. These transactions are
then modified to augment a temporal pattern in that
temporal period. The modification occurs by changing
the quantitative attribute of the items in a transaction, but
only for those items that match the rule. The quantitative
attributes were modified to be the same in the temporal
period. The result is a dataset that has an increase in the
quantitative association rule in a temporal period. It is this
quantitative association rule that will be represented by a
fuzzy association rule.

An example dataset that has been augmented is
demonstrated in Table 1. The augmented temporal pattern
occurs in transactions 5 and 6 of the example dataset. The
quantitative values were 5 and 15. These values were
chosen as an example of the location of the intersection
of membership function boundaries if the descriptive
approach of Fig. 1 were used. A rule at the intersection of
membership function boundaries has a low fuzzy support,
so the intention of augmenting a temporal pattern is to
replicate this situation in order to analyse whether the
MOEA can discover the rule.

The augmentation method uses the Apriori algorithm
to find relatively low (3.1%), medium (4.9%) and high
support (5.7%) Boolean association rules. The different
strength Boolean association rules were used to produce
datasets with various levels of difficulty. The reason
for this is that the itemset space is one of the more
important search spaces that the MOEA covers because a
rule must match one transaction before fuzzy support can
be calculated. Datasets with various levels of difficulty
allow the efficacy to be assessed. Rules to augment were
chosen manually.

This method augments a temporal pattern from
existing transactions. It differs from other augmentation
methods that insert an entirely new transaction, such as
those by Matthews et al. (2011b; 2011a). Augmenting an
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Table 1. Example of how a temporal pattern was augmented
into a dataset containing market basket transactions.
Transactions with a strikethrough line show the
transaction before it was modified. The items in bold
are the augmented pattern.

TID Items

1 {Bread(12), Pizza(2), Beer(1)}
2 {Eggs(6), Milk(1)}
3 {Eggs(2), Pizza(4)}
4 {Bread(4), Cheese(18)}
5 {Cheese(2), Pizza(1), Beer(12)}
5 {Cheese(2), Pizza(5), Beer(15)}
6 {Pizza(2), Beer(4), Milk(18)}
6 {Pizza(5), Beer(15), Milk(18)}
7 {Eggs(18), Cheese(3)}
8 {Bread(3), Eggs(12), Cheese(1)}
9 {Pizza(1), Cheese(9}
10 {Bread(1), Pizza(11)}

existing transaction means that the combinatorial search
space for items is not altered, and so the search is not
made easier by inserting new transactions. Figure 3 shows
the sum of fuzzy support of the augmented pattern before
and after augmentation of a dataset. The augmented
pattern is the large peak and this is the target pattern for
the MOEA to discover. Table 2 shows the augmented
datasets and the naming convention Dqp is adopted where
q is the quantity of temporal patterns (1 in the case of
Table 2) and p describes the augmented pattern (L/M/H
for low/medium/high support rules, respectively).
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Fig. 3. Bins (size 50) of fuzzy support for an augmented pattern
in D1M.

Table 2. Description of datasets augmented with 1 temporal
pattern. Support and confidence measure the rules
before they were augmented.

Data- Sup. Conf. Endpoint Quantitative
set (%) (%) el eu rule

D1H 5.7 53.3 700 746 17(5) ⇒ 21(15)
D1M 4.9 51 649 685 22(5) ⇒ 8(15)
D1L 3.1 50.8 566 591 34(5) ⇒ 45(15)

5.3. Multiple rules. More datasets were created using
the same augmentation method but for two patterns in
different temporal periods of the dataset. The aim of
augmenting two temporal patterns was to analyse the
efficacy of our proposed method at discovering multiple
rules. Our proposed method can produce multiple rules
from both the Pareto front of the MOEA and also with
numerous iterations of the MOEA using IRL.

The temporal patterns are augmented so that one
pattern appears earlier in the dataset than the next pattern,
so they do not overlap. The number of modified
transactions was identical in both augmented patterns
and the length of the temporal period was kept the
same as much as possible in the dataset. This ensures
that the temporal fuzzy support yields values that are
approximately the same for each augmented pattern.
Consequently, both patterns were global minima that were
used to analyse the efficacy in discovering multiple rules.
The datasets are described in Table 3 and had various
levels of difficulty for the purpose of analysing efficacy.
An illustration of the temporal patterns is provided in
Fig. 4.

Table 3. Description of datasets augmented with 2 temporal
patterns. Support and confidence measure the rules
before they were augmented.

Data- Sup. Conf. Endpoint Quantitative
set (%) (%) el eu rule

D2H 5.7 53.3
112 155 17(5) ⇒ 21(15)
700 746 17(5) ⇒ 21(15)

D2M 4.9 51
128 166 22(5) ⇒ 8(15)
752 791 22(5) ⇒ 8(15)

D2L 3.1 50.8
566 591 34(5) ⇒ 45(15)
791 820 34(5) ⇒ 45(15)
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Fig. 4. Bins (size 50) of fuzzy support for an augmented pattern
in D2M.

5.4. Parameter settings. Several parameters were
fixed, because the intention was to demonstrate the
MOEA for this data mining problem. The NSGA-II was
configured with the following properties: population size
of 1000, 500 generations, 40% crossover, 20% mutation,
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90% for α in PBX-α, a rule length of 2, and the ideal
width of membership functions was set to 2. IRL was set
to perform 20 runs of the NSGA-II, the fuzzy similarity
threshold was set to 0.5, and the overlap of the temporal
endpoints was set to 75%. The IRL algorithm was
repeated 30 times on each dataset.

The minimum temporal support was set differently
for each dataset. When augmenting a temporal pattern,
the size of the temporal periods varied with different
rules because they had different support values, and
so transactions containing the rule appeared at different
frequencies in the dataset. The minimum temporal
support was set according to the size of the temporal
period. For example, in dataset D1M (of Table 2), the
temporal pattern starts at transaction 649 and ends at 685,
a difference of 36, so the minimum temporal support was
set to 40.

6. Results

The method for analysing the results is presented first and
the results then follow.

6.1. Method of analysis. The results of each run
were analysed to identify if the augmented pattern was
discovered. The method for penalising rules in IRL
(see Section 4.2) was also used to compare rules in the
evaluation. An augmented pattern is considered to be
discovered if a fuzzy association rule from the final rule
set has the following criteria:

• The same itemsets and similar fuzzy sets. The same
method as used for IRL; however, whether the item
is in the antecedent or consequent is not included,
because only fuzzy support is used to identify the
rule, and not confidence.

• Fuzzy support is above a threshold value of 90% for
each transaction.

• The temporal endpoints have an overlap above 75%.
This criterion is identical to that used in IRL, see
Section 4.2.

6.2. Discovering augmented patterns. The results
for running the MOEA on a dataset with one augmented
pattern are summarised in Table 4. For each dataset, the
MOEA successfully discovered the augmented pattern in
at least one run of IRL. The results show that our proposed
approach was capable of finding temporal patterns in the
datasets used because the target patterns were discovered.

The augmented temporal pattern was discovered in
all runs of IRL on a dataset containing a strong temporal
pattern (D1H). The augmented patterns were discovered
less in D1M (27 times) and the target pattern was
discovered only twice in D1L. The number of times the

Table 4. Results from 30 runs of IRL on each dataset that has
one temporal pattern augmented.

Dataset
Minimum temporal Discovered

support target

D1H 50 30
D1M 40 27
D1L 30 2

augmented patterns were discovered shows the efficacy of
our proposed approach with different levels of difficulty.
The results indicate that our proposed method was better
at discovering patterns in datasets where the quantitative
itemset has a high fuzzy support in the dataset. The
confidence values of the target patterns discovered by our
proposed approach were all high values compared to the
variety of confidence values of other rules.

Fitness values for all objectives of a final result for
one run with dataset D1M are shown in Fig. 5. The
augmented pattern is indicated by a different point style,
‘+’, and this shows the target pattern in the objective
space standing out from other rules. There was a
trade-off between objectives in the target pattern. Drawing
attention to all of the rules plotted, a clear trade-off can
be seen between temporal fuzzy support and the width
of membership functions. There was less of a trade-off
between the confidence and other objectives, but this
is a key factor used in determining the interestingness
of a rule. Viewing such trade-offs is important when
analysing the results of the mining process, particularly
for knowledge discovery in real-world applications.
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Fig. 5. All rules from one run of IRL on D1H. Each point
represents a rule in the objective space.

The membership functions of one rule evolved from
dataset D1H are shown in Fig. 6. These membership
functions have evolved to the ideal membership function
width.
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Fig. 6. Membership functions of an augmented rule that was
discovered in dataset D1H. The dashed line represents
the augmented pattern: item 17 with quantity 5 and
membership function parameters a = 3.34, b = 5.03,
and c = 6.03 (a), item 21 with quantity 15 and
membership function parameters a = 13.71, b = 14.98,
and c 15.74 (b).

The results for datasets with two augmented temporal
patterns are summarised in Table 5. The analysis here
focuses on the efficacy of IRL to discover multiple
patterns, which uses iterations to discover more patterns.
The results show that for each dataset, IRL successfully
discovered at least one augmented pattern (either 1st or
2nd) in at least one run of IRL. This shows that IRL was
capable of discovering patterns that share global minima
because augmented patterns were evolved from different
temporal periods of the datasets tested.

Table 5. Results from 30 runs of IRL on each dataset that
has two temporal patterns augmented. The 1st and
2nd discovered targets refer to the first augmented
pattern appearing earlier in a dataset than the second
augmented pattern.

Dataset
Minimum temporal Discovered targets

support 1st 2nd Both

D2H 50 30 30 30
D2M 40 17 17 2
D2L 30 2 4 0

The number of IRL runs that discovered both
augmented temporal patterns was also analysed. The
analysis continues to focus on the the efficacy of IRL
to discover multiple patterns. Dataset D2H had the
best efficacy for discovering multiple patterns with IRL
because it discovered both patterns in every run of IRL
whilst D2M discovered both patterns less (2 times) and
D2L did not discover them at all. The results show the
efficacy of IRL to be good on the datasets tested and with
mixed performance on datasets with various levels of
difficulty.

The analysis now focuses on the efficacy of the
MOEA to discover multiple patterns. Table 6 shows how
many times a single run of a MOEA discovered both
augmented temporal patterns in all runs of the MOEA in
all iterations of IRL. Both patterns were evolved in dataset
D2H in 107 of 600 runs of the MOEA, only twice with
dataset D2M, and both patterns were not evolved with

any runs in dataset D2L. This demonstrates the ability
of the MOEA, the NSGA-II, in maintaining a diverse
set of solutions that allows two temporal patterns to
simultaneously evolve in one run. All the rules evolved for
dataset D2H are plotted in Fig. 7 and the two augmented
temporal patterns can be seen. This shows the same
trade-off in solutions that was illustrated in Fig. 5.

Table 6. Results from all runs of the MOEA in each run of IRL
(total of 600) on each dataset that has two temporal
patterns augmented.

Dataset
Minimum temporal Discovered both

support targets

D2H 50 107
D2M 40 2
D2L 30 0
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Fig. 7. All rules from IRL for D2H. Each point represents a rule
in the objective space.

7. Conclusions

This paper has proposed a MOEA for discovering
fuzzy association rules that have a temporal pattern.
The approach uses an approximate FRBS method
to overcome the issues arising from defining the
membership functions before the mining process. The
experimental methodology has augmented temporal
patterns with quantitative values, which would be near to
the intersection of membership function boundaries in a
descriptive FRBS approach. This has allowed the ability
and efficacy of our proposed method to be analysed.

The main finding is that our proposed method
is capable of discovering temporal patterns of fuzzy
association rules of the datasets tested. This contributes
towards discovering patterns that could otherwise be
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lost from defining the membership functions before the
mining process. Through using datasets with various
levels of difficulty, it was shown how the efficacy of
discovering temporal patterns is affected by the support
of its Boolean itemset. A temporal pattern that has a
Boolean itemset, where the itemset occurs frequently, is
more likely to be discovered than an itemset that is less
frequent. Future work will address mining temporal fuzzy
association rules that have lower fuzzy support across the
whole dataset.

The combination of a MOEA and IRL has provided
a method for mining multiple rules. This is particularly
useful for the knowledge discovery process because it
provides a variety of rules for an expert to determine
which ones are meaningful and useful within the context
of a particular application. IRL has greatly helped in
discovering the temporal patterns that are considered to be
more difficult as it provides a completely new run of the
algorithm that is guided away from previously discovered
solutions.

The method is proposed as a process to further
support the data mining process and not replace existing
methods. The reason for this is that it can find patterns
that other methods may not as a result of defining the
membership functions before the mining process.

Having demonstrated the ability to find target
patterns that have been defined by a methodology of
augmentation, the natural progression of the methodology
is to perform a comparative analysis with existing
approaches. There is potential for future work to explore
different types of temporal pattern and different fuzzy
set representations that provide flexibility. Furthermore,
flexibility may be suitable for non-temporal problems.
The robustness of identifying quantitative attributes
and evolving low support itemsets will be addressed.
Real-world datasets will be used and an analysis of
scalability will be conducted. Theoretical analysis will be
conducted, which can provide further explanation of our
empirical analysis.
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