
Int. J. Appl. Math. Comput. Sci., 2013, Vol. 23, No. 4, 839–853
DOI: 10.2478/amcs-2013-0063

USING A GRAPH GRAMMAR SYSTEM IN THE FINITE ELEMENT METHOD

BARBARA STRUG ∗, ANNA PASZYŃSKA ∗ , MACIEJ PASZYŃSKI ∗∗, EWA GRABSKA ∗

∗ Department of Physics, Astronomy and Applied Computer Science
Jagiellonian University, ul. Reymonta 4, 30-059 Kraków, Poland

e-mail: {barbara.strug,anna.paszynska,ewa.grabska}@uj.edu.pl

∗∗Department of Computer Science
AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: maciej.paszynski@agh.edu.pl

The paper presents a system of Composite Graph Grammars (CGGs) modelling adaptive two dimensional hp Finite Element
Method (hp-FEM) algorithms with rectangular finite elements. A computational mesh is represented by a composite graph.
The operations performed over the mesh are defined by the graph grammar rules. The CGG system contains different graph
grammars defining different kinds of rules of mesh transformations. These grammars allow one to generate the initial mesh,
assign values to element nodes and perform h- and p-adaptations. The CGG system is illustrated with an example from the
domain of geophysics.

Keywords: graph grammar system, automatic hp adaptivity, finite element method.

1. Introduction

The ability to represent the structure of an object and
relations of different types between its components makes
graphs useful in many domains of computer science.
Designing new artifacts requires a method for generation
of graphs representing them as well as an easy method
for visualization of objects represented by such structures.
One of the methods of graph generation is graph
grammars, which provide a rewriting mechanism on the
level of graphs, consisting in the replacement of subgraphs
of graphs by applying grammar rules called productions.
The main problem of graph generation with graph
grammars lies in the complexity and size (understood as
the number of rules) of grammars needed in real world
problems. Another difficulty appears in controlling the
order in which productions are to be applied for large
grammars. To tackle these difficulties, the replacement
of graph grammars with a high number of productions
by a system of simpler graph grammars was proposed
by Grabska and Strug (2005). In the approach applied
to CAD, cooperation and distribution formed a base for
generating new graphs with the use of graph grammars.
The paper is an attempt to use graph grammar system
for modelling two dimensional hp Finite Element Method
(hp-FEM) adaptive algorithms (Demkowicz, 2006). The

finite element method is commonly used in engineering
applications (Barboteu et al., 2013; Albers et al., 2012;
Hild, 2011). Adaptive methods consist in constructing a
sequence of approximation spaces, which generate with
every step of the algorithm a more accurate solution to
engineering problem. The finite element mesh contains
finite elements and shape functions, corresponding to
finite element edges, nodes and interiors which are
glued together into a global basis function. Selected
finite elements may be broken into smaller elements in
order to increase the accuracy of the approximation in
these areas of the mesh. The first attempt to model
mesh transformations by applying the graph grammar
concept was proposed by Flasiński and Schaefer (1996)
for regular triangular two-dimensional meshes with h
adaptation. This was done using a quasi-context sensitive
graph grammar. Spicher et al. (2010) modeled mesh
refinements by a simple rewriting framework, based on
topological chain rewriting. Both approaches allow us
only to model uniform refinements, because non-uniform
mesh transformations are context dependent and cannot be
modelled by the quasi-context sensitive graph grammar.

In the paper the composite graph grammar proposed
by Grabska (1993) is used to model the hp-FEM.
This approach allows modeling the uniform as well as

{barbara.strug,anna.paszynska,ewa.grabska}@uj.edu.pl
maciej.paszynski@agh.edu.pl


840 B.Strug et al.

nonuniform refinements (Szymczak et al., 2011).
The paper is a generalization of the results presented

by Paszynska et al. (2009; 2012a; 2012b; 2008), who
used a composite graph grammar to model the mesh
generation process. In some other works (Paszynski,
2009a; 2009b; 2011; 2013; Paszynski and Schaefer
2010) a graph grammar was also employed to describe
the parallel algorithm of a multi-frontal direct solver
utilized to compute the approximated solution of the
boundary-value problem over two dimensional hp finite
element meshes.

The paper will focus on modelling the mesh
generation process by means of a graph grammar
system. The system consists of different graph grammars
responsible for different kinds of operations performed
over finite elements. These grammars generate structures
of the initial mesh and allow performing h- and
p-adaptations. The graph grammar model makes it
possible to exploit the concurrency of the hp adaptive
algorithm. After expressing the mesh transformation
and the solver algorithm by means of graph grammar
productions, the model of concurrency can be constructed,
where basic undividable tasks are represented by graph
grammar productions. The approach allows one to find a
dependency relation between the tasks, and to group tasks
into sets of independent tasks which can be executed in
concurrent. This has already been implemented and tested
in a two dimensional case over a regular rectangular mesh
for a distributed memory architecture in the LONESTAR
Linux cluster environment (Paszynski, 2009a; 2009b).

The graph grammar system can also be used as a
parser algorithm that, having the finite element mesh,
constructs a sequence of graph grammar productions
deriving the mesh. In this way the consistency of the
finite element mesh obtained from some external mesh
generator algorithm can be checked.

Modelling the hp-FEM by means of a graph
grammar system instead of a graph grammar allows
automation of the deriviation process of the graphs
representing the finite element mesh.

The system can also be extended by using inferring
graph grammars (Kukluk et al., 2008) to model the
hp-FEM with other kinds of elements (for example,
triangular ones). In this approach the graph grammar
for generation of the initial triangular mesh can be
found based on sample graphs corresponding to simple
triangular meshes.

The paper is organized as follows. First, grammar
systems are introduced. Next, formal aspects of composite
graphs, composite graph grammars and grammar systems
are described. Further, the graph grammar system for
generation of the structure of a two dimensional mesh
with rectangular elements as well as hp-adaptation of
elements is presented. Finally, a numerical example from
the domain of geophysics is presented.

2. Grammar systems

Grammar systems were introduced as a way of increasing
the generative power of string grammars. A grammar
system consists of a finite number of grammars (called
the system components) which together change an
environment by applying some operations to it. At
a given moment, the system state is described by the
current environment (sub-environments). The system
works by changing its state. Two main types of grammar
systems which were investigated for string grammars
were Parallel Communicating (PC), grammar systems
(Csuhaj-Varjú, 2004) and Cooperating Distributed (CD)
grammar systems (Csuhaj-Varjú et al., 1993, 1994;
Kelemen, 19991; Martı́n-Vide and Mitrana 1998).
The main difference between these types of grammar
systems consists in the way an environment they
work on is defined. In PC grammar systems each
component grammar has its own copy of the form
being operated on/generated and they only exchange
information between each other on request. In the case
of CD grammar systems, all grammars operate on one
common object, but one grammar at a time. As we
aim at generating a single mesh, CD grammar systems
seem more appropriate here. They allow a number of
grammars to work together on one object. At any given
time step there is only one graph being generated. Each
component grammar operates on this graph according to
a communication protocol called the derivation mode.
The protocol may allow a single component to perform a
predefined number of steps or to work until no production
of this component can be applied. The method of selecting
which grammar should be used as the next “active”
component is also important. Such cooperating grammars
can be seen as independent cooperating agents solving
the same problem by modifying a common environment
(often compared with the blackboard model in artificial
intelligence) (Kelemen, 1991)).

In the paper we deal with a modification of CD
grammar systems. Yet, in the case of graph grammars,
the requirement that only one grammar can operate on a
given temporary form (called the sentential form) seems
too strong as it would be useful to allow more then one
grammar to operate on the same, common, sentential
form. It can be seen as an equivalent of many simple tasks
being performed on different parts of the same mesh. The
only requirement here seems to be ensuring that no two
grammars work at the same time on the same part of the
mesh, i.e., no two grammars (components) operate on the
same nodes of the sentential form. Moreover, some way
of activating particular components must be defined. Such
a method, called a cooperation strategy, may either be
based on some predefined order, thus leading the system
to operate under the control of an “external supervisor”,
which in this case would have the form of a control



Using a graph grammar system in the finite element method 841

Fig. 1. Node of a cp-graph and an example of a cp-graph.

diagram. Or, it can be based on dynamic activation of
components related to the current state of sentential form.
The way a given grammar works (called the derivation
mode), i.e., how long it performs its operations, must also
be defined. In this paper, the so-called terminal derivation
mode is used for most grammars, i.e., the grammar works
as long as it contains a production that can be applied to a
current graph.

3. Composite graphs

In this paper the structure of a mesh is represented
by means of the so-called composite graph (cp-graph).
The graph nodes correspond to mesh components
(edges,vertices and interiors of finite elements). Each
node of the graph can contain the so-called bonds
representing connections of the node with other nodes
(Grabska, 1993). Graph nodes are labelled with names of
mesh components associated with them and with numbers
of their bonds. Graph edges can also be labelled—a label
of an edge represents a relation between nodes (Fig. 1). A
node of a graph can have the so-called engaged bonds,
which constitute beginnings or ends of edges, and free
bonds, which represent potential connections of a node
with other nodes. The number of free bonds of a cp-graph
is called the type of the graph. A formal definition of a
labelled, attributed cp-graph is as follows. Let Σ be an
alphabet of labels for object nodes, bond nodes and edges.
Let for any sequence (x1, . . . , xn), SET (x1, . . . , xn) be
equal to {x1, . . . , xm}, where m ≤ n, i.e., to the set of its
elements. Let A be a set of attributes for nodes and edges,
such that for each a ∈ A, Da denotes its domain, i.e., the
set of all possible values of this attribute. Let P (A) denote
the set of all subsets of A.

Definition 1. The composition attributed graph over Σ is
the tuple g = (V, E, B, bd, s, t, lb, att, val), where

• V, B, E are pairwise disjoint sets whose elements
are called object nodes, bond nodes and edges,
respectively,

• bd : V → B∗ is the function which specifies a
sequence of different bond nodes for each object

node, such that ∀b ∈ B ∃!v ∈ V : b ∈ SET (bd(v)),
i.e., each bond node is assigned to exactly one object
node,

• s, t : E → B are mappings assigning to edges source
and target bond nodes, respectively, in such a way
that ∀e ∈ E ∃v1 �= v2, s(e) ∈ SET (bd(v1))∧t(e) ∈
SET (bd(v2)), i.e., each edge connects bond nodes
of exactly two different object nodes and ∀b ∈ B ∃
at most one e ∈ E, such that b = s(e) ∨ b = t(e),
i.e., there is at most one edge that starts or ends in a
given bond node,

• lb : V ∪ B ∪ E → Σ is a node and edge labelling
function,

• att : V ∪ E → P (A) is a node and edge attributing
function, and

• val : (V ∪E)×A ∈ D is a partial function assigning
values to attributes, where D =

⋃
a∈A Da such that

∀(o, a) ∈ (V ∪E)×A if a ∈ attr(o) val(o, a) ∈ Da.

Let GA be a family of attributed composition graphs.
A composition graph g ∈ GA such that for each e ∈ E
s(e) = t(e) is called undirected. In the following, only
undirected composition graphs will be considered.

4. Composite graph grammar

The composite graph grammar is a rewriting mechanism,
which consists in the replacement of a subgraph of
composite graphs with another graph by applying
grammar rules called productions. A production is a
rule which allows a graph to be modified. Formally, a
production is defined in the following way.

Definition 2. A production is the triple p = (l, r, π),
where l and r are composite graphs over Σ of the same
type, and π is an applicability predicate π : P (GA) →
{TRUE, FALSE}, which on the basis of the values
of attributes of L (where L is a subgraph of the current
graph c isomorphic with l), r and c determines whether a
production can be applied or not.

Definition 3. A composite graph grammar G is defined
as G = (Σ, P, x), where

• Σ is an alphabet of labels,

• P is a finite set of productions p = {l, r, π}, where
the set of free bonds of r and l are equipped with
ordering relations, and

• x is a labelled node over Σ and is called the axiom of
the grammar.



842 B.Strug et al.

Let p = (l, r, π) ∈ P be a production in G. The
first element of the pair l and the second element r are
called the left-hand-side and the right-hand-side of p,
respectively. The application of production p to a compos-
ite graph c consists in finding a subgraph L of the current
graph c isomorphic with l and substituting an composite
graph r for a subgraph L of the current graph c isomorphic
to the composite graph l and replacing the connections of
l with the connections of r in such a way that each free
bond of l is substituted by a free bond of r with the same
order number.

Definition 4. Let G = (Σ, P, x) be a composite graph
grammar and c, c′ be composite graphs over Σ. We say
that c′ is directly derivable from c and we write c ⇒ c′ if

• there exists a production p = (l, r, π) ∈ P
and a subgraph L of the composite graph c and
c′ is isomorphic with the result composite graph
generated by an application of the production p to
the composite graph c, and

• π(l, r, c) = TRUE .

For two composite graphs c and c′, if c′ is obtained
as a result of the application of a sequence of productions,
which starts from the composite graph c, we say that c′

is derivable from c and we write c ⇒∗ c′, where ⇒∗

is defined as the reflexive-transitive closure of the binary
relation ⇒.

Definition 5. Let G = (Σ, P, x) be a composite graph
grammar. The composite graph grammar in which the left
hand-side of all production consists of one node is called
the context-free composite graph grammar. Otherwise,
the grammar is called the context composite graph gram-
mar.

Having defined the composite graph grammar, we
can introduce a control diagram, which determines the
order in which the productions should be applied.

Definition 6. Let G = (Σ, P, x) be a composite graph
grammar. Let Ω = {I, F} ∪ {p1, . . . , pm}, where m =
�P , be a set of node labels.

By a control diagram CD over Ω defined for G
we understand a directed node labelled graph CD =
(VCD, ECD, s, t, lbCD), where

• s, t : ECD �→ VCD are two mappings assigning to
each edge e ∈ ECD elements s(e) and t(e) called
the source and the target, respectively,

• lbCD : VCD �→ Ω, is a labelling function,

• there exists exactly one node labelled I and exactly
one node labelled F , and

• there is no edge in-coming to the initial node labelled
I and no edge out-coming from the final node
labelled F .

Definition 7. Let G = (Σ, P, x) be a composite graph
grammar and CD a control diagram over Ω defined for
G. A pair (G, CD) is called a Composite Programmable
Graph Grammar (CPGG).

Definition 8. Let (G, CD) be a composite programmable
graph grammar. Let c and c′ be two composite graphs and
p = (l, r, π) ∈ P . Let e ∈ ECD . The pair (c′, t(e)) is
directly derived from the pair (c, s(e)) iff

• c ⇒p c′ and lbCD(t(e)) = p , or

• x ⇒p c′, where x = c is an axiom of G, and
lbCD(s(e)) = I , lbCD(t(e)) = p, or

• c = c′ and lbCD(t(e)) = F .

Let (G, CD) be a composite programmable graph
grammar. Let e, ê ∈ ECD. For two composite graphs
c and c′ if the pair (c′, t(ê)) is obtained as a result of the
application of a sequence of directly derivations, which
starts from the pair (c, s(e)), we write (c, s(e)) ⇒∗

(c′, t(ê)), where ⇒∗ is defined as the reflexive-transitive
closure of the binary relation ⇒.

Definition 9. Let (G, CD) be a CGG and let vI and vF

denote the initial and final nodes of the CD, and let c be
an composite graph. The language generated by the CGG
is defined as L(G, CD) = {c : (x, vI) ⇒∗ (c, vF )}.

In some situations a need can arise to “propagate”
some information throughout the generation process, i.e.,
a way of communicating between productions is needed.
In this paper we propose an approach similar to the
blackboard method in artificial intelligence, i.e., all the
productions of a given grammar can access and/or modify
a common set of variables. This set will be called memory.

Formally we can define a grammar with memory in
the following way.

Definition 10. A grammar with memory is a pair GM =
(G, M), where

• M is a set of variables, M = {m1, . . . , mn}, such
that ∀i = 1, . . . , n, mi ∈ Di, where Di is the set of
all possible values for mi, and

• G = (Σ, P, x) is a composite graph grammar, where
P is the set of productions p = (l, r, π, f) defined as
follows:

– l and r are left- and right- hand sides of p,
respectively,



Using a graph grammar system in the finite element method 843

– π is an applicability predicate, π : P (GA) ×
P (M) → {TRUE ,FALSE}, where L is a
subgraph of a current graph isomorphic with
l and M is a memory associated with the
grammar G,

– f = (f1, . . . , fn) is a set of functions
responsible for changing values of memory
variables, where fi : p(M) × P (AL) → Di,
1 ≤ i ≤ n.

It can be noticed here that the way a predicate π
is defined had to be extended to take into account the
possibility of including memory variables in deciding
whether or not a production can be applied. It is also
important that the above definition does not put any
additional constraints on the type of grammar G, i.e., it
can be a context-free or context grammar.

5. Composite graph grammar system

A composite graph grammar system is a system which
consists of composite programmable graph grammars
(composite graph grammars and their control diagrams),
an initial graph and a control diagram for the whole
system which controls the execution of graph grammars.
The graph grammar system allows a number of grammars
to work together on one object. Each component grammar
operates on the graph according to a communication
protocol called the derivation mode. The protocol may
allow a single grammar to perform a predefined number
of steps or to work until no production of this grammar
can be applied. The method of selecting which grammar
should be used as the next “active” component as well as
the derivation mode of the component is defined by means
of a control diagram.

An important factor here is that we do not put any
constraints on types of grammar constituting the grammar
system. That means that the same grammar system can
contain context-free and context grammars, and each of
them with or without memory. A real life problem that
would normally require a context grammar with memory
and thus result in a high computational cost associated
with this type of grammars can be solved significantly
faster by dividing it into a number of grammars. Usually
only some of grammars would be context grammars and
only some grammars with memory, while some grammars
would be context-free. As a result, each part of a problem
is solved by applying the simplest grammar possible.

Definition 11. A composite graph grammar system S is
defined as

SD = (g0, G1, . . . , Gn, CD1, . . . , CDn, D) , (1)

where g0 is an initial composite graph, G1, . . . , Gn are
composite programmable graph grammars with control

diagrams CD1, . . . , CDn, respectively, with Gi =
(Σi, lbi, Vi, Pi, xi), and the control diagram CDi =
((VDi, EDi, sDi, tDi), ξVDi ) being defined over Ωi =
{Ii, Fi} ∪ {pi

1, . . . , p
i
mi

}, Pi = {pi
1, . . . , p

i
mi

}.

Let Ω = {I, F} ∪ {G1, . . . , Gn}. D =
((VD, ED, sD, tD), ξVD ) is a control diagram for the
grammar system, where the node labels, except the
start node and the final node are names of grammars
G1, . . . , Gn, the initial node has the label I and the final
node has the label F .

Similarly as in a single grammar case, when applying
a grammar system to real life problems a need to
communicate between grammars may occur. To this end,
we introduce a grammar system with memory.

Definition 12. A grammar system with memory is a triple
SM = (S, M, F ), where S is a grammar system, M is
a memory and F is a family of functions allowing each
production of each grammar in S to change the value of
elements of system memory M .

It has to be noted here that some or all grammar
in the grammar system can actually be grammars with
memory. Thus the system will contain two different levels
of memory. One level memory is associated with a single
grammar and is unknown to the rest of the members of the
grammar system, while the global system memory can be
accessed by any grammar.

Definition 13. Let

SD = (g0, G1, . . . , Gn, CD1, . . . , CDn, D)

be a composite programmable graph grammar system. Let
c and c′ be two composite graphs. Let ẽ ∈ ED of D and
e ∈ EDi of Di.

The triple(c′, tD(ẽ), tDi(e)) is directly derived from
the triple (c′, sD(ẽ), sDi(e)) in the graph grammar system
iff

• sD(ẽ) = tD(ẽ), lbVD(sD(ẽ)) = lbVD(tD(ẽ)) = Gi,
sDi(e), tDi(e) ∈ CDi and the pair (c′, tDi(e)) is
directly derived from the pair (c, sDi(e)), or

• the graph c is isomorphic with the graph c′, and one
of the following conditions is fulfilled

lbVD(sD(ẽ)) = Gi, lbVD(tD(ẽ)) = Gj ,

lbVDj (tDj(e)) = Ij , lbVDi(sDi(e)) = Fi,

lbVD(sD(ẽ)) = I, lbVD(tD(ẽ)) = Gi,

lbVDi(tDi(e)) = Ii, c = g0

is an initial graph,

lbVD(tD(ẽ)) = F, lbVD(sD(ẽ)) = Gi,

lbVDi(sDi(e)) = Fi.



844 B.Strug et al.

Fig. 2. Example control diagram for a graph grammar system
with three grammars.

If the triple (c′, V ′, v′) is directly derived from the
triple (c, V, v) in the graph grammar system, we write
(c, V, v) ⇒ (c′, V ′, v′).

Definition 14. Let

SD = (g0, G1, . . . , Gn, CD1, . . . , CDn, D)

be a composite programmable graph grammar system, and
let VI and VF denote the initial and final nodes of D,
respectively. Let vI and vF denote the initial and final
nodes of the control diagrams defined for VI and VF ,
respectively. Let c be a composite graph. A language
generated by the composite programmable graph gram-
mar system is defined as L(S) = {c : (g0, VI , vI) ⇒∗

(c, VF , vF )}.

Figure 2 presents an example control diagram for a
graph grammar system, which consists of three grammars:
gram0, gram1, gram2. The first node of the diagram
is the initial node with label I . The last node of the
diagram is the final node with label F . The labels of
the remaining nodes are the names of the grammars.
Each grammar has its own internal control diagram. The
internal control diagram corresponding to the initial node
consists only of one initial node. The internal control
diagram corresponding to the final node consists only of
one final node.

6. cp-graph grammar system for modelling
the hp-adaptive finite element method

The section presents a cp-graph system modelling the
hp-finite element method: the finite 2D element mesh
with rectangular elements is represented by a cp-graph,
the mesh transformations are modelled as cp-graph
grammars rules.

Figure 3 presents an example rectangular element
an its cp-graph representation. Each rectangular element
consists of four vertices (nodes with label v), four edges
(nodes with label e) and one interior (node with label I).
The polynomial order of approximation is denoted by p,
the coordinates of vertices are denoted by (x, y). Each

Fig. 3. Example rectangular elements and their cp-graph repre-
sentation.

Fig. 4. Possible kinds of adaptation.

node with label v of the cp-graph has attributes (x, y) and
p. Each node with label e has attributes p and add. The
attribute add can equal 0 if the edge belongs to only one
rectangular element and 1 if it belongs to two rectangular
elements. A node with label I has attributes ph and
pv, which denote the polynomial order of approximation
in the horizontal and vertical directions. Additionally,
the node with label I has attributes m, s, err, which
respectively denote the matrix, the vector of the solution
for the rectangular element and the vector of error for
the rectangular element. The attribute hp, which denotes
the kind of hp-adaptation, has the value from the set
−1, 0, 1, 2, . . . , 24, where hp equals −1 if the decision
about the adaptation has not been made yet, 0 in the case
of no adaptation and one from the values 1, . . . , 24 in
the case of adaptation. The meaning of the values of the
attribute hp, which denotes several kinds of adaptation, is
presented in Fig. 4. The kinds of adaptation are numbered
from 1 to 24, row by row.

A cp-graph grammar system for modelling the
hp-adaptive two dimensional finite element method
consists of five grammars: grammar G1 responsible
for generating the the initial mesh, grammar G2 for
generating the matrix for each element, grammar G3
for solving the problem, grammar G4 for making
virtual hp-adaptation and grammar G5 for performing
hp-adaptation.

Figure 5 presents the control diagram for the
cp-graph grammar system modeling the hp-FEM. The



Using a graph grammar system in the finite element method 845

Fig. 5. Control diagram for a cp-graph grammar system model-
ing the hp-FEM.

Fig. 6. One of the cp-graph grammar productions for generation
of the initial mesh.

variables ERROR MAX ,ACCURACY , xl, yl, xr, yr
from the system memory M are initialised by the user.
The terminal derivation mode is used for each grammar
from the system. After performing the graph grammar
rules from the graph grammar G1, G2, the productions
from graph grammar G3 are performed. The grammar
G3, which solves the problem, has its own memory
with the variable called ERR MAX . The value of
the variable ERR MAX is equal to the maximal error
calculated by productions from G3. After performing
rules from the graph grammar G3, the value of the global
variable ERROR MAX is changed to ERR MAX . If
the maximal error (ERROR MAX ) is bigger than the
predefined accuracy of the solution (ACCURACY ), the
productions from the graph grammar G4 are preformed.
If the maximal error is smaller than the predefined
accuracy of the solution, the whole system is stopped.

Figures 6–11 present productions for generation of
the initial mesh.

Figure 12 presents the control diagram for the
cp-graph grammar G1 modeling the generation of the
initial mesh. The graph grammar G1 is the grammar
with the memory denoted by M1. Based on the actual
values of the variables xl, yl, xr, yr from the memory
M1, the decision about performing productions from a
graph grammar G1 is made (see applicability predicates

Fig. 12. Control diagram for the graph grammar G1 for genera-
tion of the initial mesh.

Fig. 14. cp-graph grammar production for calculating the vec-
tors of the solution and error on the basis of a matrix.

from Figs. 6–11).
Figure 13 presents the production of the graph

grammar G2 which can be applied only if the matrix for an
element was not calculated before (the attribute m equals
null). The production calculates the matrix for a finite
element.

Figure 14 presents the production of the graph
grammar G3, which calculates the vector of the solution
s and error err on the basis of the matrix m. The
applicability predicate for the production is presented on
the left-hand side of Fig. 14.

Figure 15 presents the control diagram for the
cp-graph grammar G3, calculating error and solution
vectors.

Figure 16 presents one of the productions of
the graph grammar G4, which performs virtual
hp-adaptation—it makes a decision about adaptation. The
production P9 assigns a suitable value for the attribute
hp. The decision about the kind of adaptation is made
based on the error value calculated for the interior node
I . If the value of the error for the interior I is bigger than
33 per cent of the maximal error, the external function
z calculates the best kind of adaptation for this element
interior (Figs. 16 and 17). If the value of the error for the
interior I is smaller than 33 per cent of the maximal error,
value 0 (no adaptation) is assigned to the attribute hp.

Fig. 15. Control diagram for the graph grammar G3 calculating
error and solution vectors.



846 B.Strug et al.

Fig. 7. One of the cp-graph grammar productions for generation of the initial mesh.

Fig. 8. One of the cp-graph grammar productions for generation of the initial mesh.

Fig. 9. One of the cp-graph grammar productions for generation of the initial mesh.

Fig. 10. One of the cp-graph grammar productions for generation of the initial mesh.



Using a graph grammar system in the finite element method 847

Fig. 11. One of the cp-graph grammar productions for generation of the initial mesh.

Fig. 13. cp-graph grammar productions for calculating the matrix.

Fig. 16. cp-graph grammar production for virtual hp.

Fig. 17. cp-graph grammar production for virtual hp.

(Figs. 18 and 19). In order to follow the one irregularity
rule (a finite element cannot be broken for the second
time without first breaking larger adjacent elements),
after performing virtual hp-adaptation for each element,
production propagating the adaptation has to be applied
(Fig. 20).

Figure 21 presents the control diagram for the
cp-graph grammar G4.

The graph grammar G5 is responsible for performing

Fig. 18. cp-graph grammar production for virtual hp.

Fig. 19. cp-graph grammar production for virtual hp.

Fig. 21. Control diagram for the graph grammar G4 for virtual
hp-adaptation.



848 B.Strug et al.

Fig. 20. cp-graph grammar production propagating the hp-adaptation.

Fig. 22. Graph grammar production for breaking the interior of
a rectangular element.

hp-adaptation. Possible kinds of adaptation are presented
in Fig. 4. The process of breaking an element consists of

• breaking elements interiors,

• allowing for breaking an edge, if two adjacent
elements are broken,

• breaking an edge, and

• allowing breaking the interior in the case of broken
adjacent edges.

To break a rectangular element interior into four new
elements means generating new element interiors, four
new edges and one new vertex. Figure 22 presents one
of the productions for hp-adaptation, where hp equals 12.
Similar productions (P14−P37 from Fig. 28) are defined
for other values of the attribute hp.

After breaking element interiors, the edges have to
be broken. An edge can be broken only if two adjacency
interiors are broken. Figure 23 presents the production
which allows breaking an edge if two adjacency interiors
are broken.

Fig. 23. Graph grammar production which allows breaking an
edge.

Fig. 26. Production which allows breaking an interior.

To break an element edge means generating two new
edge nodes and one new vertex. Figure 24 presents the
production for breaking an edge.

An element interior can be broken if it is not adjacent
to a large unbroken edge. Figure 25 presents one of
productions checking if an element interior is adjacent to
a proper size edge. The number of adjacent proper size
edges is denoted by changing the graph node symbol label
from J into J3 and finally into J4.

Production in Fig. 26 allows breaking an interior if it
is adjacent to proper size edges—changes the label of the
interior node from J4 to I .

The last step of the hp-adaptation process is
performing the minimum rule in order to calculate the
polynomial order of approximation for edges (the value
of attribute p). The production, which assigns values for
attribute p for edges is presented in Fig. 27

Figure 28 presents the control diagram for breaking
2D finite elements.

Fig. 27. Production for performing the minimum rule.



Using a graph grammar system in the finite element method 849

Fig. 24. Graph grammar production for breaking an edge.

Fig. 25. Production checking if an element interior is adjacent to a proper size edge.

Fig. 28. Control diagram for breaking 2D finite elements.



850 B.Strug et al.

Fig. 29. Borehole with the tool and formation layers.

7. Numerical results

The paper is illustrated with numerical results presenting
the 3D DC resistivity measurement simulations, which
are of great interest to oil industry. In the last years,
several numerical methods have been utilized to simulate
three-dimensional resistivity logging measurements for
the assessment of rock formation properties. The most
widely used methods are finite-difference schemes using
Krylov-based subspace solvers (see, e.g., Zhang et al.,
1995; Druskin et al., 1999; Newman and Alumbaugh,
2002; Wang and Fang, 2001) or finite elements. The
term “simulations of measurement” is widely used in the
geophysical community. The goal of the measurements
is to detect the properties of the formation layers, with
the ultimate goal of locating oil or gas formations in
the ground. The detection of the bearing formations
is performed with the use of the resistivity logging
tools, which are located in the borehole environment, see
Fig. 29. The borehole is denoted by the light gray color,
and there are several formation layers in the ground, which
are assumed to be perpendicular to the borehole.

The formation layers may correspond to rock, sand,
mud and, finally, oil. Each of these formation layers may
have different resistivity, as is illustrated in Fig. 30.

The logging tool is usually equipped with one
transmitter and several receiver electrodes. The
transmitter electrode generates electromagnetic waves
which propagate through the formation layers, and are
reversed and recorded by the receiver electrodes. The
logging tool is shifted along the borehole and the values
recorded by the receiver form the so-called logging curve,
which is used by the geologists to locate the bearing
formations in the ground. Numerical simulation of the
measurement process in the case of direct current antennas
reduces to the solution of the conductive media equation

∇ · (σ∇u) = f, (2)

where u is the potential of the electric field E = −∇u and

Fig. 30. Cross-section of the computational domain: the bore-
hole with resistivity 0.2 ohm × m, and the four forma-
tion layers with resistivities 5, 0.1, 100 and 5 ohm ×
m, corresponding to the rock, mud and oil. The tool is
modeled with one transmitter and three receiver elec-
trodes.

σ corresponds to the resistivities of the formation layers.
Equation (2) results from zero frequency Direct Current
(DC) formulation of Maxwells equations (Pardo et al.,
2006; 2007; 2008).

In the case of formation layers perpendicular to the
borehole, the problem becomes axially symmetric, and
we can limit ourselves to the 2D dimensional problem
formulated on the cross-section of the mesh. We start our
computation with the two-dimensional mesh presented
in Fig. 31. The mesh was obtained by using the graph
grammar G1 responsible for the generation of the initial
mesh. The mesh was intentionally adjusted to the
geometry of the antennas and the assumed formation
layers. The domain under consideration presented in
Fig. 30 consists of four formation layers with different
resistivities varying from 0.1 ohm × m up to 100
ohm×m. In the borehole with resistivity 0.2 ohm×m
there is one transmitter and three receiver electrodes.
The three electrodes are modeled by assuming non-zero
right-hand-side representing the imposed electric current.
The height of the domain is 200 meters, and the radius is
100 meters. The zero Dirichlet boundary conditions are
assumed on the exterior of the domain.

The simulation requires a sequence of solutions of
Eqn. (2) for 80 different positions of transmitter and
receiver electrodes. The electrodes are shifted along the
borehole, and the values at the receiver electrodes are



Using a graph grammar system in the finite element method 851

Fig. 31. Initial computational mesh obtained by using the G1
graph grammar.

obtained from the finite element method for each new
position. The estimation of the second vertical difference
of potential at receiver electrodes is finally computed
based on the values at the three receiver electrodes. This
quantity is an approximation of

∂2u

∂z2
=

∂E

∂z
, (3)

which is physically expected to be sensitive to the
resistivity of the formation.

The goal of this simulation is to obtain this quantity
for a sequence of different vertical positions of the tool.

The problem was solved by using the graph grammar
based adaptivity, namely, we executed in a loop the
graph grammar G2 for generation of the system of linear
equations, the graph grammar G3 for solution of the
problem, followed by graph grammars G4 and G5 for
mesh refinements.

The problem was solved for a sequence of 80
different positions of the tool. Each problem requires a
full sequence of graph grammars, G1 for generation of
the mesh with a new tool position, and G2–G5 for a loop
of mesh refinements. A sample mesh obtained for a single
position of the tool is presented in Fig. 32. The resulting
logging curve is presented in Fig. 33.

The graph grammar based software for resistivity
logging simulations can be used by geologists for
experimenting on the influence of different configurations
of the formation layers on the shape of the resulting
logging curve.

8. Conclusions and future work

The system of graph grammars can be utilized for
modeling engineering computations by means of the
adaptive finite element method. The expression of
the computational process by a graph grammar allows
partitioning the process into basic undivisible tasks,

Fig. 32. Top panel: the computational mesh generated by the
adaptive procedure based on the graph grammars G2–
G5. Middle panel: zoom at the adaptivities on the re-
ceiver electrodes. Different shades correspond to dif-
ferent polynomial orders of approximation on finite el-
ement edges and interiors. Right panel: legend for the
correspondence between the polynomial order of ap-
proximation and colors.

Fig. 33. Logging curve obtained from simulation.



852 B.Strug et al.

called the graph grammar productions, and localizing
the dependency relationship between them. This, in
turn, enables us to develop a parallel version of the
computational algorithm where the tasks are executed
step by step, concurrently, with sets of independent tasks.
The presentation is concluded with an example from the
domain of geophysics. In the future the graph grammar
system for two dimensional model with the rectangular
elements will be extended to the case of mixed triangular
and rectangular elements as well as to the 3D case.

Acknowledgment

The work presented in this paper was partially supported
by the Polish National Science Center, Grant No. NN 519
447739.

References

Albers, B., Savidis, S.A., Taşan, E., von Estorff, O. and Gehlken,
M. (2012). BEM and FEM results of displacements in
a poroelastic column, International Journal of Applied
Mathematics and Computer Science 22(4): 883–896, DOI:
10.2478/v10006-012-0065-y.

Barboteu, M., Bartosz, K. and Kalita, P. (2013). An analytical
and numerical approach to a bilateral contact problem with
nonmonotone friction, International Journal of Applied
Mathematics and Computer Science 23(2): 263–276, DOI:
10.2478/amcs-2013-0020.

Csuhaj-Varjú, E. (2004). Grammar systems: A short survey,
Proceedings of Grammar Systems Week 2004, Budapest,
Hungary, pp. 141–157.

Csuhaj-Varjú, E., Dassow, J., Kelemen, J. and Paun, G. (1994).
Grammar Systems. A Grammatical Approach to Distribu-
tion and Cooperation, Topics in Computer Mathematics 8,
Gordon and Breach Science Publishers, Yverdon.

Csuhaj-Varjú, E., Dassow, J. and Paun, G. (1993). Dynamically
controlled cooperating/distributed grammar systems, In-
formation Sciences 69(1–2): 1–25.

Demkowicz, L. (2006). Computing with hp-Adaptive Fi-
nite Elements, Vol. I: One and Two Dimensional Elliptic
and Maxwell Problems, Chapman and Hall/CRC Applied
Mathematics and Nonlinear Science, Taylor & Franics
Group, Boca Raton, FL/London/New York, NY.

Druskin, V., Knizhnerman, A. and Lee, P. (1999). New spectral
Lanczos decomposition method for induction modeling in
arbitrary 3-d geometry, Geophysics 64(3): 701–706.

Flasiński, M. and Schaefer, R. (1996). Quasi context sensitive
graph grammars as a formal model of FE mesh generation,
Computer-Assisted Mechanics and Engineering Science
3: 191–203.

Grabska, E. (1993). Theoretical concepts of graphical modeling,
Part two: cp-graph grammars and languages, Machine
Graphics and Vision 2(2): 149–178.

Grabska, E. and Strug, B. (2005). Applying cooperating
distributed graph grammars in computer aided design, in
R. Wyrzykowski, J. Dongarra, N. Meyer and J. Waśniewski
(Eds.), Parallel Processing and Applied Mathematics,
Lecture Notes in Computer Science, Vol. 3911, Springer,
Berlin/Heidelberg, pp. 567–574.

Hild, P. (2011). A sign preserving mixed finite element
approximation for contact problems, International Jour-
nal of Applied Mathematics and Computer Science
21(3): 487–498, DOI: 10.2478/v10006-011-0037-7.

Kelemen, J. (1991). Syntactical models of
cooperating/distributed problem solving, Journal of
Experimental and Theoretical AI 3(1): 1–10.

Kukluk, J., Holder, L. and Cook, D. (2008). Inferring
graph grammars by detecting overlap in frequent
subgraphs, International Journal of Applied Mathe-
matics and Computer Science 18(2): 241–250, DOI:
10.2478/v10006-008-0022-y.

Martı́n-Vide, C. and Mitrana, V. (1998). Cooperation in
contextual grammars, Proceedings of the MFCS’98 Satel-
lite Workshop on Grammar Systems, Brno, Czech Repub-
lic, pp. 289–302.

Newman, G. and Alumbaugh, D. (2002). Three-dimensional
induction logging problems, Part 2: A finite-difference
solution, Geophysics 67(2): 484–491.

Pardo, D., Demkowicz, L., Torres-Verdı́n, C. and Paszynski,
M. (2006). Two-dimensional high-accuracy simulation
of resistivity logging-while-drilling (LWD) measurements
using a self-adaptive goal-oriented hp finite element
method, SIAM Journal on Applied Mathematics
66(6): 2085–2106.

Pardo, D., Demkowicz, L., Torres-Verdı́n, C. and Paszynski,
M. (2007). A self-adaptive goal-oriented hp-finite
element method with electromagnetic applications, Part II:
Electrodynamics, Computer Methods in Applied Mechan-
ics and Engineering 196(37): 3585–3597.

Pardo, D., Torres-Verdı́n, C. and Paszynski, M. (2008).
Simulations of 3d DC borehole resistivity measurements
with a goal-oriented hp finite-element method, Part
II: Through-casing resistivity instruments, Computational
Geosciences 12(1): 83–89.

Paszynska, A., Grabska, E. and Paszynski, M. (2012a). A
graph grammar model of the hp adaptive three dimensional
finite element method, Part I, Fundamenta Informaticae
114(2): 149–182.

Paszynska, A., Grabska, E. and Paszynski, M. (2012b). A
graph grammar model of the hp adaptive three dimensional
finite element method, Part II, Fundamenta Informaticae
114(2): 183–201.

Paszynska, A., Paszynski, M. and Grabska, A. (2008). Graph
transformations for modeling hp-adaptive finite element
method with triangular elements, in M. Bubak, G.D.
Albada, J. Dongarra and P.M.A. Sloot (Eds.), ICCS 2008,
Lecture Notes in Computer Science, Vol. 5103, Springer,
Berlin/Heidelberg, pp. 604–613.



Using a graph grammar system in the finite element method 853

Paszynska, A., Paszynski, M. and Grabska, E. (2009). Graph
transformations for modeling hp-adaptive finite element
method with mixed triangular and rectangular elements, in
G. Allen, J. Nabrzyski, E. Seidel, G.D. Albada, J. Dongarra
and P.M.A. Sloot (Eds.), ICCS 2009, Lecture Notes in
Computer Science, Vol. 5545, Springer, Berlin/Heidelberg,
pp. 875–884.

Paszynski, M. (2009a). On the parallelization of self-adaptive
hp-finite element methods, Part I: Composite
programmable graph grammar model, Fundamenta
Informaticae 93(4): 411–434.

Paszynski, M. (2009b). On the parallelization of self-adaptive
hp-finite element methods, Part II: Partitioning
communication agglomeration mapping (PCAM) analysis,
Fundamenta Informaticae 93(4): 435–457.

Paszynski, M., Pardo, D. and Calo, V. (2013). A direct solver
with reutilization of LU factorizations for h-adaptive finite
element grids with point singularities, Computers & Math-
ematics with Applications 65(8): 1140–1151.

Paszynski, M., Pardo, D. and Paszynska, A. (2011). Out-of-core
multi-frontal solver for multi-physics hp adaptive
problems, Procedia Computer Science 4: 1788–1797.

Paszynski, M. and Schaefer, R. (2010). Graph grammar-driven
parallel partial differential equation solver, Computer-
Assisted Mechanics and Engineering Science
22(9): 1063–1097.

Spicher, A., Michel, O. and Giavitto, J. (2010). Declarative
mesh subdivision using topological rewriting in MGS,
Graph Transformations: 5th International Conference,
ICGT 2010, Enschede, The Netherlands, pp. 298–313.

Szymczak, A., Paszynska, A. and Paszynski, M. (2011).
Anisotropic 2d mesh adaptation in hp-adaptive FEM, Pro-
cedia Computer Science 4: 1818–1827.

Wang, T. and Fang, S. (2001). 3-d electromagnetic
anisotropy modeling using finite differences, Geophysics
66(5): 13861398.

Zhang, R., Mackie, L. and Madden, T. (1995). 3-d resistivity
forward modeling and inversion using conjugate gradients,
Geophysics 60: 1312–1325.

Barbara Strug received her Ph.D. (2002) in
computer science from the Institute of Funda-
mental Technological Research of the Polish
Academy of the Sciences in Warsaw, Poland.
She is currently an assistant professor at the
Faculty of Physics, Astronomy and Applied
Computer Science, Jagiellonian University in
Kraków, Poland. Her research interests include
computer aided design, standard and distributed
graph transformations, graph-based knowledge

representation, graph patterns and graph similarity analysis.

Anna Paszyńska received her Ph.D. (2007)
in computer science from the Institute of Fun-
damental Technological Research of the Polish
Academy of the Sciences in Warsaw, Poland.
She currently works as an assistant professor
at the Faculty of Physics, Astronomy and Ap-
plied Computer Science, Jagiellonian University
in Kraków, Poland. Her research interests in-
clude evolutionary algorithms, graph grammar
and computer aided design.

Maciej Paszyński received his Ph.D. (2003)
in mathematics with applications to computer
science from Jagiellonian University, Kraków,
Poland, and his habilitation (2010) in computer
science from the AGH University of Science and
Technology, Kraków. His research interests in-
clude parallel direct solvers for adaptive finite el-
ement method and computational science. He is
a frequent visiting professor at the University of
Texas at Austin, the King Abdullah University

of Science and Technology and the University of the Basque Country.
He holds the position of an associate professor in the Department of
Computer Science at the AGH University of Science and Technology in
Kraków.

Ewa Grabska received her Ph.D. (1982) in
mathematics from Jagiellonian University,
Kraków, Poland, and the D.Sc. (1997) in
computer science from the Institute of Computer
Science, Polish Academy of Sciences, Warsaw,
Poland. Since 2008, she has been a professor at
the Faculty of Physics, Astronomy and Applied
Computer Science, Jagiellonian University,
and the head of the Department of Design and
Computer Graphics at this faculty. Her research

areas include computer aided design, graph transformations, visual
communication, ontology, engineering, and computer games.

Received: 20 February 2013
Revised: 10 July 2013


