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We propose an adaptation of the partitioning method for determination of the Moore–Penrose inverse of a matrix augmented
by a block-column matrix. A simplified implementation of the partitioning method on specific Toeplitz matrices is obtained.
The idea for observing this type of Toeplitz matrices lies in the fact that they appear in the linear motion blur models in
which blurring matrices (representing the convolution kernels) are known in advance. The advantage of the introduced
method is a significant reduction in the computational time required to calculate the Moore–Penrose inverse of specific
Toeplitz matrices of an arbitrary size. The method is implemented in MATLAB, and illustrative examples are presented.
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1. Introduction

The Moore–Penrose inverse is a useful tool for solving
linear systems and matrix equations (Ben-Israel and
Grevile, 2003; Penrose, 1956). Also, the Moore–Penrose
inverse is frequently applied in the study of numerical
properties of singular matrix pencils (Röbenack and
Reinschke, 2011). Górecki and Łuczak (2013) used
a generalization of the Moore–Penrose pseudoinverse
to resolve the problem in the Linear Discriminant
Analysis (LDA) technique. More precisely, the problem
appears when a sample covariance matrix is singular,
and thus cannot be inverted. A lot of direct methods
have been proposed to compute the Moore–Penrose
generalized inverse of a matrix (see, e.g., Ben-Israel
and Grevile, 2003; Shinozaki et al., 1972). According
to Shinozaki et al. (1972), they can be classified
as methods based on matrix decomposition, methods
applicable on bordered matrices and others methods
(including Greville’s recursive method, methods based
on the formula A† = (A∗A)(1,3)A∗ and Pyle’s gradient
projection methods).

The method based on singular-value decomposition
possesses a very high computation load (approximately

O(n3) operations). Courrieu (2005) proposed an
algorithm for fast computation of the Moore–Penrose
inverse which is based on the reverse order law property
and the full-rank Cholesky factorization of possibly
singular symmetric positive matrices. A fast method
for computing the Moore–Penrose inverse of full rank
m × n matrices and of square matrices with at least
one zero row or column was introduced by Karanasios
and Pappas (2006), as well as Katsikis and Pappas
(2008). This method exploits a special type of the tensor
product of two vectors, which is usually used in infinite
dimensional Hilbert spaces. Greville (1960) proposed a
recurrent rule for determining the Moore–Penrose inverse.
Udwadia and Kalaba (1997) gave an alternative and a
simple constructive proof of Greville’s formula. Due to
its ability to undertake sequential computing, Greville’s
partitioning method has been extensively applied in
statistical inference, filtering theory, linear estimation
theory, system identification, optimization as well as in
analytical dynamics (Graybill, 1983; MathWorks, 2009;
Kalaba and Udwadia, 1996; 1993; Rao, 1962).

Recursive computation of the Moore–Penrose
inverse of a matrix to which a block is added was
presented by Bhimasankaram (1971). However, the
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author proposes a proof which simply verifies that
the output of his algorithm satisfies the four Penrose
equations. Udwadia and Kalaba (1999) provided a
constructive proof for recursive determination of the
Moore–Penrose inverse of a matrix to which a block
of columns is added. These results were also extended
to other types of generalized inverses by Udwadia and
Kalaba (1999).

Our intention in the present article is an adaptation
of the recursive block partitioning method of Udwadia
and Kalaba (1999) as well as the partitioning method
of Greville (1960) for efficient numerical computation of
the Moore–Penrose inverse of specific Toeplitz matrices.
An application of the proposed method in the process of
removing non-uniform blurs in the image restoration is
presented.

In the next section we restate some basic definitions,
motivations as well as both the recursive block
partitioning method and the usual partitioning method
for computing the Moore–Penrose inverse. We
also give an outline of the process of forming
a mathematical model that reflects the removal of
non-uniform blurs in images. In Section 3 we describe
the adaptation of the block partitioning method of
Udwadia and Kalaba (1999) and the partitioning method
of Greville (1960) on characteristic sparse Toeplitz
matrices. The computational complexity of the modified
partitioning method is investigated and compared with the
complexities of other known methods. An application of
the proposed method in the image restoration is given in
Section 4. Several illustrative examples and comparisons
are presented in the last section.

2. Preliminaries and motivation

Let R be the set of real numbers, Rm×n be the set of m×n
real matrices and R

m×n
r be the set of m× n real matrices

of rank r. The notation Ai, i ∈ {1, . . . , n} denotes the
first i columns of a matrix A ∈ R

m×n. Particularly, ai

(resp., ai) means the i-th column (resp., the i-th row) of
A. By iAk, i ∈ {1, . . . , n − 1}, k ∈ {1, . . . , n − i} we
denote the submatrix of A which consists of the columns
ai+1, . . . , ai+k. The m × m identity matrix is denoted
by Im and Om is the zero matrix of order m × m.
The notation 0 stands for the zero column vector of an
appropriate dimension.

For the sake of completeness, we restate the block
recursive algorithm for computing the Moore–Penrose
inverse of matrix B = [A|C], which denotes a matrix A
augmented by an appropriate matrix C.

Lemma 1. (Udwadia and Kalaba, 1999) Let B = [A| C]
be an m × (r + p) complex matrix whose last p columns

are denoted by C. Let

R = I − AA†, Q = (RC)T RC,

F = I − Q†Q, Z = A†CF.
(1)

Then

B† =
[

A†(I − CV )
V

]
, (2)

where

V = Q†CT R+(I+ZT Z)−1ZT A†(I−CQ†CT R). (3)

We also restate Greville’s single-column finite
recursive algorithm (Greville, 1960).

Lemma 2. (Greville, 1960) Let A be an m × n complex
matrix and a be an m × 1 constant vector. By [A|a] we
denote the matrix A augmented by an appropriate vector
a. Then

[A|a]† =
[

A† − db∗

b∗

]
, (4)

where

d = A†a,

b =

⎧⎪⎪⎨
⎪⎪⎩

1
c∗c

c, c �= 0,

1
1 + d∗d

(A†)∗d, c = 0,

(5)

and
c = (I − AA†)a. (6)

In the sequel, we describe the mathematical model
that reflects the process of removing a non-uniform linear
motion blur in images.

Suppose that the matrix F ∈ R
r×m corresponds to

the original image with picture elements fi,j , i = 1, . . . , r,
j = 1, . . . , m and G ∈ R

r×m with pixels gi,j , i =
1, . . . , r, j = 1, . . . , m, is the matrix corresponding to
the degraded image.

The process of non-uniform blurring assumes that
the blurring of columns in the image is independent with
respect to the blurring of its rows. In this case, the
relation between the original and the blurred image can
be expressed by the matrix equation

G = HCFHT
R , G ∈ R

r×m, HC ∈ R
r×n,

F ∈ R
n×t, HR ∈ R

m×t,
(7)

where n = r + lc − 1, t = m + lr − 1, lc is the length of
the vertical blurring and lr is the length of the horizontal
blurring (in pixels).

To avoid the problem when the information from the
original image spills over the edges of the recorded image,
we supplement the original image with boundary pixels
that best reflect the original scene. Without any confusion,
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we use the same symbol F for the enlarged original image
(matrix) with the remark that F is now of dimensions n×t.

The Moore–Penrose inverse appears as a useful tool
in the image restoration process (Bovik, 2005; Chountasis
et al., 2009a; 2010; 2009b). The approach based on the
usage of the matrix pseudo-inverse in image restoration is
one of the most common techniques (Bovik, 2005).

The problem of removing a uniform linear motion
blur, based on the application of the algorithm of
Lagrange multipliers to the model (7), was investigated
by Stojanović et al. (2012). In order to restore the blurred
image G included in the model (7), in the present paper
we use the Moore–Penrose inverse approach, which leads
to the solution

F̃ = H†
CG(H†

R)T . (8)

In other words, the main problem we are faced
with is to choose an efficient algorithm for computing
the Moore–Penrose inverse H†

C and H†
R. The algorithm

used by Chountasis et al. (2009a; 2010) is based on the
fast computational method for finding the Moore–Penrose
inverse of a full rank matrix, introduced by Karanasios and
Pappas (2006), as well as Katsikis and Pappas (2008).

3. Adaptation of the partitioning method

We define appropriate adaptations of both the block
partitioning method and Greville’s single-column
partitioning method. The motivation for using these
methods lies in the specific structure of convolution
matrices HC and HR. The appropriate structure
of matrices HC and HR reduces the computational
complexity of the partitioning method in calculating
pseudoinverses H†

C and H†
R.

In the remainder of the section we investigate an
adaptation of the partitioning method on computing
the Moore–Penrose inverse of characteristic Toeplitz
matrices, given in the form

H =
[

Hm m+1Hn

] ∈ R
m×n, n = m+l−1, (9)

where l ≥ 1

Hm =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h2 h3 . . . hl 0 0 0
0 h1 h2 h3 . . . hl 0 0

0 0
. . .

. . .
. . . · · · . . . 0

0 0 0 h1 h2 h3 . . . hl

0 0 0 0 h1 h2 h3 . . .

0 0 0 0 0 h1 h2 h3

0 0 0 0 0 0
. . .

. . .

0 0 0 0 0 0 0 h1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)

m+1Hn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
hl 0 0 0
. . . hl 0 0
. . . · · · . . . 0
h2 h3 . . . hl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Courrieu (2005) compared the introduced method
geninv with four usual algorithms (Greville’s partitioning
method, the SVD method, full rank QR and an iterative
method of optimized order (Ben-Israel and Grevile,
2003)). It is claimed that the best results are achieved by
the geninv method, while the worst results are generated
by the partitioning method.

Our motivation for using the block partitioning
method (Udwadia and Kalaba, 1999) and Greville’s
partitioning method (1960) in order to find H† is
explained as follows. The quadratic block Hm of the
matrix H is clearly a nonsingular upper triangular Toeplitz
matrix, so that its inverse can be computed very easily.
Later, the recursive rules (1)–(3) and (4)–(6) can be
significantly simplified, according to the specific structure
of the block C and the vector a, respectively.

The following particular case of Lemma 1 defines
simplifications of the recursive steps (1)–(3) in calculating
the Moore–Penrose inverse H†.

Lemma 3. Assume that the matrix H ∈ R
m×n, n =

m+l−1, causes the blurring process in (19). The Moore–
Penrose inverse of its first p + k columns, partitioned in
the block form Hp+k = [Hp| pHk], p ∈ {1, . . . , n − 1},
k ∈ {1, . . . , n − p}, is defined by

H†
p+k=

[
H†

p

(
I − pHk · BT

)
BT

]
=

[
H†

p − DBT

BT

]
, (12)

where

D=H†
p · pHk, B=(H†

p)T D(I + DT D)−1. (13)

Proof. This follows from Lemma 1, taking into account
that the degradation matrix is of full row rank and the fact
that the equalities in (1) reduce to

R = Q = Om,

F = Im, V = BT ,

Z = D = H†
p · pHk,

observing this particular case. �

Also, Greville’s partitioning method (4)–(6) reduces
to the following computational procedure.



812 P. Stanimirović et al.

Lemma 4. The Moore–Penrose inverse of the matrix Hi

is equal to

H†
i =

[
H†

i−1 − dib
T
i

bT
i

]
, (14)

where

di =H†
i−1 · hi bi =

(
1 + dT

i di

)−1
(H†

i−1)
T di. (15)

Since we know the inverse H−1
m , which is completely

determined by the vector x from (16), any pragmatical
implementation of the new method uses only partitions of
the form Hp+k = [Hp| pHk], p ≥ m, k ∈ {1, . . . , n−m}.

According to Lemma 3, we propose the following
algorithm for computing the Moore–Penrose inverse of
the specific Toeplitz matrix H .

Algorithm 1. Computing the Moore–Penrose inverse of
the matrix H .
Input: The matrix H of dimensions m×(m+l−1) given
by (9).

Step 1. Separate the block Hm of the matrix H .

Step 2. Generate H†
m = H−1

m using the vector x from
(16).

Step 3. Take p = m and choose k such that 1 ≤ k ≤ l−1
as well as (l − 1)/k ∈ N.

Step 4. Compute H†
p+k = [Hp| pHk]† according to

Lemma 3.

Step 5. Set p = p + k.

Step 6. If p �= n then go to Step 4; otherwise, go to the
next step.

Step 7. Return H†
n.

It is not difficult to verify that the choice k = 1 in all
the recursive steps of Algorithm 1 produces the particular
case of Greville’s recursive method corresponding to
Lemma 4. Also, in the case p = m, k = l−1, Algorithm 1
reduces to Algorithm 2.

Algorithm 2. Computing the Moore–Penrose inverse of
the matrix H in the case k = l − 1.
Input: The matrix H of dimensions m × (m + l − 1)
defined in the blurring process (19).

Step 1. Separate the matrix H into two blocks Hm and
mHl−1, that is, H = [Hm| mHl−1].
Step 2. Generate H†

m = H−1
m using the vector x from

(16).

Step 3. Compute H† = [Hm| mHl−1]† according to
Lemma 3.

Choosing the most efficient case with respect to the
computational time, we derive an efficient method for
computing the Moore–Penrose inverse of the degradation

matrix H , and respectively an efficient method for image
restoring processes based on Eqn. (8).

In order to invert the matrix Hm defined in (10), look
at the matrix equation HmH−1

m = I . Since the matrix Hm

is an upper triangular Toeplitz matrix, it is well known
that its inverse is also an upper triangular Toeplitz matrix.
Therefore, the whole matrix H−1

m is determined by its last
column. We denote the last column of H−1

m by x. To
generate the vector x, we consider the following equation:

Hm · x = em, (16)

where em denotes the last column of the identity matrix
Im. Looking at the methods incorporated in the
programming package MATLAB, we decide to apply the
function linsolve() using the option opts.UT = true
that imposes computations adopted to upper triangular
matrices. After computing the vector x, it is easy to
determine the whole matrix H−1

m .

3.1. Complexity of the adopted partitioning method.
In order to determine the best choice of the positive
integer k in Algorithm 1, we compare the computational
complexities of Algorithms 1 and 2. Let us denote
by I(n) the complexity of the algorithm for inverting a
given n × n matrix (as in the work of Cormen et al.
(2001)). Also, by A(n) we denote the complexity of
the addition/subtraction of two n × n matrices and by
M(m, n, k) the complexity of multiplying m × n matrix
by n × k matrix. The simpler notation M(n) (taken from
Cormen et al., 2001) is used instead of M(n, n, n).

In the remainder of this section we consider the
computational complexity of the two opposite choices in
Algorithm 1. The choice p = m, k = 1 is called the Par-
titioning Method (PM). The opposite choice p = m, k =
l−1, used in Algorithm 2, is called the Block Partitioning
Method (BPM).

It is well known that the complexity of matrix
inversion is equal to that of matrix multiplication. More
precisely, the ordinary inverse of any real nonsingular
n × n matrix can be computed in time I(n) = O(M(n))
(Cormen et al., 2001). The notationO(f(n)) is described,
also, by Cormen et al. (2001).

The complexity of Algorithm 2 is of the order

EBPM =I(m)+3 M(m, m, l−1)+2 M(m, l−1, l−1)
+ I(l − 1) + A(l − 1) + A(m).

(17)
Scanning Algorithm 1 in a similar way, it is not difficult
to verify that its i-th recursive step requires the complexity
of the order

Ci =M(m + i − 1, m, 1) + M(1, m + i − 1, 1)
+ M(m, m + i − 1, 1)
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for each i = 1, . . . , l−1. Therefore, the complexity of the
complete algorithm is

EPM = I(m)+
l−1∑
i=1

Ci. (18)

Since l � m, we conclude that the computational
complexity for (I + DT D)−1, equal to I(l − 1), is
substantially smaller than the complexity of required
matrix multiplications. Also, upon the adopted
implementation for computing H†

m = H−1
m , based on

(16), we have

I(m) ≈ O
(

(m − 1)m
2

)
= O(m2).

Therefore, the upper bound estimation of complexities
EBPM and EPM does not include the computational
effort of the included matrix inversions. The upper bounds
for the complexity of Algorithms 2 and 1 are given
respectively by

EBPM ≤ O(M(m, m, l − 1)),
EPM ≤ l · O(M(m, m + l, 1)).

If A and B are respectively m × n and n × k matrices,
then the computational complexity of the product A ·B in
MATLAB is M(m, n, k) = O(nmk), since MATLAB does
not use Strassen’s method (or any other fast method) for
matrix multiplication. Therefore, according to (17) and
(18),

EBPM ≤ O(m2l − m2), EPM ≤ O(m2l + ml2).

Consequently, the upper bound for the computational
complexity of Algorithm 2 is less than the computational
complexity of Algorithm 1.

According to these theoretical investigations as well
as on the basis of performed numerical experiments,
we conclude that Algorithm 2 is a better choice. The
CPU times depend upon two parameters: computational
complexity and implementation details incorporated into
the programming language MATLAB.

On the other hand, according to the known result of
Noda et al. (1997), the number of required operations for
Greville’s method is equal to

φ(Greville) = 2m2n − nr2

2
,

where m and n are the dimensions of the input matrix
and r is its rank. In our case, the number of arithmetic
operations required by the original Greville method for
computing H†, H ∈ R

m×(m+l−1)
m , is equal to

EGreville = 2m2(m + l − 1) − (m + l − 1)m2

2
≈ O(m3).

3.2. Analysis of methods for computing H†
m.

In order to confirm the efficiency of Algorithm 2,
we compared the block partitioning method with
three recently announced methods for computing the
Moore–Penrose inverse (Chountasis et al., 2009a;
2009b; Courrieu, 2005; Katsikis and Pappas, 2008).
Therefore, the following algorithms for computing the
Moore–Penrose inverse are compared:

1. block partitioning method, presented by Algorithm
2,

2. Ginv method, defined by the MATLAB function
ginv.m of Katsikis and Pappas (2008),

3. Qrginv method, defined by the MATLAB function
qrginv.m of Chountasis et al. (2009b) and Katsikis
et al. (2011),

4. Courrieu method of Courrieu (2005).

A comparison of several direct algorithms for
computing the Moore–Penrose inverse of full column rank
matrices was presented by Smoktunowicz and Wróbel
(2012). Also, the computational cost of these methods
for computing the Moore–Penrose inverse of a full
column rank matrix A ∈ R

m×n is given in Table 1 of
Smoktunowicz and Wróbel (2012). In our case, we have
the situation A = HT ∈ R

m+l−1×m. According to the
computational complexities presented by Smoktunowicz
and Wróbel (2012), the complexity of the Courrieu
method is equal to

EChol = 3(m + l − 1)m2 + m3/3,

and the complexity of Qrginv method is

EQrpivot = 5(m + l − 1)m2 − 4m3/3.

The Ginv method for computing A† is based on
the formula A† = (AAT )−1A and the MATLAB
implementation is based on the least squares solution of
the matrix equation (AT A)X = AT . In the particular
case of A = H , the computational complexity of the Ginv
method is

EGinv = O(M(m, m + l − 1, m)) + I(m)
+ M(m, m, m + l − 1).

Taking into account l < m, we derive the following
computational complexities:

EChol ≈ O(m3), EQrpivot ≈ O(m3),

EGinv ≈ O(m3), EGreville ≈ O(m3).

Since
EBPM ≈ O(m2l),

we conclude that the block partitioning method has the
smallest computational complexity.
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4. Application in image restoration

Images are aimed to memorize useful information, but
unfortunately, the presence of blurs is unavoidable. A
motion blur is an effect caused by relative motion
between the camera and the scene during image exposure
time. Restoration of motion-blurred images has been
a fundamental problem in digital imaging for a long
time. The recovery of an original image from degraded
observations is of crucial importance and finds application
in several scientific areas including medical imaging and
diagnosis, military surveillance, satellite and astronomical
imaging, remote sensing, etc. Expectably, the field of
image restoration has been of great interest in the scientific
literature (Banham and Katsaggelos, 1997; Chantas et al.,
2007; Chountasis et al., 2009a; 2010; Hillebrand and
Muller, 2007; Schafer et al, 1981). Also, edge preserving
regularization methods, in the context of image restoration
and denoising, are presented by Prasath (2011).

It is known that an arbitrary linear blurring process
can be represented by (7), where the matrices HC and HR

are characteristic Toeplitz matrices of the form (9)–(11)
with the sum of the elements h1, . . . , hl equal to 1 (see,
e.g., Hansen et al., 2006).

The parameter l represent the length of the
horizontal/vertical blur (in pixels).

In order to see how boundary conditions can be
incorporated in the model, for the sake of simplicity, let
us retain the horizontal blurring model (HC = I, HR =
H). An arbitrary i-th row gi of the blurred image can
be expressed using the i-th row f i of the original image
extended by incorporating the boundary conditions as

(
gi

)T
=H

(
f i

)T ⇐⇒

⎡
⎢⎣

gi,1

...
gi,m

⎤
⎥⎦=H

⎡
⎢⎣

fi,1

...
fi,n

⎤
⎥⎦ , (19)

i = 1, 2, . . . , r, where l − 1 elements of the vector f i

are not actually the pixels from the original scene; rather,
they are boundary pixels. How many boundary pixels are
placed at the top of the vector f i depends of the nature
and direction of the movement (the cause of the blur).
However, the rest of them, i.e., l − 1 minus the number
of pixels placed on top of the vector f i, would present the
boundary pixels right of the horizontal line, and should be
placed at the bottom of the vector f i (Hansen et al., 2006).

We consider the problem of removing a non-uniform
blur, which corresponds to an integral number of pixels,
in images. A real-life linearly blurred image (denoted by
the image array G) can be modeled as a linear convolution
of the original image (represented by the image array F )
with a PSF, also known as the blurring kernel (represented
by the matrix H).

We pay special attention to a Gaussian blur. Blurring
that is caused by atmospheric turbulence, out-of-focus and

motion of the camera, can be modeled by the Gaussian
blurring function (Hufnagel and Stanley, 1964). In the
Gaussian blur model the vector h = [h1, h2, . . . , hl] is
equal to

h = [γ(−p), . . . , γ(0), . . . , γ(k)],

where γ(i) = e−i2/(2s2), p = 
l/2�, k = �l/2. The
parameter s represents the width of the blurring function.
The vector h is normalized by dividing each element of
h by the sum of its elements. This vector represents
the so-called one-dimensional Gaussian function. The
non-uniform Gaussian blurring model G = HCFHT

R

corresponds to the model where the blurring matrix is
obtained by convolving the original matrix F with the
PSF function which is equal to the two-dimensional
Gaussian matrix PSF = [pi,j ] with entries pi,j =
e−i2/(2s2)−j2/(2s2).

4.1. Blur and noise restoration. In this section,
attention is paid to the model images degraded by a
sequence of mutually independent operations. First, noise
is imposed on the image and after that the noisy image
is blurred by the non-uniform Gaussian function. In this
case the mathematical model of the non-uniform blurring
process presented by (7) becomes

GN = HC(F + N)HT
R = HCFNHT

R , (20)

where GN is a blurred noisy image and N is an additive
noise. Two steps are used to restore the original image:

1. Calculate the restored matrix F̃N = H†
CGN (H†

R)T

of FN .

2. Generate the image F̃ by applying the filtering
process to the image F̃N . Depending on the type
of noise, we use a rotationally symmetric Gaussian
low-pass filter or a two dimensional median filter.

5. Numerical results

5.1. Experiments on a randomly generated ma-
trix H . In this subsection we compare the CPU time
required for computation of the Moore–Penrose inverse
of a randomly generated Toeplitz matrix H of the form
(9)–(11). Experiments are done using MATLAB on an
Intel(R) Core(TM) i5 CPU M430 @ 2.27 GHz 64/32-bit
system with 4 GB RAM memory. Since the algorithms
we compare with are implemented in MATLAB, we also
chose MATLAB as a framework for the implementation of
the proposed algorithms.

In Figs. 1 and 2 we present the results which refer
to the computational time t (sec) needed to compute the
Moore–Penrose inverse H† as a function of the length
of the blurring process l ≤ 90 (pixels). The values
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1
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c)

 

 

BPM
Ginv Method
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Fig. 1. CPU time for computing the MP inverse of the random
matrix H versus lr (lc = 30).

incorporated in these figures are obtained for a randomly
generated matrix of dimensions 1000 × 1200. CPU times
illustrated in Figs. 1 and 2 confirm that the proposed
BPM for computing H† is faster than the other methods
considered.

It is easy to observe that the block partitioning
method overcomes the Ginv and Qrginv methods. On the
other hand, Katsikis and Pappas (2008) concluded that
the Ginv method is faster with respect to the Courrieu
method. Thus, after the modifications described before,
the partitioning method becomes the fastest compared
with the three examined methods for computing the
Moore–Penrose inverse.

In addition, we compare the accuracy of the results
of our method with the other three methods. We use
the ginvtest function of Katsikis and Pappas (2008) and
the accuracy was examined with the matrix 2-norm in
error matrices corresponding to the four Moore–Penrose
equations. In Table 1 we present average errors for
different values of the parameter s, regarding the four
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Fig. 2. CPU time for computing the MP inverse of the random
matrix H versus lc (lr = 25).
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Fig. 3. CPU time for removing a blur caused by the Gaussian
function and noise versus lr (lc = 25).

Penrose equations. The presented average values were
generated by varying the parameter l from 5 to 90 with
Step 1. Based on the results shown in Table 1, the
following conclusions are imposed. The greatest norms
and thus the worst results are generated by the Courrieu
method. The BPM produces the best results for the
Penrose equations (1)–(3). The Ginv and Qrginv methods
give slightly better results regarding the matrix equation
(4) with respect to the BPM.

5.2. Experiments on the matrix H resulting from
a linear system convolution kernel. In this subsection
we compare the CPU time required for computation of
the Moore–Penrose inverse of Toeplitz matrix H resulting
from a linear system convolution kernel. In this way, we
compare the computational time of the image restoration
methods which are based on the Moore–Penrose inverse
approach. Thus, we compare that required by our method
with the CPU time required by the previously mentioned
methods. The computational time needed to restore the
degraded X-ray image by means of the methods which use
the Moore–Penrose inverse approach is shown in Figs. 3
and 4. For a given image, the varying parameter is the
parameter lr (lc) that takes values between 5 and 90.

As expected, the proposed method shows better
performances with respect to the other tested methods.

The proposed method is not only restricted to
restoration of blurred X-ray images. As a confirmation,
we compare the speed of our method with the speed
of other methods on a standard MATLAB image Lena.
Results for the Lena image (under the periodic boundary
condition), degraded by the Gaussian white noise of mean
0 and variance 0.01 and blurred by the non-uniform
Gaussian function (20), are presented in Figs. 5 and 6.
A rotationally symmetric Gaussian low pass filter of size
3 with standard deviation 45 is used for filtering.
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Table 1. Average error results regarding the four Moore–Penrose equations for 5 <= l <= 90.
s 2-norm in error matrices BPM Ginv Qrginv Courrieu

100 ‖TT †T − T‖2 1.4630 × 10−14 1.9417 × 10−14 1.1482 × 10−14 1.0614 × 10−10

‖T †TT † − T †‖2 3.0370 × 10−12 7.8286 × 10−9 1.6753 × 10−11 6.3123 × 10−8

‖TT † − (TT †)∗‖2 9.8858 × 10−14 1.1352 × 10−11 9.9422 × 10−13 5.7959 × 10−8

‖T †T − (T †T )∗‖2 3.0602 × 10−13 1.8363 × 10−14 1.0475 × 10−13 5.4743 × 10−11

200 ‖TT †T − T‖2 1.4206 × 10−14 1.9703 × 10−14 1.1243 × 10−14 1.0124 × 10−10

‖T †TT † − T †‖2 2.9713 × 10−12 7.9161 × 10−9 1.7050 × 10−11 5.9056 × 10−8

‖TT † − (TT †)∗‖2 9.6917 × 10−14 1.1066 × 10−11 9.9735 × 10−13 5.4223 × 10−8

‖T †T − (T †T )∗‖2 2.8939 × 10−13 1.8014 × 10−14 1.0298 × 10−13 5.2727 × 10−11

300 ‖TT †T − T‖2 1.3947 × 10−14 1.9369 × 10−14 1.1166 × 10−14 1.0056 × 10−10

‖T †TT † − T †‖2 2.9527 × 10−12 7.7109 × 10−9 1.6426 × 10−11 5.8595 × 10−8

‖TT † − (TT †)∗‖2 9.5872 × 10−14 1.0968 × 10−11 9.5566 × 10−13 5.3950 × 10−8

‖T †T − (T †T )∗‖2 2.8583 × 10−13 1.7938 × 10−14 1.0321 × 10−13 5.2229 × 10−11

400 ‖TT †T − T‖2 1.4104 × 10−14 1.9736 × 10−14 1.1157 × 10−14 1.0066 × 10−10

‖T †TT † − T †‖2 2.9505 × 10−12 7.8669 × 10−9 1.7028 × 10−11 5.8529 × 10−8

‖TT † − (TT †)∗‖2 9.6935 × 10−14 1.0957 × 10−11 9.8089 × 10−13 5.3809 × 10−8

‖T †T − (T †T )∗‖2 2.9034 × 10−13 1.7916 × 10−14 1.0235 × 10−13 5.2246 × 10−11

500 ‖TT †T − T‖2 1.4107 × 10−14 1.9210 × 10−14 1.1180 × 10−14 9.9086 × 10−11

‖T †TT † − T †‖2 2.8297 × 10−12 7.2584 × 10−9 1.6637 × 10−11 5.7496 × 10−8

‖TT † − (TT †)∗‖2 9.4099 × 10−14 1.0957 × 10−11 9.6248 × 10−13 5.2747 × 10−8

‖T †T − (T †T )∗‖2 2.9047 × 10−13 1.7940 × 10−14 1.0084 × 10−13 5.2127 × 10−11

(a) (b) (c)

Fig. 5. Removal of a blur, caused by the Gaussian model with lc = 40 and lr = 35, on a Lena image: original image (a), blurred noisy
image (b), Moore–Penrose restored image (c).
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Fig. 4. CPU time for removing a blur caused by the Gaussian
function and noise versus lc (lr = 35).

5.3. Comparison with the least squares solution. For
simplicity, let us again focus on a blur which is caused
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Fig. 6. Time versus lr in the removal of a blur given by the
model (20) and Gaussian noise (lc = 50), for a Lena
image.

by a horizontal motion. In this section we compare the
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Fig. 8. ISNR values arising from the Moore–Penrose inverse
approach and the LS solution.

effectiveness of the method based on the Moore–Penrose
inverse with the method which uses the least squares
solution of the following linear system:

gi,j =
l−1∑
k=0

hkfi,j+k, (21)

i = 1, . . . , r and j = 1, . . . , m, arising from (9)–(19)
(with n = m + l − 1). The corresponding solution
is derived using the standard MATLAB function mrdi-
vide() and it will be denoted as the LS solution in
test examples. The function mrdivide(B,A) (or its
equivalent B/A) performs matrix right division (forward
slash) (MathWorks, 2010). Matrices B and A must have
the same number of columns.

In the case of the underdetermined or overdetermined
system of equations G = FHT , the least squares solution
F = G/HT is usually not the same as the least square
solutions of the minimal norm F = G(HT )†. A
comparison between the Moore–Penrose approach and
least square solutions for the problem (19) is illustrated
in Fig. 7.

Blurring used in this example is uniform Gaussian
with length l = 50 and Gaussian white noise with mean
0 and variance 0.05. The left picture in Fig. 7 shows
the restored image obtained as the direct solution of the
system (21), while the right image shows the image in
which the blur is restored based on the usage of the
Moore–Penrose inverse.

The difference in the quality of the restored images
is in favor of the Moore–Penrose inverse approach and
can be seen with the human eye. This illustration
was confirmed by the corresponding values of the ISNR
parameter, which are presented in Fig. 8.

5.4. Comparison with other image restoration meth-
ods. In this subsection we compare the adopted block
partitioning method with several known image restoration

methods. In fact, the blurring matrices Hc and Hr are
assumed to be known in these numerical experiments,
whereas in practical applications of image processing
they first have to be identified from the distorted image.
But, eventually, one can imagine an application with a
known blurring matrix, e.g., to secure the transmission
and storage of original image artwork, where a synthetic
image deterioration is caused by the sender and the
corresponding image deblurring is done on the receiver’s
side.

Figure 9 demonstrates the efficiency of four different
methods for image restoration: the Moore–Penrose
inverse based approach, the Wiener Filter (WF),
Lucy–Richardson (LR) algorithm and the Tikhonov
Regularization (TR) method. The methods are tested
on an image which is taken from the results obtained
after the Google Image search with the keyword “X-ray
image” and the location of the image is at
http://www.tetburyhospital.co.uk/admin/
subroutines/blob.php?id=13 &blob=ablob.

For the implementation of the Wiener filter and the
Lucy–Richardson algorithm we used incorporated built-in
functions from the MATLAB package. For the Wiener filter
we use a MATLAB function with two input parameters: a
blurred noisy image GN and a point-spread function PSF.
For the Lucy–Richardson algorithm we an used additional
parameter for the number of iterations with a constant
value 10. Implementation of the Tikhonov regularization
method is based on the Kronecker decomposition and the
code presented by Hansen et al. (2006).

In Fig. 9 we illustrate the original, the blurred noisy
and the restored images obtained by different methods.
The graphics denoted as Original image from Fig. 9
show the original X-ray image. The image is divided into
r = 750 rows and m = 1050 columns. To prevent a
loss of information from the boundaries of the image, we
assumed zero boundary conditions, which implies that the
values of the pixels of the original image F outside the
image window are zero. This choice is natural for X-ray
images since the background of these images is black. The
pixels of the original image are degraded by the Gaussian
white noise with zero mean and variance 0.01 and later
blurred by a non-uniform Gaussian function according
to the model (20). For filtering we use a rotationally
symmetric Gaussian low pass filter of size 3 with standard
deviation 45.

The difference in quality of the restored images
regarding three methods (Moore–Penrose, Wiener and
Tikhonov) is insignificant and can hardly be seen by a
human eye. For this reason, we use a common method for
comparing restored images, i.e., we analyze the so-called
Improved Signal-to-Noise Ratio (ISNR). The results for
the parameters ISNR (Bovik, 2009), presented in Fig. 10,
show that the restoration of the serial degraded images

http://www.tetburyhospital.co.uk/admin/
subroutines/blob.php?id=13
&blob=ablob
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(a) (b)

Fig. 7. Restoration arising from the LS solution and the Moore–Penrose inverse: LS solution (a), Moore–Penrose inverse solution (b).

(a) (b) (c)

(d) (e) (f)

Fig. 9. Removal of a blur, caused by a Gaussian model with lc = 25 and lr = 45, on an X-ray image: original image (a), blurred noisy
(b), Moore–Penrose restoration (c), Wiener filter restoration (d), Tikhonov regularization (e), Lucy–Richardson restoration (f).

with the Moore–Penrose inverse is more reliable and
accurate than restoration with other mentioned methods.
In Fig. 10 we used s = lr/2 and s = lc/2 for
the non-uniform blurring process. The graph marked as
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Fig. 10. ISNR versus lc for the removal of a blur given by the
model (20) (lr = 35).

MP inverse illustrates the numerical values generated by
an arbitrary method for computing the Moore–Penrose
inverse.

Similar results are generated for other values of the
parameter s. To illustrate this fact, in Fig. 11 are presented
results for the ISNR corresponding to the choice s = 30.

To confirm our results, in the next two figures
we present results for the Dice Coefficient (DC) as a
similarity measure between sets. The rank of the DC is
from 0 to 1, where 0 indicates the sets are disjoint and
1 indicates the sets are identical (Dice, 1945; Craddock
et al., 2012). The parameters used in Figs. 12 and 13 are
the same as in Figs. 10 and 11.

6. Conclusion

The presented method is based on appropriate adaptations
of well-known computational methods introduced by
Udwadia and Kalaba (1999), as well as Greville (1960).
It is suitable for application to specific (sparse) Toeplitz
matrices. Using the specific structure of these matrices
(denoted by H) as well as the fact that the inverse of its



Application of the partitioning method to specific Toeplitz matrices 819

square part (H†
m) can be computed easily, we adjust the

partitioning methods in order to obtain the most efficient
adaptation.

We compare the obtained method with respect to two
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Fig. 11. ISNR versus lc for the removal of a blur given by the
model (20) (lr = 35 and s = 30).
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Fig. 12. DC versus lc for the removal of a blur given by the
model (20) (lr = 35).
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Fig. 13. DC versus lc for the removal of a blur given by the
model (20) (lr = 35 and s = 30).

methods for fast computing the Moore–Penrose inverse
introduced by Karanasios and Pappas (2006), as well as
Katsikis and Pappas (2008), and used by Chountasis et
al. (2009a; 2010; 2009b) along with the Courrieu method
(Courrieu, 2005).

The advantage of the proposed method is a
significant reduction of the CPU time required to
obtain the Moore–Penrose inverse of the observed
class of matrices. This fact coincides with the
given theoretical results concerning the analysis of
computational complexities of different algorithms.

The idea of observing this type of matrices comes
from the fact that they appear in image restoration theory.
Also, the computation of the Moore–Penrose inverse is
required in the image deblurring process in the case when
the blurring kernel is known in advance.
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Appendix

In this section we present the MATLAB code for
the implementation of Algorithm 2 for computing the
Moore–Penrose inverse H†.The function GaussBlur
generates the Toeplitz matrix H which defines the
Gaussian blur. Its formal parameters are n, l and s.

function [PSF] = GaussBlur(n, l, s)
m = n-l+1;
x = -fix(l/2):ceil(l/2)-1;
vector = exp( -(x.ˆ2)/(2*sˆ2));
vector = vector / sum(vector(:));
r = [vector zeros(1,m-1)];
c = zeros(m,1);
c(1) = vector(1);
PSF = toeplitz(c,r);

Implementation of Step 2 from Algorithms 1 and 2 is
given in the following code:

function res = InvKvGauss(A)
m = length(A);
p = flipud(eye(m,1));
opts.UT = true;
vec = linsolve(A,p,opts);
r = flipud(vec);
c = zeros(m,1);
c(1) = r(1);
res = toeplitz(c,r);

Finally, computation of the Moore–Penrose inverse of H
is made by the following function:

function MP = InverseOfGauss(n,l,s)
%Computes $Hˆ\dag$ using block partitioning method

H = GaussBlur(n,l,s);
m = n-l+1;
A = H(:,1:m);
C = H(:,m+1:n);
Inv = InvKvGauss(A);
Z = Inv*C;
V = (eye(n-m)+Z’*Z)\Z’*Inv;
MP = [Inv*(eye(m)-C*V);V];
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