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This paper describes a study of emotion recognition based on speech analysis. The introduction to the theory contains a
review of emotion inventories used in various studies of emotion recognition as well as the speech corpora applied, methods
of speech parametrization, and the most commonly employed classification algorithms. In the current study the EMO-DB
speech corpus and three selected classifiers, the k-Nearest Neighbor (k-NN), the Artificial Neural Network (ANN) and
Support Vector Machines (SVMs), were used in experiments. SVMs turned out to provide the best classification accuracy
of 75.44% in the speaker dependent mode, that is, when speech samples from the same speaker were included in the
training corpus. Various speaker dependent and speaker independent configurations were analyzed and compared. Emotion
recognition in speaker dependent conditions usually yielded higher accuracy results than a similar but speaker independent
configuration. The improvement was especially well observed if the base recognition ratio of a given speaker was low.
Happiness and anger, as well as boredom and neutrality, proved to be the pairs of emotions most often confused.
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1. Introduction

It has been known for years that speech is more than
just words. It usually comes with an underlying emotion.
As was shown by Mehrabian and Wiener (1967), when
communicating feelings and attitudes, the spoken words
(verbal attitude) constitute only 7% of the message. The
rest of the message comprises non-verbal vocal attitude
(38%) and visual one, that is, facial expression (55%).
When communicating messages other than feelings or
attitudes, the impact of non-verbal aspects is lower, but
still it carries important information which scientists have
tried to explore.

Several studies have been conducted on multimodal
emotion recognition, for example, involving face analysis
and gesture recognition. However, a remarkable part
of communication is carried out remotely using audio
transmission only, for example, over the phone, in which
the visual part is not available. Therefore speech-based
emotion recognition has become a fast-developing
sub-domain of speech processing, and for this reason this

work focuses on speech-based recognition only.

Speech-based emotion recognition algorithms can
be employed in various applications. They can help in
evaluating the operation of a call center by detecting
conversations with customers who become angry during
service (Erden and Arslan, 2011). Other systems can
detect an increase in the stress of a person performing
a responsible task, for example, a pilot or surgeon (He
et al., 2008). Emotion recognition algorithms can be
helpful in educational software, for example, by detecting
whether the user gets bored during training (Schuller
et al., 2006). Last but not least, they can improve
human–machine interfaces by detecting the emotional
state of the user and, for example, simplifying the
menu if user annoyance is detected. What is more,
trials are being carried out to apply emotions to robots
(Kowalczuk and Czubenko, 2011), so the “expressive”
layer of communication between humans and machines
becomes even more important.

Emotion recognition is a difficult task even for
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humans. Scherer (2003) claims that based on speech
a human achieves a recognition accuracy of only 60%
when recognizing an emotion of an unknown person,
that is, when acting in speaker independent mode.
When a speaker is known to a listener, then the
recognition can be treated as speaker dependent, that
is, the prior knowledge about the speaker is taken into
account during the recognition process. This speaker
dependence obviously improves humans’ recognition
performance. The objective of this project was to compare
speaker dependent and speaker independent conditions for
emotion recognition algorithms.

This paper begins with a description of the
theoretical background of speech based emotion
recognition, and then defines the aim of the project. Next,
the experimental setup will be described and the obtained
results will be presented. Finally, the discussion of the
results and final conclusions will be given.

2. Theoretical background

Generally speaking, most emotion recognition systems
employ learning algorithms, so prior to use they must
undergo proper training. Typical training of an emotion
recognition system consists in extracting parameters from
the training recordings and making a classifier learn the
emotional classes based on the labels of the recordings.
The testing of such a system consists in classifying
the tested recordings and comparing the results with
the expected emotions. In order to use the available
speech data efficiently, testing and training often follow
a cross-validation scheme.

With regards to the details, a huge variety of studies
dealing with automatic emotion recognition based on
speech analysis exist. They differ in terms of the range
of emotions considered for recognition, and they employ
various sets of speech parameters and classifiers. Last
but not least, in their experiments researchers use various
speech corpora to train and test their systems. All of this
makes comparison between studies a difficult task. The
aim of this section is to highlight the main tendencies in
speech-based emotion recognition.

2.1. Emotions being recognized. The most basic
recognition which is sometimes analyzed is just a
differentiation between neutral and emotionally flavored
speech, that is, detection of whether or not a speaker
expresses some emotion. A more advanced approach tries
to evaluate the polarity of the emotional state, that is,
whether the emotion is positive or negative.

Many studies follow Paul Ekman’s early theory
of emotions (Ekman, 1972), which postulates that all
emotional states are combined out of basic six emotions:
anger, happiness, sorrow, surprise, fear and disgust.
These studies usually recognize seven classes: the above

mentioned six emotional states and a neutral emotion.
Sometimes single emotions from this list are replaced
by others (for example, boredom, anxiety) or simply
dropped. Some researchers follow Plutchik’s model of
emotions (Kaminska and Pelikant, 2012).

There is also a group of studies which try to detect a
selected basic emotion, such as fear (Clavel et al., 2007)
or anger (Erden and Arslan, 2011). Other studies research
the possibility of recognizing complex emotional states,
such as stress (He et al., 2008), certainty (Liscombe et al.,
2005), interest (Schuller et al., 2006), speaker engagement
(Yu et al., 2004) or deception (Hirschberg et al., 2005).

A different approach which is sometimes researched
consists in abandoning recognition of discrete emotion
classes and moving towards a continuous emotional space
(Lugger and Yang, 2007). Such a space usually consists
of the following dimensions:

• valence (or evaluation): this dimension describes
whether the emotion is positive or negative and by
how much;

• activation (or arousal): this dimension describes
whether a human is aroused and by how much;
for example, a sad or bored man will be described
as having low activation, but an angry, happy or
anxious man will have high activation (Lugger and
Yang, 2007);

• optional—dominance (or potency): this dimension
describes whether and how strongly the emotion
empowers a human to undertake further actions; for
example, an anxious man will have low dominance,
but an angry or happy one will show high dominance.

In this approach the discrete emotions are often
mapped onto a 2D or 3D emotional space. When
recognition is performed and values of the two (or
three) dimensions are determined, then these values can
be mapped back to the discrete categories (Janicki and
Turkot, 2008).

2.2. Speech corpora used in emotion recognition stud-
ies. In general, research is conducted using two types of
speech corpora: corpora with acted speech and those with
spontaneous speech. Spontaneous speech can be acquired
in a natural environment, for example, in a call center as in
the work of Erden and Arslan (2011), or it can be recorded
in a Wizard of Oz scenario, where certain emotions can be
provoked in a special scenario, as was done by Batliner
et al. (2005), when speech was acquired from children
playing with Sony’s AIBO pet robot.

Studies with spontaneous speech seem more realistic,
as these corpora contain real-world recordings with real
emotions. On the other hand, when recording acted
speech, we can ask actors to repeat the same sentences
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with different emotions, which makes it possible to
conduct numerous comparative studies. The following
speech corpora are mostly used in speech-based emotion
recognition:

• Linguistic Data Consortium (LDC) Emotional
Prosody Speech and Transcripts (Liberman et al.,
2002): a commercial database containing recordings
of seven actors, each saying 10 sentences in 15
emotions;

• EMO-DB: Berlin Emotional Database (Burkhardt
et al., 2005), with almost 800 recordings from
10 professional German actors, each saying 10
sentences in seven emotional states, with some
repetitions;

• DES: Danish Emotional Database (Engberg et al.,
1997), with recordings from four non-professional
actors, each saying two words, nine sentences and
two passages in five emotional states;

• SUSAS: Speech Under Simulated and Actual Stress,
a database used for research on stress detection
and analysis, containing recordings of 32 actors
in various stressful situations, investigated, for
example, by He et al. (2008);

• numerous private corpora: databases with
recordings dedicated to a given project, usually
not open to the public, for example, the recordings
used by Erden and Arslan (2011), or ITSPOKE,
which was employed by Liscombe et al. (2005).

2.3. Speech parameterization. Emotion recognition
from speech is based on parameters extracted from the
speech signal. Dozens, hundreds, or even thousands of
parameters are calculated, in order to capture the features
containing information of an underlying emotion. The
following are the most commonly met sets of parameters:

• F0-based parameters, that is, parameters related
with pitch—the fundamental frequency of speech,
e.g., the maximum, minimum, mean, median and
variance of pitch for an utterance being tested, the
first and third quartiles of F0, and the first and ninth
deciles of F0, such as in the work of Ayadi et al.
(2011);

• energy-based parameters, e.g., the maximum, mean,
median, and variance of energy, such as in the work
of Yu et al. (2004);

• MFCC (Mel-Frequency Cepstral Coefficients), LPC
(Linear Prediction Coding) parameters, LFPCs (Log
Frequency Power Coefficients), their maximum,
minimum and mean values, and the range, standard
deviation, mean, and standard deviation of their
derivatives (Iliou and Anagnostopoulos, 2010);

• formant-based parameters, such as the maximum,
mean, median, and variance of formant frequencies
and formant bandwidth (Janicki and Turkot, 2008);

• other spectral parameters, such as spectral moments,
and spectral flatness;

• parameters related to speech rate, such as the
maximum, mean, median and variance of speech
rate, voicing change rate, and voicing ratio, that is,
the ratio of voiced speech parts to total length of
speech;

• voice quality parameters, such as incompleteness
of glottal closure (IC), spectral gradients, skewness
coefficients (Lugger and Yang, 2007), F0 jitter, and
amplitude shimmer;

• Teager Energy Operator (TEO)-derived measures
(Ayadi et al., 2011), such as normalized TEO
autocorrelation envelope (He et al., 2008) or
TEO-decomposed FM variation;

• linguistic features: higher-level features related to,
for example, the vocabulary used, part-of-speech
distribution, and so on (Seppi et al., 2008).

Since often hundreds (or even thousands) of
parameters are calculated out of a single utterance,
typically these features undergo a selection process.
One of the most popular techniques, which gives the
best results, is the Sequential Forward Selection (SFS)
technique (used, for example, by Grimm et al. (2007)).
In some projects, however, features are not selected, but
they all feed a classifier, even if there are thousands of
them (Hassan and Damper, 2010).

2.4. Classification algorithms. Actual emotion
recognition is performed by a classifier, previously trained
on the training corpus. Researchers use a couple
of classification algorithms, known to perform well
in various classification tasks. The most promising
classifiers are briefly described below.

Among the classifiers that yield the best results
and are therefore the most popular are Support Vec-
tor Machines (SVMs). This algorithm was proposed
and described by Vapnik (1982). It is well known for
solving various classification problems in different areas
of science, for example, in medicine (Jeleń et al., 2008),
where it outperformed neural networks in breast cancer
detection, or in psychology (Gorska and Janicki, 2012),
where it helped with classifying personality traits based
on handwriting. In its basic form an SVM consists
in dividing, based on training data, a feature space
into two parts by an optimal hyperplane defined by the
so-called support vectors. It is often used in emotion
recognition (e.g., Devillers and Vidrascu, 2006; Erden and
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Arslan, 2011; Schuller et al., 2006; Seppi et al., 2008).
When there are more than two classes (which is often
the case in emotion recognition), a set of SVMs is
used with a selected voting algorithm, thus forming a
multi-class SVM. A variant of SVM, called the Support
Vector Regression (SVR) model, which aims at finding
a regression model within emotional speech data, was
proposed by Grimm et al. (2007).

Another classifier is Hidden Markov Models
(HMMs), an algorithm used, for example, by Kang et al.
(2000), which allows a temporal sequence of observations
(in this case, speech features) to be modeled, while the
actual sequence of states remains unknown (“hidden”).
Separate HMM models are trained for different emotions.
During recognition the likelihood of generating the
tested sequence of observations by a given HMM is
calculated, and the emotion with the highest likelihood is
selected. Monophone-based HMMs were also proposed
for modeling frame-level acoustic features by Gajsek
et al. (2013), who achieved classification improvement
both in emotion recognition and the alcohol detection,
compared with the other state-of-the-art methods. Usually
HMMs with Gaussian outputs are used.

Gaussian Mixture Models (GMMs) are a classifier
similar to HMMs but use only one state and Gaussian
outputs (unlike in HMMs, Gaussian outputs are
compulsory in GMMs). In speech processing, GMMs
are used intensively in speaker recognition, for example,
by Janicki (2012), as well as in emotion recognition
(e.g., Clavel et al., 2007; Erden and Arslan, 2011; He
et al., 2008). Gaussian Mixture Vector AutoRegressive
(GMVAR) models are variants of GMMs, which are quite
successfully employed for emotion recognition by Ayadi
et al. (2007).

A k-Nearest Neighbor (k-NN) classifier is a very
simple one that makes decisions based on k training
vectors which are closest to the tested vector(s). Despite
its simplicity, it is also often used in emotion recognition
(e.g., Kang et al., 2000; Grimm et al., 2007; Kaminska
and Pelikant, 2012), often as a baseline classifier, to show
the complexity of the classification task and as a reference
to other, more complex classifiers.

Artificial Neural Networks (ANNs) have been used
for decades in machine learning. They consist of
interconnected artificial neurons. The output of a neuron
is usually activated by a non-linear activation function
(for example, sigmoid) based on a weighted sum of
the inputs of the neuron. ANNs can have various
architectures, of which the feed-forward one is mostly met
in emotion recognition (e.g., Iliou and Anagnostopoulos,
2010; Yacoub et al., 2003). ANNs are usually trained in
supervised mode, using the back-propagation algorithm.
Another type of ANN architecture is represented by
recurrent networks, used, e.g., in automatic control
systems described by Patan and Korbicz (2012).

Yet another classification method uses Decision
Trees (DTs). DTs are decision-support algorithms, which
have a graphical form of a tree in which each node is a
decision point. A properly constructed decision tree can
provide good results in emotion recognition, as described
by Cichosz and Slot (2007), where in each decision node
one emotion was identified, based on frequency-related,
energy-related, and duration-related features.

Other classifiers that are sometimes used are naive
Bayes classifiers, the Maximum Likelihood Bayes (MLB)
classifier (used, for instance, by Kang et al., (2000)
or Lugger and Yang (2007)), Linear Discriminant
Classifiers (LDCs) employed by Batliner et al. (2005),
Quadratic Discriminant Analysis (QDA), and Fisher’s
linear classifier. Combinations of the above-described
classification algorithms are also met.

Recognition rates achieved with these classifiers
are difficult to compare, because of the variety of
factors which influence the results (speech corpora used,
number of emotion classes considered, employed testing
methodology, etc.). According to Ayadi et al. (2011)
they range from 51.19% to 81.29%, but some researchers
report even higher results, especially for binary emotion
classification.

3. Aim of this study

Many researchers describe emotion recognition in either
speaker independent or speaker dependent modes. There
are only a few studies which describe these two
approaches in one study (e.g., Cichosz and Slot, 2007;
Iliou and Anagnostopoulos, 2010); however, precise
comparisons detailing the amount of speaker data used in
training were not described.

The aim of this study is to fill this gap. We wanted
to compare the performance of emotion classification
between speaker independent and speaker dependent
configurations, using the same environment, that is,
the same speech features and the same classifiers, at
the same time as controlling the number of speaker
recordings present in the training set (that is, controlling
the “depth” of speaker dependence). The use of a widely
investigated speech corpus containing multiple emotions
of the same speakers and selected classification algorithms
chosen from among the best and most commonly used
ones was planned. Therefore we decided to use
the EMO-DB corpus (Burkhardt et al., 2005) and the
following classifiers: the k-NN, the ANN and the SVM.

4. Experimental setup

4.1. Speaker independent and speaker depen-
dent configurations. To perform experiments on both
speaker dependent and speaker independent classification
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and allow comparison between the results, three
experimental configurations were applied:

• SIF: Speaker Independent, Full. In this configuration
evaluation was performed by cross-validation in
the leave-one-speaker-out strategy, for all available
utterances of the classified speaker;

• SI-i: Speaker Independent, limited to i utterances.
In this case the experiments were run similarly to
SIF, but the number of utterances in the testing set
for each emotion for each speaker was limited to
i = Lmin, where Lmin is the number of emotions in
the least numerous emotion class for a given speaker;

• SD-i: Speaker Dependent, limited to i utterances,
similarly to SI-i. However, in this configuration
n utterances of the speaker that are recognized are
moved to the training set, with the aim of adapting
the classifier to the given speaker. This procedure is
repeated using the cross-validation scheme (in each
iteration n utterances are moved to the training set
and k − n utterances remain to be tested, where k
denotes the initial number of the utterances in the
testing set). At the same time, n other randomly
chosen utterances are removed from the training data
set to keep its size constant.

The SIF configuration is mostly used in other studies
on the EMO-DB corpus, so it was added here to allow
a comparison with other researchers. Having the same
number of utterances with each emotion in the training
sets in the SI-i and SD-i configurations allows the
most accurate comparison to be made between speaker
dependent and speaker independent classification.

4.2. Speech data and their parametrization. To
observe the influence of the presence of speaker samples
in the training set on classification performance, a
two-step cross-validation was performed. It was also
considered to be a way of overcoming the relatively
small number of samples in the EMO-DB corpus.
Unfortunately, this meant that speakers whose number
of samples of emotion was lower than the number of
samples moved to the training set incremented by one
had to be removed from the test set (for proper testing,
at least one of each emotion had to be left in the test
set). The emotion label “disgust” had to be dropped
from the SI-i and SD-i configurations because of the
small sample representation and unbalanced distribution
between the speakers, so these modes used six-class
emotion recognition. The final summary of samples for
each i value is shown in Table 1. The emotion recognition
for the SIF configuration remained a seven-class one.

Speech data were parametrized and 431 parameters
were calculated from each recording. They included

MFCC, LPC and LFPC coefficients, and F0-based,
energy-based, speech rate-based and voice quality
parameters, as detailed in Table 2. F0 values and
all F0-related parameters were calculated using the
SWIPE’ algorithm (Camacho and Harris, 2008) while
voice quality parameters were obtained following the
procedure described by Lugger et al. (2006), and the
remaining parameters were extracted using the functions
from the Voicebox toolbox for Matlab (Brooks, 2012).

Next, the SFS procedure was run for feature
selection. In order to be able to compare speaker
dependent and speaker independent configurations, as
well as various classifiers, we wanted to have the same
set of parameters in all configurations. To avoid the
curse of dimensionality, we decided to keep the space
dimension relatively low and to verify the results using
the cross-validation procedure. We also observed the
standard deviation of the results, since experiments were
repeated several times and the results varied, e.g., due
to the training nature of ANNs. High deviation would
mean overfitting to some parts of the data and poor
recognition of the other parts of the data. Since the
achieved classification results were satisfactory and the
standard deviation of the results was low, we agreed that
the adopted dimensionality, i.e., 14 (ca. two dimensions
per emotion), was not too excessive.

Unfortunately, the SFS mainly returned different
parameters for each classifier, and only a few of
them appeared regularly. Therefore they were selected

Table 1. Number of speakers and their recordings for various i,
used both in the SI-i and SD-i configurations.

i

No. of
speakers

taking part
in

validation

Average No.
of recordings
per speaker

in one
validation run

Total No.
of recor-

dings in one
validation

run

1 9 28.7 258
2 7 29.1 204
3 7 24.0 168
4 5 30.0 150
5 3 36.0 108
6 2 42.0 84

i

Total
no.

of reco-
rdings

No. of
cross

validation
folds in emo-

tion CV

No. of
recordings
in a test set

in emo-
tion CV

1 454 from 3 to 7 from 2 to 6
2 384 from 2 to 3 2 or 4
3 384 4 1
4 285 5 1
5 172 6 1
6 114 7 1
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for further experiments, together with a couple of
heuristically added ones. In all, we selected the following
14 parameters: three F0-based, five formant-based,
two MFCC-based, three spectral, and one speech-rate
parameter.

4.3. Configuration of classification algorithms. Each
of the selected classification methods was first evaluated
in the SD-1 configuration to choose the best parameters.
Then experiments with the configurations SIF, SI-i and
SD-i for i = 1, 2, 3, 4, 5, and 6 were performed.

As for the k-NN algorithm, the number of neighbors
k was chosen based on experiments. Various values of k
between 1 and 100 were tried and classification accuracy
was assessed. The results are shown in Fig. 1. Based on
these experiments, we decided to use the k-NN algorithm
with k = 40 neighbors as the optimal value, and with the
Euclidean metric.

As for the ANN classifier, a feed-forward, two-layer
back-propagation neural network was chosen, with a
sigmoid function in the hidden layer and a linear output
layer. It is a simple, easy to train and frequently used ANN
configuration. The initial results showed that the optimal
strategy is one-versus-one.

The number of neurons in the hidden layer was
adjusted experimentally. Various numbers between 1 and
20 were tried. It was found that for more than 10 neurons

Table 2. Parameters extracted from the speech signal.
Group Description Count

F0-based

F0, mean, median,
min, max, stddev, range

95%(90%,80%,25%)-range
delta, delta2

38

energy-based

energy, mean, median,
min, max, stddev, range

95%(90%,80%,25%)-range
delta, delta2

66

speech rate
voicing ratio

voicing change per sec
2

formant-based

F1 − F4, mean, median,
min, max, stddev,range

95%(90%,80%,25%)-range
delta, delta2

B1 − B4 formant width

208

spectral-based
MFCCs, LPCs, LFPCs

mean, median, min, max
delta, delta2

72

voice quality

spectral flatness measure
incompleteness of closure

spectral center
skewness gradient

mean, median, min, max
delta, delta2

45

Total: 431

the classifier exhibited overfitting tendency. The results
for five neurons in the hidden layer proved to assure both
the sufficient generalization capabilities of the classifier
and the good stability of the classification results (below
1.5% for all the tested configurations). Therefore, in
the subsequent experiments, a two-layer ANN with five
neurons in the hidden layer was used.

The experiments with the SVM classifier were
performed with polynomial and radial basis (RDF)
kernels. The initial experiments showed that the latter was
superior, so the further experiments focused on the RDF
kernel. The parameters, γ and the cost C, were set up
heuristically, based on the average and standard deviation
of classification error, the share of support vectors in the
total number of vectors and the training error. These
values for various γ and C are presented in Table 3. Based
on these results, the values C = 32 and γ = 0.125 were
chosen.

5. Results of experiments

Results for all three classifiers were evaluated based on the
mean classification accuracy, both for the whole corpus
and for each speaker independently. The best result in
the SIF configuration was 68.7% and was achieved with
the SVM classifier. The other two classifiers yielded
worse results: 63.22% and 56% for the k-NN and ANN,
respectively.

With regard to the SI-i and SD-i configurations,
the results will be described separately for each of the
classifiers. Confusion matrices for the classes being
recognized will be presented and analyzed too. In

Table 3. Classification evaluation for various values of γ (in
rows) and C (in columns) for the SVM classifier (val-
ues in percentages). Results for the configuration se-
lected as optimal are printed in bold.

log2(γ) Parameter 8 32 128 512

−7 Avg. error 62.19 31.30 28.45 28.95
−7 Std. dev. 1.25 1.47 1.28 1.40
−7 SV share 72.33 50.68 33.62 24.21
−7 Train error 22.89 15.24 9.46 6.01

−5 Avg. error 31.54 28.55 28.99 29.12
−5 Std. dev. 1.54 1.38 1.40 1.37
−5 SV share 50.82 33.70 24.30 19.20
−5 Train error 15.28 9.46 5.99 3.96

−3 Avg. error 27.95 28.51 28.94 30.20
−3 Std. dev. 1.38 1.43 1.23 1.26
−3 SV share 34.04 24.55 19.41 17.19
−3 Train error 9.51 5.90 3.72 2.36

−1 Avg. error 28.51 30.08 32.64 35.24
−1 Std. dev. 1.27 1.25 1.34 1.60
−1 SV share 25.56 20.59 18.82 18.27
−1 Train error 5.73 3.31 1.67 0.69
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Fig. 1. Emotion classification error for various k for the k-NN
classifier, for speaker dependent and speaker indepen-
dent configurations.

the following section the results will be summarized,
discussed, and compared with other studies.

5.1. k-NN algorithm. The total results for the k-NN
classifier are shown in Table 4. It can be observed
that for i < 5 the classification accuracy for the SD-i
configurations is 1–2 percentage points (p.p.) higher than
for the speaker independent configuration, while the
performances for i = 5 and i = 6 are almost equal (within
the confidence level of the test).

The impact of adding speaker samples to the training
set was highly dependent on the evaluated speaker. The
general trend was that speakers who were classified with
high results in SI-i (e.g., speakers #8 and #14; see Fig. 2)
did not improve their results in the SD-i configuration, or
even showed a slight drop. On the other hand, speakers
with low results in SI-i (e.g., speakers #11 and #16)
performed much better when their samples were present
in the training set. The gain for SD-i reached over 9 p.p.
in some cases.

In Fig. 2 it can be seen that the average classification
performance for each speaker has only a small variation.
The highest differences are for i = 4, 5, 6, where the
variation of average classification accuracy is caused by

Table 4. Classification results (in percentages) for various num-
bers of speaker samples (i) in the training set for the
k-NN classifier.

i 1 2 3 4 5 6

SI-i 64.41 64.33 63.23 65.71 71.62 64.35
SD-i 65.63 67.64 64.51 66.59 71.97 64.81
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Fig. 2. Emotion classification error for various configurations
for the k-NN classifier.

the elimination of speakers from the test set. The increase
for i = 5 is caused by the elimination of the poorly
classified speaker #16. The decrease for i = 6, on the
other hand, is caused by the elimination of speaker #8,
whose classification error was very low.

The confusion matrix shown in Table 5 presents
a high rate of misclassification between happiness and
anger, equal to about 50%, for both SI and SD
configurations. We believe that the reason for this is that
both emotions are characterized by high arousal and are
therefore difficult to distinguish. Further investigation of
the results for each speaker in SI-1 revealed that five out
of nine speakers did not have even one correctly classified
sample of happiness (mostly misclassified as anger), and

Table 5. Confusion matrices for the SI-1 (upper) and SD-1
(lower) configurations for k-NN (in percentages of
recognitions). The diagonals show the percentages of
correctly recognized emotions.

Neu Ang Hap Sad Bor Fea

Neu 74.80 0.00 0.00 2.53 13.69 9.30
Ang 1.51 94.56 1.69 0.00 0.00 2.24
Hap 8.08 52.24 19.42 0.00 5.67 14.59
Sad 7.53 0.00 0.00 84.83 3.87 3.78
Bor 28.14 0.73 0.99 6.48 57.70 5.96
Fea 21.10 17.27 3.43 0.00 2.50 55.70

Neu Ang Hap Sad Bor Fea

Neu 72.53 0.01 0.00 2.89 15.63 8.94
Ang 2.02 94.07 1.67 0.00 0.00 2.25
Hap 7.36 49.44 25.19 0.00 4.05 13.97
Sad 4.87 0.00 0.00 87.59 3.81 3.74
Bor 26.24 0.97 0.62 6.53 60.48 5.16
Fea 22.90 14.68 3.84 0.02 2.82 55.74
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Fig. 3. Emotion classification error for various configurations
for the ANN classifier.

the results of the other four showed that 20% of answers
were correct. In contrast, the situation of classifying
anger as happiness was very rare. It is supposed
that in the k-NN classifier anger was represented by a
set of vectors (potential “neighbors”) not accompanied
by representatives of happiness, whilst happiness was
often accompanied by representatives of anger. It is
noticeable, however, that the recognition of happiness
increased from 19.42% to 25.19% when switching to the
speaker dependent configuration, which probably caused
an increase in the “distinct” representatives of happiness.

5.2. Artificial neural network. Table 6 shows that the
average classification accuracy values for i = 1, . . . , 4
are rather stable and variates at the level of 65% for
SI-i and 68% for SD-i, so here the speaker dependent
configuration improves the recognition accuracy by ca. 3
p.p. on the average. A performance increase for i = 5
can be also noticed, as for the k-NN classifier, due to the
elimination of speaker #16. For i = 6, speaker dependent
emotion recognition seems slightly inferior.

As shown in Fig. 3, the highest increase of emotion
recognition accuracy is observed for speaker #16,
reaching 16 p.p., when switching from SI-4 to SD-4. For
other speakers the difference was not so distinct. Also,
due to the low number of samples in the test set for low

Table 6. Classification results (in percentages) for various num-
bers of speaker samples (i) in the train set for the ANN
classifier.

i 1 2 3 4 5 6

SI-i 65.35 65.33 64.68 64.02 70.52 70.63
SD-i 67.40 68.14 69.56 68.62 72.22 69.68

values of i (for example, i = 2), the confidence interval
(at the confidence level of 0.95) shown as the error bars in
Fig. 3 is fairly high.

The confusion matrix presented in Table 7 for i = 1
clearly demonstrates that in general the performance of
speaker dependent recognition of individual emotions is
significantly better than it was for the k-NN. It is mostly
visible for fear, where the difference is greater than 9
p.p.. Happiness is still the least recognizable emotion, but
misclassification between happiness and anger is much
lower. Similar results were also observed for other values
of i.

5.3. SVM algorithm. As shown in Table 8, for i =
1, . . . , 4 the recognition accuracy of the SVM classifier
variates at the level of 69% for SI-i and 72% for SD-i.
These results are significantly better than those for the
k-NN and ANN. Similarly to the previous classifiers, the
speaker dependent configuration improves the recognition
accuracy by ca. 3 p.p. For i = 5, 6 the increase is only
minor.

Figure 4 shows the results of emotion recognition for
the most characteristic speakers. The highest gain was
again observed for speaker #16, for whom it reached 21
p.p. in the case of i = 4. Speaker #15 also yielded a
remarkable improvement. For the other speakers the SD
configuration did not improve the results much, and for

Table 7. Confusion matrices for the SI-1 (upper) and SD-1
(lower) configurations for the ANN (in percentages of
recognitions). The diagonals show the percentages of
correctly recognized emotions.

Neu Ang Hap Sad Bor Fea

Neu 54.17 0.00 3.93 4.05 22.26 15.60
Ang 0.36 78.45 17.38 0.00 0.00 3.81
Hap 5.12 38.69 46.07 0.00 4.17 5.95
Sad 5.48 0.00 0.00 84.17 3.81 6.55
Bor 18.21 0.83 2.98 5.24 65.83 6.90
Fea 10.12 14.29 12.26 1.07 2.86 59.40

Neu Ang Hap Sad Bor Fea

Neu 59.76 0.00 3.57 4.05 17.62 15.00
Ang 0.24 80.48 16.90 0.00 0.00 2.38
Hap 3.81 35.24 50.95 0.00 4.48 4.52
Sad 3.10 0.00 0.00 88.81 4.29 3.81
Bor 18.10 0.71 1.90 4.76 68.57 5.95
Fea 10.71 10.00 8.33 0.48 1.67 68.81

Table 8. Classification results (in percentages) for various num-
bers of speaker samples (i) in the training set for the
SVM classifier.

i 1 2 3 4 5 6

SI-i 69.41 69.82 68.37 69.13 75.31 74.54
SD-i 71.81 72.8 72.61 72.45 75.44 75.07
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Fig. 4. Emotion classification error for various configurations
for the SVM classifier.

speaker #13 the results even showed a small decrease.

Table 9 shows confusion matrices for the SVM in
configurations SI-1 and SD-1. The high recognition rate
of sadness compared to the other emotions is noticeable.
This is the most well recognized emotion and the one
that is least frequently misclassified as other emotions.
The recognition of happiness improved further. Fear and
boredom are sometimes confused with neutral emotion, in
both configurations. For example, in the case of speaker
#3, whose neutral emotion was recognized with a 100%
success rate, 61% of samples of boredom were classified
as neutral. On the other hand, for speaker #10, whose
boredom was recognized with a 78% correct-classification
rate, 51% of samples of neutral emotion were recognized
as boredom.

Table 9. Confusion matrices for the SI-1 (upper) and SD-1
(lower) configurations for the SVM (in percentages of
recognitions). The diagonals show the percentages of
correctly recognized emotions.

Neu Ang Hap Sad Bor Fea

Neu 63.17 2.03 4.65 3.40 17.99 8.75
Ang 1.48 83.34 13.63 0.00 0.00 1.54
Hap 5.06 32.09 52.47 0.00 4.04 6.34
Sad 2.97 0.00 0.00 87.15 4.83 5.06
Bor 17.27 0.64 4.65 7.18 65.32 4.94
Fea 10.99 12.44 7.12 1.66 2.76 65.03

Neu Ang Hap Sad Bor Fea

Neu 66.28 0.71 4.30 3.85 17.91 6.96
Ang 2.06 82.53 14.56 0.00 0.00 0.85
Hap 3.14 31.44 57.09 0.00 3.40 4.93
Sad 2.51 0.00 0.00 92.49 2.24 2.76
Bor 16.55 0.81 5.19 7.88 65.28 4.29
Fea 11.98 9.31 7.02 1.30 3.17 67.22

6. Summary and discussion of results

All the tested classification methods yielded classification
accuracies between 64% and 75%. It is worth
remembering that in the case of six classes the choice level
is 1/6 = 16.67%, so the accuracy results are far above
this level. They are also higher than the estimated level
of human performance in speaker independent conditions
(60%, shown by Scherer (2003)).

With regard to the comparison between speaker
dependent and speaker independent conditions, Fig. 5
shows that in almost all configurations the speaker
dependent configuration improved recognition; however,
this increase was minor for the k-NN classifier. The
higher improvement was observed for speakers who were
originally poorly recognized (e.g., speaker #16). The best
recognition results were achieved by the SVM, followed
by the ANN and k-NN classifiers.

The k-NN classifier had the worst happiness
recognition, i.e., 0% for five out of nine speakers. Speaker
dependent recognition had a small influence on the
recognition rate mostly due to the specificity of the k-NN
algorithm: for complex problems it requires a high value
of k (the number of neighbors, in this case k = 40). The
addition of one to six samples to the training set had only
a slight influence on the decision border, compared with
the number of 40. Only speakers #15 and #16 yielded
better results in SD-i, which influenced the overall result.

The ANN classifier had a similar recognition rate,
although with better emotion recognition distribution.
The classification performance for speakers was more
uniform—eight out of nine speakers had classification
accuracies between 65% and 70%, and only speaker #16
yielded an accuracy of 30%. Another positive aspect is
that the recognition rate grew in the SD-i configuration
in the case of four speakers and increased when more
samples were inserted into the training set.

The SVM classifier had the best overall recognition
rate of 75.44% and the best performance in the
SD-5 configuration, with a classification error below
25%. Emotion recognition was at a different level for
each speaker, which places this classifier between the
distributions achieved by the k-NN and ANN.

A somewhat strange behavior of the tested classifiers
for i > 4 was caused by deficiencies of the corpus
used: EMO-DB unfortunately did not contain enough
samples to obtain a representative training and testing set
of speakers and their emotional recordings. Therefore the
results for i < 5 should be treated as more reliable.

All classifiers showed the presence of pairs of
emotions which were often confused, for example, anger
and happiness, boredom and neutrality (see Tables 5,
7 and 9). We believe that this was caused by high
class infiltration, that is, there was no dimension that
could distinguish between these emotions. This can
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Fig. 5. Comparison of speaker independent and speaker depen-
dent configurations for all three classifiers tested.

also be shown by analyzing the SVM training error:
the SVM consisted of many one-versus-one classifiers,
each distinguishing between a pair of emotions. For the
happiness–anger pair the training error was the highest.
Both these emotions show high arousal and are therefore
often confused. The differ as for valence (positive vs.
negative); however, this feature is much more difficult to
be captured using speech signal parameters. We think that
replacing some of the currently used speech parameters
with novel ones (e.g., TEO based) could possibly improve
it.

The SVM was chosen as the best classifier, as it
reached the highest recognition rates in all configurations,
both at the level of overall performance and in the emotion
recognition of each speaker.

6.1. Comparison with other studies of EMO-
DB. As for the six-class recognition, the best result
obtained in the SI-1 configuration (69.41%) turned out
to be slightly inferior compared to 71.2% described by
Neiberg et al. (2010), who used time varying constant-Q
cepstral coefficients and F0 normalization. As for
the speaker dependent configurations, the best result
(75.44%) obtained in the SD-5 configuration in this study
is similar to that described by Cichosz and Slot (2007)
(74.40%) as well as Ayadi et al. (2007) (76.00%). The
confusion matrices also showed similar tendencies.

Iliou and Anagnostopoulos (2010) claim that they
attained 84% using a speaker dependent configuration,
SVMs and seven emotions. However, various details of
this study remain unclear, such as how it was possible

to achieve speaker dependent conditions with only 45
recordings of “disgust” for all 10 speakers and using
10-fold cross-validation.

With regard to the seven-class emotion recognition,
we were able to compare the results achieved in the
SIF configuration, that is, with all samples, in speaker
independent mode. The best classification accuracy
achieved in this study (68.7%) proved to be higher than
66.5% achieved by Janicki and Turkot (2008); however,
it was lower than results achieved in other studies, for
example, 78.32% by Xiao et al. (2006), 81.9% by Liu
et al. (2010), 84.6% by Schuller et al. (2009), and as
high as 92.3% by Hassan and Damper (2010) when using
SVMs and Directed Acyclic Graphs (DAGs). It must be
noted, however, that Xiao et al. (2006) used a different
methodology, in which only female voices from EMO-DB
were employed and half of them were employed for
training while the whole set was used for testing. This
in fact gave speaker dependent conditions, which clearly
boosted the result. Also Liu et al. (2010) used another
methodology; namely, they employed only one fifth of the
data for testing, without carrying out a cross-validation
procedure, so a direct comparison with our results is not
possible. On the other hand, both Hassan and Damper
(2010) as well as Schuller et al. (2009) used 6552 features
per utterance, without any feature selection, which seems
a weak point of their approach.

7. Conclusions

In our study we showed that adding even a few sentences
spoken by a speaker improves the emotion recognition
rate. This effect was especially highly visible for speakers
with low recognition rates in the speaker independent
scenario. Therefore it is recommended that some
reference recordings of the examined speaker(s) be added
to the system wherever feasible, that is, when any
historical recordings are available.

Direct comparison with some of the other studies
turned out to be difficult. Where such a comparison was
possible, the obtained results showed similar tendencies.
Some studies yielded better results thanks to novel
parameters, among others things.

Comparison between the three tested classifiers
showed superiority of the SVM classifier. Further studies
could include experiments with other algorithms, such
as HMMs, and possibly experiments with other features
which proved successful in other studies, as well as
improving the methods of attribute selection.
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