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A hybrid method combining an evolutionary search strategy, interval mathematics and pole assignment-based closed-loop
control synthesis is proposed to design a robust TSK fuzzy controller. The design objective is to minimize the number
of linear controllers associated with rule conclusions and tune the triangular-shaped membership function parameters of a
fuzzy controller to satisfy stability and desired dynamic performances in the presence of system parameter variation. The
robust performance objective function is derived based on an interval Diophantine equation. Thus, the objective of a fuzzy
logic-based control scheme is to place all the closed-loop control system characteristic polynomial coefficients within
desired intervals. The reproduction process in the proposed Evolutionary Algorithm (EA) is based on the arithmetical
crossover, uniform and non-uniform mutation along with gene deletion/insertion mutation ensuring a diversity of genomes
sizes, as well as a diversity in the parameter space of membership functions. The proposed algorithm was implemented
to design a fuzzy logic-based anti-sway crane control system taking into consideration the rope length and the mass of a
payload variation. The results of experiments conducted using the EA for different conditions assumed for system parameter
intervals and desired closed-loop system performances are compared with results achieved using the iterative procedure
which is also described in the paper.

Keywords: interval mathematics, pole placement method, evolutionary algorithm, fuzzy logic, TSK controller, anti-sway
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1. Introduction

Interval mathematics (Young, 1931; Warmus, 1956;
Moore, 1966) provides useful tools for robust control
system synthesis and stability analysis taking into
consideration the system parameter uncertainty.
The uncertain system is frequently represented by
a continuous-time model with interval parameters
that allows designing a robust controller through
combining the interval analysis of closed-loop system
performances and classic methods of controller synthesis.
Numerous authors, frequently inspired by Kharitonov’s
theorem (Kharitonov, 1978), studied the problem of
robust controller design in the presence of system
parameter variations (Dahleh et al., 1993; Chapellat
et al., 1994; Mallan et al., 1997). Some practical
techniques of designing robust control schemes are based
on iterative methods (McNichols and Fadali, 2003),
modal controllers synthesis (Bańka et al., 2013), methods
derived based on Lyapunov stability theory (Zubowicz

and Brdyś, 2013), as well as soft computing techniques,
e.g., Genetic Algorithms (GAs) (Hsu et al., 2007)
and artificial neural networks (Lee et al., 2002)
applied to tune linear controller parameters in terms
of acceptable ranges for phase and gain margins. In
this paper, EA-based synthesis of a robust TSK (Takagi
and Sugeno, 1985; Sugeno and Kang, 1988) fuzzy
controller which places the coefficients of a closed-loop
characteristic polynomial within desired intervals is
proposed and addressed to the problem of an anti-sway
crane control.

The automation of crane operations is very
important owing to the necessity of ensuring safety
and efficiency of the transportation process, which is
involved by requirements of enhancing the productivity
of manufacturing processes (Smalko and Szpytko,
2009; Szpytko and Wozniak, 2007). Those requirements
motivate the development and implementation of control
solutions which are robust to the rope length and the mass
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of payload variations, and face up the following problem:
transfer a payload as fast as possible from point to point
with precise positioning at a final point and reduction of
sway of a payload suspended at the end of a rope.

The best known industrial applications addressing
this problem are open-loop control systems applying
mostly input shaping techniques (Singer et al., 1997;
Karajgikar et al., 2011), which generally rely on
calculating pulse amplitudes and the time location in
regard to the natural frequency of a pendulum, which
unfortunately varies in relation to the system parameters
(rope length and mass of a payload). In some research
works the problem under consideration is solved using
time-optimal control theory (Sakawa and Shindo, 1982;
Auernig and Troger, 1987) combining also feedback
control schemes for the desired motion trajectory tracking
(Moustafa, 2001; Fang et al., 2012). Other approaches are
based on an indirect adaptive control scheme, Lyapunov
techniques employed for state-feedback controller design,
gain-scheduling, linear quadratic Gaussian and adaptive
pole-placement control schemes (Hyla, 2012).

Furthermore, soft computing techniques, especially
fuzzy logic, are widely employed to the problem
considered. Moon et al. (1996) applied fuzzy logic to
perform an optimal control scheme, while Liu et al.
(2005) incorporated a fuzzy system into a sliding mode
control strategy. Linguistic-rule-based fuzzy controllers
are reported by Benhidjeb and Gissinger (1995), Mahfouf
et al. (2000), Yi et al. (2003) and Chang (2006), and
proposed for tuning gains of a PID controller by Li and
Yu (2012) or Solihin et al. (2010).

Some researchers adopted off-line or on-line
techniques to design or tune fuzzy rule-based controllers.
Trabia et al. (2008) proposed three fuzzy controllers
with Mamdani-type rules used independently to control
the crane motion, hoisting and the sway angle of a
payload, and the method based on the inverse dynamic
for calculating the ranges of fuzzy controller input
intervals within which the membership functions were
distributed. Kijima et al. (1995) employed a GA to
tune triangular membership functions according to the
objective function which was specified based on control
performances evaluated during simulation. Liu et al.
(2002) proposed two fuzzy controllers of the crane
position and sway angle with singleton-type rule outputs
optimized during simulation by the GA according to the
cost function including the settling time, the position
error and the sway angle of a payload. Chang (2007)
developed a two-input (position error and sway angle)
fuzzy controller with Gaussian-shaped input membership
functions and output fuzzy singletons, both tuned on-line
using a gradient technique. Kang et al. (1999) as well
as Smoczek and Szpytko (2008) employed a TSK fuzzy
switching scheme of linear controllers determined at
selected operating points. Oh et al. (2004) estimated

scaling factors of the TSK fuzzy-type PID controller
by using a hard c-means clustering method, an artificial
neural network and regression polynomials. Sadati and
Hooshmand (2006) utilized a clustering method to select
the operating points for a fuzzy scheduler used in tower
crane control.

Other examples of soft computing approaches to
the crane control problem are based on neurocontrollers
tuned on-line using a backpropagation method (Mendez
et al., 1999) or trained by the GA (Nakazono et al., 2007),
a cerebellar model articulation controller representing a
TSK fuzzy PD-type controller with a fixed number of
fuzzy rules (Yu et al., 2011), and GA-based time-optimal
(Kimiaghalam et al., 1999), feedforward (Kimiaghalan
et al., 2002), or heuristically designed (Filipic et al., 1999)
anti-sway strategies.

Most fuzzy logic-based approaches to the anti-sway
crane control problem described in the literature
are linguistic rule-based strategies. The proposed
evolutionary fuzzy clustering or artificial neural
network-based techniques of designing a fuzzy controller
are only adapted to tune the membership function shapes
or parameters of rule conclusions for the assumed number
of fuzzy rules or sets, and involve a set of training data
obtained from simulations or experiments conducted on
models or real objects. The robustness of a crane control
system is also frequently analysed taking into account
only the rope length variation. In the previous works,
Smoczek and Szpytko (2010) proposed an iterative
procedure and an evolutionary algorithm (Smoczek and
Szpytko, 2011) to design a TSK fuzzy controller with
respect to the rope length and mass of a payload variation.
However, the proposed approaches were adapted to
design a fuzzy control scheme based on the objective
function relating only to the acceptable maximum value
of the system response overshoot.

In this paper, a hybrid method combining an
evolutionary-based searching strategy, interval analysis
and the pole placement method is applied to design a
TSK fuzzy controller which places the coefficients of the
closed-loop control system characteristic polynomial
within desired intervals. The paper describes a
reproduction strategy which allows minimizing the
fuzzy sets and tuning the parameters of membership
functions of a TSK controller with respect to the control
performance requirements taking into consideration the
rope length and the payload variation. The paper proposes
also an iterative procedure of designing a TSK controller
which has been developed based on the method described
by Smoczek and Szpytko (2010). Both methods allow to
design robust fuzzy controllers. However, the results of
experiments conducted for different conditions assumed
for desired closed-loop system performances proved that
the EA results in a number of fuzzy sets and rules of a
TSK controller required to satisfy an acceptable range of
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closed-loop system performance deterioration specified in
the form of desired intervals of closed-loop characteristic
polynomial coefficients.

The paper is organized as follows. Section 2
describes a fuzzy logic-based control scheme for a planar
model of a crane and the conditions assumed to design a
TSK controller. In Section 3, the EA used to design a TSK
fuzzy controller is presented. In Section 4, simulation
examples are provided to show the effectiveness of the
proposed method for anti-sway crane control system
design in a bounded range of parameter variations. The
results obtained by applying the EA are also compared
with those derived from the iterative procedure described
in Section 4. Section 5 delivers the final conclusions.

2. Fuzzy logic-based control scheme

The system under consideration is a planar model of a
crane transferring a payload with mass m suspended at
the end of a rope with length l (Fig. 1). The model is
considered to be linear with varying parameters l and m.
The motion equations of this system

{
(M + m)ẍ + mlα̈ cosα − mlα̇2 sin α = u,

mẍ cosα + mlα̈ + mg sin α = 0
(1)

were derived from Lagrange’s second law type equation
and after linearization (assuming cosα ∼= 1, sin α ∼= α,
α̇2 ∼= 0) they were written down as two continuous
transfer functions

α(s)
U(s)

=
−K

s2 + ω2
n

, (2)

X(s)
α(s)

=
−ls2 − g

s2
, (3)

Mu

m

αl

X

Y

x

Fig. 1. Planar model of a crane, where M, m, l, u and α are re-
spectively the masses of a crane and payload, the rope
length, the controlling signal corresponding to the con-
trol force acting on the crane, and the sway angle of the
payload.

where K = 1/Ml,

ωn =
√(

1 +
m

M

)g

l

is the natural (not damped) pulsation, g = 9.81 m/s2 is the
gravity acceleration. The adaptive control scheme can be
based on a set of linear controllers determined at selected
operating points. Taking into account that the transfer
function (2) represents a second-order astatic system,
the two PD controllers-based crane position and sway
angle of a payload control algorithm can be presented as
follows:

U(s) = (k1 + k2s)E(s) + (k3 + k4s)α(s), (4)

where e = xr − x is the error of the crane position
(xr, x are the reference signal and actual crane position,
respectively), k1, k2, k3, k4 are the proportional and
derivative gains of PD controllers. The control scheme
can be elaborated based on a TSK fuzzy system with
triangular-shaped membership functions, which is also
called in the literature a P1-TS system to emphasize that
membership functions of fuzzy sets for input variables are
polynomial of the first order (Kluska, 2006; 2009). In the
approach considered in this paper, the fuzzy logic-based
adaptive control scheme is presented as a set of N rules
with conclusions representing the linear control law (4):

Rk : IF l is Ai and m is Bj THEN uk = KT
k X, (5)

where Ai and Bj are the fuzzy sets on l and m input
variables universe of discourse, respectively, where i =
1, 2, . . . , n1 and j = 1, 2, . . . , n2 (n1 and n2 are the
numbers of fuzzy sets defined for l and m, respectively),
Kk = [k1, k2, k3, k4]Tk , X = [e, ė, α, α̇]T , k =
1, 2, . . . , N (where N = n1 · n2).

The fuzzy sets defined in the premises of fuzzy
rules correspond to the triangular membership functions

. . .

1

l

. . .

1

m

An1A1 A2 An1-1

Bn2B1 B2 Bn2-1
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μ(l)

μ(m)

Fig. 2. Membership functions defined for fuzzy sets on the input
variables l and m.
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(Fig. 2). The membership degree of a crisp input value to
the fuzzy set is calculated according to the functions

μAi(l)=max
(
min

(
l−ai−1

ai−ai−1
,

ai+1−l

ai+1−ai

)
, 0
)

, (6)

μBj(m)=max
(
min

(
m−bj−1

bj−bj−1
,
bj+1−m

bj+1−bj

)
, 0
)

, (7)

where ai−1 ≤ ai ≤ ai+1, bj−1 ≤ bj ≤ bj+1, ai, bj

are the centre points of triangular membership functions
of the fuzzy sets Ai and Bj (where i = 1, 2, . . . , n1 and
j = 1, 2, . . . , n2).

The output of a fuzzy controller is calculated as the
weighted average of all rules’ output

u =

(
N∑

k=1

wkKT
k

)(
N∑

k=1

wk

)−1

X, (8)

where a rule’s activation degree (firing strength) is

wk = μAi(l) · μBj(m). (9)

The problem of designing a TSK fuzzy controller
consists in selecting a minimum set of operating
points {ai, bj} corresponding to the midpoints of
triangular-shaped membership functions at which the
linear controllers can be determined based on the
Diophantine equation:

s4 + s

⎡
⎢⎢⎣

0 0 Kl 0 K
ω2

n Kl 0 K 0
0 0 Kg 0 0
0 Kg 0 0 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1
k1

k2

k3

k4

⎤
⎥⎥⎥⎥⎦

k

= s4 + sPk, (10)

where s = [s3, s2, s1, 1], and Pk is a vector of desired
coefficients of a closed-loop characteristic polynomial.
Thus, the vector Kk, which is defined in the conclusion
of a fuzzy rule Rk (5), can be derived from

SkKk = Pk, (11)

where

Sk =

⎡
⎢⎢⎣

0 Kl 0 K
Kl 0 K 0
0 Kg 0 0

Kg 0 0 0

⎤
⎥⎥⎦ , (12)

and Pk is a vector of the nominal values of the interval
coefficients vector

[Pk] = [[p3]k, [p2]k − ω2
n, [p1]k, [p0]k]T , (13)

where [pr]k = [p−r , p+
r ]k = {pr ∈ R | p−r ≤ pr ≤ p+

r },
r = 0, 1, 2, 3.

Therefore, the fuzzy logic-based control scheme
satisfies the desired performances for the system

parameters varying within the expected ranges l ∈ [l−, l+]
and m ∈ [m−, m+] if the condition

S(l, m)K(l, m) ∈ [Pk], (14)

is not violated for at least one interval vector (13)
associated with a rule which has been activated with
degree wk > 0 to interpolate the vector K(l, m) according
to

K(l, m) =

(
N∑

k=1

wkKk

)(
N∑

k=1

wk

)−1

. (15)

3. Evolutionary optimization of a TSK
controller

In this section the Pittsburgh-based (Smith, 1980; De Jong
et al., 1993) evolutionary approach to optimize the
membership function parameters and the Rule Base
(RB) size is proposed. A single proposition of a
TSK controller can be represented by a real-valued
chromosome consisting of the triangular membership
functions parameters (Fig. 2)

a = [a0, a1, . . . , ai, . . . , an1 , an1+1],
b = [b0, b1, . . . , bj, . . . , bn2 , bn2+1].

(16)

The Fuzzy Rule-Base System (FRBS) design is
a searching process consisting in exploration of the
solution space composed of individuals with a different
chromosome size. The EA proposed in this paper is
a three-stage reproduction-based strategy combining the
arithmetical crossover, uniform and non-uniform mutation
(Fig. 3). In each generation the reproduction process starts
from group λ1 of individuals to increase the population
to the number λ1 + λ2 + λ3 + λ4. In the first step
(mutation A), the genotype of the individuals selected
from population λ1 is changed through insertion or
deletion of genes resulting in adding or removing fuzzy
sets for the randomly chosen input variable. This leads
to producing a small group of new individuals λ2 with
different sizes of the RB which are added to the population
λ1. The recombination and non-uniform mutation result in
adding to the current population (λ1+λ2) new individuals
λ3 and λ4. Hence the final population size in a single
generation equals λ1 + λ2 + λ3 + λ4, and from this
group of individuals a new population λ1 is selected using
the tournament method to be the parents of the next
generation.

The aim of the first mutation is to bring the diversity
of genome sizes into the current population through
changing the number of fuzzy sets for the randomly
chosen input variable. The probability of insertion pI or
deletion pD of a gene depends on the average n, minimum
nmin and maximum nmax numbers of fuzzy sets defined
for the input variable
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evaluation of individuals
λ1+λ2+λ3+λ4

tournament selection
(population λ1)

mutation A
insertion or deletion of a gene

(population λ2)

termination 
condition

STOPYESNO

mutation B
non-uniform mutation

(population λ4)

recombination
arithmetical crossover

(population λ3)

Fig. 3. EA flowchart.

pD =
n − nmin

nmax − nmin
, pI = 1 − pD. (17)

Fuzzy set reduction is obtained using a randomly selected
method: through removing a fuzzy set or merging the
randomly selected two neighboring membership functions
according to the formula

a′
i = zai + (1 − z)ai+1,

b′j = zbj + (1 − z)bj+1,
(18)

where a′
i, b

′
j are the new genes of a chromosome (16)

obtained through merging ai and ai+1, or bj and bj+1

centre points of membership functions (where i =
1, 2, . . . , n1 − 1, j = 1, 2, . . . , n2 − 1), z is a uniformly
distributed random number in the interval [0, 1].

An increase in the chromosome size is performed
through uniform mutation, depending on the locus of
a new gene corresponding to the midpoint of a new
membership function:

[a′
i−1, a

′
i] =[ai−1, ai] − z(ai − ai−1), i = 1,

a′
i = zai−1 + (1 − z)ai, 1 < i < n1 + 1,

[a′
i, a

′
i+1] = [ai−1, ai] + z(ai − ai−1), i = n1 + 1,

(19)

and

[b′j−1, b
′
j ] =[bj−1, bj ] − z(bj − bj−1), j = 1,

b′j = zbj−1 + (1 − z)bj, 1 < j < n2 + 1,

[b′j, b
′
j+1] =[bj−1, bj ] + z(bj − bj−1), j = n2 + 1.

(20)

The crossover is conducted on the population λ1 and
the small population λ2 of frequently worse individuals.

Thus, random selection of parents ensures that the
crossover can be also conducted between individuals from
both populations. Simultaneously, tournament selection
guarantees that the recombination is performed on the best
individuals λ1 from the previous generation (λ1 + λ2 +
λ3 + λ4). The recombination process is performed using
the arithmetical crossover method conducted on the two
individuals A and B that leads to obtaining the offspring
A’ and B’ (21). If the number of fuzzy sets for a given
input variable is different in the chromosomes A and B,
the crossover is performed between genes representing the
closest pairs of membership function midpoints, which is
illustrated in Fig. 4. The offspring A’ and B’ inherit the
chromosome size from the parents A and B, respectively:

a′
i
(A′) = zai

(A) + (1 − z)ai
(B),

b′j
(A′) = zbj

(A) + (1 − z)bj
(B),

a′
i
(B′) = zai

(B) + (1 − z)ai
(A),

b′j
(B′) = zbj

(B) + (1 − z)bj
(A).

(21)

The last stage of the reproduction process (mutation
B) is based on non-uniform mutation (Michalewicz and
Janikow, 1991) conducted on a randomly chosen gene of
a randomly selected chromosome. The offspring is created
according to a randomly selected formula

a′
i =

{
ai + (1 − zγ) (ai+1 − ai), i < n1 + 1,
ai + (1 − zγ) (ai − ai−1), i = n1 + 1,

b′j =
{

bj + (1 − zγ) (bj+1 − bj), j < n2 + 1,
bj + (1 − zγ) (bj − bj−1), j = n2 + 1,

(22)

or

a′
i =

{
ai − (1 − zγ) (ai+1 − ai), i = 0,
ai − (1 − zγ) (ai − ai−1), i > 0,

b′j =
{

bj − (1 − zγ) (bj+1 − bj), j = 0,
bj − (1 − zγ) (bj − bj−1), j > 0,

(23)

in which the exponent γ of the random number z equally
distributed in the interval [0, 1] is determined based on
the ratio of the number of the current generation t to the
maximum number of generations tmax (24),

γ =
(

1 − t

tmax

)β

, (24)

where β > 0 is a parameter determining the degree of
dependency on the generation number (in the numerical
experiments presented in Section 4 this parameter was
assumed as 2).

Both mutations A and B play a significant role
preventing from premature convergence of population
to the suboptimal regions. The mutation A results in a
diversity of genome sizes, while the mutation B leads to
a diversity in the parameter space of rule antecedents,
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Fig. 4. Illustration of crossover between individuals which dif-
fer in the genome size.

and the conclusions. The recombination mechanism
ensures fine exploration of the best promising regions
of the solution space by tuning the membership function
parameters.

The fitness of an individual is determined through
testing the condition (14) for the most hazardous operating
points corresponding to all possible combinations of
the crossover points of triangular membership functions
(Fig. 2), their midpoints, and the bounds of system
parameter intervals [l−, l+] and [m−, m+]. Each vector
Kk in a rule’s conclusion (5) is derived from the
system (11) for the midpoints of N interval vectors of
the coefficients of the desired closed-loop characteristic
polynomial. The fitness of an individual is calculated as a
sum of the normalized distances between the coefficients
of the closed-loop system characteristic equation at the
most hazardous operating points and the closest bounds
of desired polynomial coefficient intervals:

f

=
H∑

h=1

N∑
k=1

3∑
r=0

(
β1β2

min(|pr − p−r |k, |pr − p+
r |k)

|p+
r − p−r |k

)
h

,

(25)

where

β1 =
{

0, wk = 0,
1, wk > 0,{

β2 = 1 if S(l, m)K(l, m) ∈ [Pk],
β2 > 1 if S(l, m)K(l, m) �∈ [Pk],

pr is the closed-loop characteristic polynomial coefficient,
H is the number of operating points at which the condition
(14) is tested, β2 is the penalty factor, which is β2 >
1 if the condition (14) is violated (in the numerical
experiments this factor was assumed to be 4).

4. Simulations results

The proposed hybrid method combining the
evolutionary-based searching strategy, interval
mathematics and pole assignment-based closed-loop
control synthesis was applied to design a TSK fuzzy
controller for performance requirements defined in the
form of the desired stable poles intervals

[sr]k = [s−r , s+
r ]k =

[
−ωn ∓

√
2g

l
(1 − ζ)

]

k

, (26)

where ζ is the parameter which determines the width of a
desired stable pole interval.

Thus, a vector Kk in the conclusion of each rule
Rk (5) were determined at the operating point {ai, bj}
through assigning all closed-loop system poles at a
nominal value of the interval (26). The EA described in
Section 3, with the population composed of 48 individuals
(λ1 = 12, λ2 = 4, λ3 = 28, λ4 = 4), was employed to find
the numbers of membership functions and the distribution
of their parameters to satisfy the closed-loop system
performances for two pairs of rope length and mass of
payload intervals: [1 m, 8 m], [10 kg, 600 kg] and [1 m,
10 m], [10 kg, 1000 kg]. For each pair of those intervals,
two experiments were conducted for assumed ζ = 0.69
and ζ = 0.76, which were used to specify an acceptable
range of closed-loop system performance deterioration.
Tables 1 and 2 present the results of experiments, where
n1 and n2 are respectively the numbers of fuzzy sets
determined for variables l and m, N is the number of
fuzzy rules of the TSK fuzzy controller, a and b are the
vectors (19) representing the best chromosome obtained
in the last generation. The termination condition of the
EA was assumed as the maximum number of generations
equal to 100.

The experiments resulted in designing TSK
controllers placing the coefficients of the characteristic
polynomial of the closed-loop system within the desired
intervals for operating points lying within the expected
intervals of the rope length and payload mass. The
performances of the EA employed to find an appropriate
number of fuzzy sets and tune the membership function
parameters for system parameter intervals [1 m, 8 m]
and [10 kg, 600 kg], and for ζ = 0.69 and ζ = 0.76 are
illustrated in the form of the best value of the fitness
function in each epoch (Fig. 5) and as the comparison of
RB sizes of the 12 best individuals selected as the parents
of the next generation (Figs. 6 and 7). The experiments
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proved the ability of the developed evolutionary strategy
to optimize the number of the TSK controller’s fuzzy
rules. Figures 6 and 7 illustrate the influence of a mutation
process (gene insertion and deletion) on the diversity of
the genome size in the current population that allows
finding a suitable solution of a TSK controller with
a minimum number of fuzzy sets, which satisfies an
acceptable range of performance deterioration. Figure
6 presents the number of individuals of population
λ1 representing the different RB sizes in the first 25
generations. The solutions with 20 (n1 = 5, n2 = 4),
15 (n1 = 5, n2 = 3), 10 (n1 = 5, n2 = 5) and 12
(n1 = 4, n2 = 3) rules dominated in the consecutive
epochs until the 14th generation, while the population
representing 8 rules started to growth up from the 12th
epoch, completely dominating the population from
the 18th epoch. Figure 7 illustrates the evolution of
population during the first 40 generations in the second
experiment conducted for more rigorous acceptable
range of performance deterioration (ζ = 0.76). During
the first 13 generations the population is dominated
by chromosomes representing fuzzy controllers with
respectively 36 (n1 = 6, n2 = 6), 30 (n1 = 6, n2 = 5),
24 (n1 = 6, n2 = 4) and 20 (n1 = 5, n2 = 4) rules. From
the 17th until the 100th epoch, the best solutions are
mostly represented by the RB consisting of 15 if-then
rules (n1 = 5, n2 = 3).

Examples of closed-loop system performances of the
fuzzy control system designed for scheduling variables
intervals [1 m, 8 m] and [10 kg, 600 kg] are presented

Table 1. Results of experiments obtained using the EA.
l and m intervals ζ n1 n2 N = n1 · n2

[1, 8] m 0.69 4 2 8
[10, 600] kg 0.76 5 3 15
[1, 10] m 0.69 5 3 15

[10, 1000] kg 0.76 6 3 18

Table 2. Parameters of membership functions tuned using the
EA.

l and m in-
tervals

ζ parameters of membership func-
tions

[1, 8] m,
[10, 600] kg

0.69 a=[−1.2, 0.9, 2.28, 5.82, 7.94,
8.98],
b=[−60; 32; 530; 819]

[1, 8] m,
[10, 600] kg

0.76 a=[−0.13, 1.06, 1.85, 3.26, 5.00,
7.60, 13.41],
b=[−93, 9, 334, 611, 799]

[1, 10] m,
[10, 1000] kg

0.69 a=[−0.45, 1.04, 2.00, 3.41, 5.82,
10.66, 18.15],
b=[−42, 61, 615, 999, 1646]

[1, 10] m,
[10, 1000] kg

0.76 a=[−0.15, 0.86, 1.40, 2.17, 3.84,
6.09, 10.68, 12.68],
b=[−13, 45, 348, 1008, 1615]
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Fig. 5. Comparison of the best value of the fitness function in
each epoch—experiments for parameters [1 m, 8 m],
[10 kg, 600 kg], ζ = 0.76 (a), [1 m, 8 m], [10 kg, 600
kg], ζ = 0.69 (b).
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Fig. 6. Size comparison of the best individuals in the first 25
epochs—experiment for ζ = 0.69, [1 m, 8 m], [10 kg,
600 kg].

in Figs. 8 and 9 in the form of unit-step system responses
(the crane position and the sway angle of the payload) at
selected most hazardous operating points corresponding
to the crossover points of membership functions. The
solid line (a) in Fig. 8 represents the response at the
operating point corresponding to the crossover points
of membership functions A1 and A2, and B1 and B2

with the centre points a1 = 0.9 m, a2 = 2.28 m,
b1 = 32 kg and b2 = 530 kg determined using the EA
for ζ = 0.69 (Table 2). The dotted lines (s-) and (s+)
represent the responses of a classic PD controller-based
closed-loop control system designed at {a1, b2} through
assigning the poles at right and left bounds of the
desired interval (26). The condition (14) is satisfied
for the examined operating point {(a1 + a2)/2, (b1 +
b2)/2}, because the characteristic polynomial coefficients
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Fig. 7. Size comparison of the best individuals in the first 25
epochs—experiment for ζ = 0.76, [1 m, 8 m], [10 kg,
600 kg].
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Fig. 8. Crane position and payload sway angle—example of si-
mulations for a TSK controller designed for [1 m, 8 m],
[10 kg, 600 kg] and ζ = 0.69.

lie within the desired interval vector (13) characterizing
the acceptable deviation from the nominal point {a1, b2}.
The coefficients of the characteristic polynomial are close
to the right bounds of the vector (13), therefore the
response (a) satisfies an acceptable deterioration of the
control system performances specified for the nominal
point {a1, b2}, and the settling time of the response (a)
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Fig. 9. Crane position and payload sway angle—example of si-
mulations for a TSK controller designed for [1 m, 8 m],
[10 kg, 600 kg] and ζ = 0.76.

is close to the settling time of the response (s+), despite
the overshoot of about 0.02. In comparison, the responses
(b) and (c) are examples of control system performances
at the operating point {(a1 + a2)/2, (b1 + b2)/2} for
a2 = 4 m and a2 = 5 m, respectively. The condition
(14) is not satisfied at {(a1 + a2)/2, (b1 + b2)/2} for
any interval vector (13) specifying the acceptable range of
the performance deterioration for operating points lying
between the nominal points {a1, b1}, {a1, b2}, {a2, b1}
and {a2, b2}, which results in arising oscillations and
extending the settling time of the responses (b) and (c)
in comparison with the response (a).

A similar example of performance comparison for a
fuzzy control system designed using the EA for ζ = 0.76
assumed for specifying the desired intervals of poles (26)
is presented in Fig. 9. The solid line (a) is the system
response at the operating point {(a1 +a2)/2, (b2+b3)/2}
(where a1 = 1.06 m, a2 = 1.85 m, b2 = 334 kg and
b3 = 611 kg), at which the condition (14) is satisfied
for the interval vector (13) representing an acceptable
deviation from the nominal point {a1, b3}. The settling
time of this response is close to that of the response
(s+) associated with the right bound of the desired
pole interval (26). Moving, e.g., the centre point of the
membership function A2 to the right-hand side (Fig. 2)
causes a deterioration of closed-loop system performances
at the crossover point {(a1 + a2)/2, (b2 + b3)/2}, which
is illustrated in Fig. 11 by the responses (b) and (c)
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Table 3. Results of experiments obtained using the iterative pro-
cedure.

l and m intervals ζ n1 n2 N = n1 · n2

[1, 8] m 0.69 4 3 12
[10, 600] kg 0.76 5 3 15
[1, 10] m 0.69 5 3 15

[10, 1000] kg 0.76 6 4 24

obtained for the TSK controller with the centre point
of the membership function A2 assumed as a2 = 3m
and a2 = 4m, respectively. The condition (14) is not
satisfied for {(a1 + a2)/2, (b2 + b3)/2}, which means
that performance deterioration (responses (b) and (c))
exceeds the acceptable range assumed for the operating
points lying within the points {a1, b2}, {a1, b3}, {a2, b2},
{a2, b3}.

The results obtained using the EA (Table 1) were
compared with those of the iterative method employed to
design a TSK fuzzy controller. In the iterative method,
the rope length [l−, l+] and payload mass [m−, m+]
ranges were divided into even intervals (respectively, 0.1
m and 10 kg). In the two-stage iterative procedure, starting
from li = l− and mj = m−, i and the next j are
incremented to find the minimum number of membership
function midpoints between the lower and upper bounds
of intervals [l−, l+] and [m−, m+]. At each iteration,
li and mj are assumed as the temporary center points
{ai, bj} of membership functions, which leads to creating
temporary fuzzy rules with the parameters of controllers
Kk determined in their conclusions according to system
(11).

The condition (14) is tested for the crossover points
of memberships functions. If it is satisfied, the temporarily
fuzzy sets and rules are removed. If the condition (14)
is violated at a sample point li or mj , a new fuzzy
set is created with a point of a membership function
at li−1 or mj−1, respectively. Creating Tables 3 and 4
present the results of this procedure applied to design a
TSK fuzzy controller for the same conditions which were
assumed during experiments conducted using the EA. The
method does not lead to obtaining an optimal solution
due to assuming the initial set of membership functions
with midpoints at the bounds of intervals [l−, l+] and
[m−, m+] before starting an iterative process. Therefore,
in the two cases, for the parameter intervals [1 m, 8 m]
and [10 kg, 600 kg], and [1 m, 10 m] and [10 kg, 1000
kg] (Table 3), the iterative procedure resulted in obtaining
a larger size of RB: 12 and 24 rules, respectively.

5. Conclusions

The hybrid method combining the evolutionary-based
search strategy, interval mathematics and pole
assignment-based closed-loop control synthesis was

Table 4. Parameters of membership functions determined using
the iterative procedure.

l and m in-
tervals

ζ parameters of membership func-
tions

[1, 8]m,
[10, 600] kg

0.69 a=[1.0, 2.4, 5.8, 8.0],
b=[10, 520, 600]

[1, 8]m,
[10, 600] kg

0.76 a=[1.0 1.9, 3.7, 7.3, 8.0],
b=[10, 370, 600]

[1, 10]m,
[10, 1000] kg

0.69 a=[1.0, 2.0, 4.1, 8.4, 10.0],
b=[10, 520, 1000]

[1, 10]m,
[10, 1000] kg

0.76 a=[1.0, 1.7, 2.9, 5.0, 8.7, 10.0],
b=[10, 360, 900, 1000]

proposed in this paper to design a TSK fuzzy controller.
Closed-loop system performance conditions are derived
from the interval Diophantine equation and applied to
define the objective function of the evolutionary algorithm
used to optimize the number of fuzzy sets on inputs of
a TSK fuzzy controller. The proposed method was
implemented to design an anti-sway crane control system
robustness to the rope length and mass of a payload
variation.

The evolutionary-based strategy used to optimize the
design process of a fuzzy controller provides effective
reproductions techniques for searching the solution space
in RB optimization through minimizing the numbers
of fuzzy sets determined for input variables. The
hybridization of arithmetical crossover, uniform and
non-uniform mutation, and deletion/insertion mutation
ensures the diversity of genome sizes, as well as
diversity in the parameter space of rule antecedents. The
recombination mechanism ensures fine exploration of the
best promising regions of the possible solution space
by tuning the triangular-shaped membership function
parameters.

The results of experiments conducted for different
conditions assumed for system parameter intervals
confirm that the developed method of robust fuzzy
controller synthesis allows designing a TSK controller
placing the coefficients of a closed-loop characteristic
polynomial within the desired intervals. The paper
also describes an iterative procedure of designing a
TSK controller. Both the methods, the EA and the
iterative procedure, allows designing the robust fuzzy
controller. However, the results of experiments conducted
for different conditions assumed for desired closed-loop
system performances proved that the EA results in a
smaller number of fuzzy sets and rules of a TSK controller
required to satisfy the acceptable range of closed-loop
system performance deterioration specified in the form of
desired intervals of closed-loop characteristic polynomial
coefficients.
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Bańka, S., Dworak, P. and Jaroszewski, K. (2013). Linear
adaptive structure for control of a nonlinear MIMO
dynamic plant, International Journal of Applied Ma-
thematics and Computer Science 23(1): 47–63, DOI:
10.2478/amcs-2013-0005.

Benhidjeb, A. and Gissinger, G.L. (1995). Fuzzy control of
an overhead crane performance comparison with classic
control, Control Engineering Practice 3(12): 1687–1696.

Chang, C.-Y. (2006). The switching algorithm for the control
of overhead crane, Neural Computing and Applications
15(3–4): 350–358.

Chang, C.-Y. (2007). Adaptive fuzzy controller of the overhead
crane with nonlinear disturbances, IEEE Transactions on
Industrial Informatics 3(2): 164–172.

Chapellat, H., Keel, L.H. and Bhattacharyya, S.P. (1994).
External robustness properties of multilinear interval
systems, Automatica 30(6): 1037–1042.

Dahleh, M., Tesi, A. and Vicino, A. (1993). An overview of
extremal properties for robust control of interval plants,
Automatica 29(3): 707–721.

De Jong, K.A., Spears, W.M. and Gordon, D.F. (1993). Using
genetic algorithms for concept learning, Machine Learning
13(2–3): 161–188.

Fang, Y., Ma, B., Wang, P. and Zhang, X. (2012). A
motion planning-based adaptive control method for an
underactuated crane system, IEEE Transactions on Con-
trol Systems Technology 20(1): 241–248.

Filipic, B., Urbancic, T. and Krizman, V. (1999). A combined
machine learning and genetic algorithm approach to
controller design, Engineering Applications of Artificial
Intelligence 12(4): 401–409.

Hsu, C.-C., Chang, S.-C. and Yu, C.-Y. (2007). Tolerance design
of robust controllers for uncertain interval systems based
on evolutionary algorithms, IET Control Theory and Ap-
plications 1(1): 244–252.

Hyla, P. (2012). The crane control systems: A survey, Proce-
edings of the 17th IFAC International Conference on Me-
thods and Models in Automation and Robotics MMAR,
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