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GRIGORY M. SKLYAR, GRZEGORZ SZKIBIEL

Institute of Mathematics
Szczecin University, ul. Wielkopolska 15, 70-451 Szczecin, Poland

e-mail: szkibiel@wmf.univ.szczecin.pl, sklar@univ.szczecin.pl

Considered is the control and stabilizability of a slowly rotating non-homogeneous Timoshenko beam with the aid of a
torque. It turns out that the beam is (approximately) controllable with the aid of the torque if and only if it is (approximately)
controllable. However, the controllability problem appears to be a side-effect while studying the stabilizability. To build a
stabilizing control one needs to go through the methods of correcting the operators with functionals so that they have finally
the appropriate form and the results on C0-continuous semigroups may be applied.
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1. Introduction

We consider the following system of equations describing
the rotating Timoshenko beam (see Sklyar and Szkibiel,
2008a; 2008b):

�(x)ẅ(x, t) − (K(x)(w′(x, t) + ξ(x, t))′

= −�(x)(x + r)θ̈(t),

R(x)ξ̈(x, t) − (E(x)ξ′(x, t))′

+K(x)(w′(x, t) + ξ(x, t))

= R(x)θ̈(t).

(1)

The beam is clamped to a rotating disk propelled be an
engine. By r we denote the radius of the disc while θ =
θ(t) is the rotation angle considered a function of time
t ≥ 0. To a (uniform) cross section of the beam at point x,
with 0 ≤ x ≤ 1, we assign the following: E(x), which is
the flexural rigidity, K(x)—shear stiffness, �(x)—mass
of the cross section and R(x)—rotary inertia. All of the
above functions are assumed to be real and bounded by
two positive numbers. We also assume that their first and
second derivatives are bounded. The beam is normalized
and its length is assumed to be 1.

We denote by w(x, t) the deflection of the center line
of the beam (Fig. 1) and by ξ(x, t) the rotation angle of
the cross section area at the location x and at the time t
(Fig. 2). Finally, g′(x, t) denotes the partial derivative
with respect to x and ġ(x, t) the partial derivative with
respect to t for any function g of two variables. We use

Fig. 1. Deflection of the center line.

this notation also for functions of one variable depending
on whether they are considered functions of x or t.

Assume that there is no deformation at the clamped
end. As a consequence of the energy balance law, we
obtain the following boundary conditions for t ≥ 0:

w(0, t) = ξ(0, t) = 0,
w′(1, t) + ξ(1, t) = ξ′(1, t) = 0.

(2)

The control of the system is realized by a function
u being simply the angular acceleration (u(t) = θ̈(t)) of
the disk. It is shown (Krabs and Sklyar, 2002) that the
homogeneous beam is approximately controllable. Also,
it is proved that the exact controllability from the position
of rest to an arbitrary position is possible provided that
the parameter functions (�, R, K and E) satisfy some
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Fig. 2. Rotation angle the cross section area.

conditions like those given by Sklyar and Szkibiel (2008a;
2007).

Krabs and Sklyar (2002) also consider the concept
of controllability with the aid of the torque, and they
show that the (homogeneous) system is approximately
controllable with the aid of the torque if it is
approximately controllable in the usual sense. We shall
show that this is the case also for a non-homogeneous
beam.

Let Id denote the disk inertia. The control (with the
aid of the torque) ū is given by the equation

ū(t) = Idθ̈(t)

+
∫ 1

0

�(x)(x + r)
(
ẅ(x, t) + (x+ r)θ̈(t)

)
dx

−
∫ 1

0

R(x)
(
ξ̈(x, t) − θ̈(t)

)
dx.

(3)
After elementary transformations of (1) and integration by
parts with the use of the boundary conditions (2), Eqn. (3)
simplifies to

ū(t) = Idθ̈(t) + E(0)ξ′(0, t) − rK(0)w′(0, t). (4)

To state the problem of controllability, we describe
the initial and final positions (or states) of the beam by

(
w0, ẇ0, ξ0, ξ̇0, θ0, θ̇0

)T

and (
wT , ẇT , ξT , ξ̇T , θT , θ̇T

)T

,

respectively, where w0, ẇ0, ξ0, ξ̇0, wT , ẇT , ξT , ξ̇T are
some (complex) functions of variable x ∈ [0, 1] and θ0,
θ̇0, θT , θ̇T are some complex numbers. For simplicity, we

assume that, at the beginning, the beam is at the position
of rest, i.e., w0 = ẇ0 = ξ0 = ξ̇0 = 0 and θ0 = θ̇0 = 0.

The problem of (exact) controllability is to find a
control function u : [0, T ] → C such that the solution
(w, ξ)T of (1)–(2) satisfies

w(x, 0) = 0, ẇ(x, 0) = 0,

ξ(x, 0) = 0, ξ̇(x, 0) = 0,
w(x, T ) = wT (x), ẇ(x, T ) = ẇT (x),

ξ(x, T ) = ξT (x), ξ̇(x, T ) = ξ̇T (x),

θ(0) = 0, θ̇(0) = 0,

θ(T ) = θT , θ̇(T ) = θ̇T ,

(5)

and u(t) = θ̈(t) for t ∈ [0, T ].
The problem of (exact) controllability with the aid of

the torque is to find a control ū : [0, T ] → C such that
the solution (w, ξ)T of (1)–(2) satisfies (5) and Eqn. (4) is
satisfied for each t ∈ [0, T ].

In practice, finding the control is a rather difficult
task and most of the authors decide rather to express
the control in terms of its Fourier series coefficients
(Russell, 1967; Sklyar and Szkibiel, 2008a) or just prove
merely its existence (Avdonin and Ivanov, 1995; Avdonin
and Moran, 2001). The approach presented by the latter
authors is based on the paper by Levin (1961) and allows
stating an equivalent condition for the existence of control
in terms of analytic functions. Yet another method of
expressing the control function is the approximation via
numerical analysis. It is considered for the more general
class of hyperbolic equations by, e.g., Respondek (2008)
and Zerrik et al. (2007).

While dealing with our approach the question that
arises is what possible final states may be achieved using
any control (Sklyar and Szkibiel, 2012). If the set of those
states is dense in the target space, we call the beam ap-
proximately controllable. If we are able to find (or prove
the existence) of the functional

p(w, ξ, θ, ẇ, ξ̇, θ̇)

such that every solution (w, ξ, θ)T of (1)–(3) with
feedback control

ū(t) = p(w(·, t), ξ(·, t), θ(t), ẇ(·, t), ξ̇(·, t), θ̇(t))
causes the extinguishing of the total energy of the system,
i.e., ∫ 1

0

w′(x, t)2dx,
∫ 1

0

ẇ(x, t)2dx→ 0,
∫ 1

0

ξ′(x, t)2dx,
∫ 1

0

ξ̇(x, t)2dx→ 0,

θ(t), θ̇(t) → 0

(6)

as t → ∞, then we call the system strongly stabilizable.
We notice that the the concept of strong stabilizability is
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utilized also in discrete systems: see, e.g., the work of
Kaczorek (2012) and the reference therein. Also, one can
clearly see that strongly stabilizable objects are depicted
by systems of equations that are stable or exponentially
stable in the sense ofC0-continuous semigroup theory, see
the work of Ostalczyk (2012) for the latest achievements
in the study of this theory applications.

2. Related spaces and operators

We consider the set H of pairs of functions from L2(0, 1)
whose second derivatives are again in L2(0, 1). In
addition, we shall deal with the inner product defined by
the formula

〈(
f1
f2

)
,

(
g1
g2

)〉
=

1
Id

∫ 1

0

�(x)f1(x)g1(x)dx

+
1
Id

∫ 1

0

R(x)f2(x)g2(x)dx.

(7)

The functions � and R are real functions defined in the
previous section and the disc inertia Id is a positive real
number. Therefore the inner product (7) is equivalent to
the standard one. On the set

D(A) =
{(

y

z

)
∈ H : y(0) = z(0) = 0,

y′(1) + z(1) = z′(1) = 0

}

we define the operator A with values in the set L2(0, 1)2

by the formula

A

(
y

z

)
=

( −(1/�)(K(y′ + z))′

−(1/R)(Ez′)′ + (1/R)K(y′ + z)

)
.

One can notice that D(A) is dense in H and A is
surjective (Sklyar and Szkibiel, 2008b). Also, it is proved
there that the operator A is self-adjoint, positive and
possesses a compact resolvent.

Upon defining b(x) =
(−x−r

1

)
, Eqn. (1) takes the

operator form
(
ẅ(·, t)
ξ̈(·, t)

)
+A

(
w(·, t)
ξ(·, t)

)
= b(·)θ̈(t). (8)

Thus we arrive at an abstract wave equation with a
distribution control u = θ̈ (Krabs and Sklyar, 2002).

We shall state a similar equation for the distributive
control with the aid of the torque. With the use of the inner
product definition (7), integration by parts and boundary
conditions (2), we arrive at

Id

〈
A

(
y

z

)
, b

〉
= −rK(0)y′(0) +E(0)z′(0).

Therefore (4) may be written in the form

ū(t)
Id

= θ̈(t) +
〈
A

(
w(·, t)
ξ(·, t)

)
, b

〉
. (9)

This and (8) lead to the following equation:
(
ẅ(·, t)
ξ̈(·, t)

)
+A

(
w(·, t)
ξ(·, t)

)
+

〈
A

(
w(·, t)
ξ(·, t)

)
, b

〉
b =

b

Id
ū(t).

(10)
In the above, the self-adjoint operator A is disturbed by
a functional. Hence we use some technics like the one
given by Krabs and Sklyar (2002) to arrive at an equation
like (8). We start with defining the operatorA by the block
matrix

A =
(
A 0
0 0

)
.

Then A : D(A) → H , where D(A) = D(A) × C and
H = H × C. Additionally, we set b ∈ H to be

(
b

1

)
=

⎛
⎝−x− r

1
1

⎞
⎠ ,

and define ũ(t) to be equal to ū(t)/Id.
Next we define the inner product on H by the

formula〈(
X1

α1

)
,

(
X2

α2

)〉
H

= 〈X1, X2〉 + α1α2, (11)

where 〈·, ·〉 is the “old” inner product (i.e., the one defined
by (7)) and α is the complex conjugate.

Let I be the identity operator and b
∗

the conjugate of
b, i.e., b

∗
Z =

〈
Z, b

〉
H

for any Z ∈ H . Then (9) and (10)
may be put together and written as

Ÿ (t) + (I + b b
∗
)AY (t) = bũ(t), (12)

where

Y (t) =

⎛
⎝w(·, t)
ξ(·, t)
θ(t)

⎞
⎠ .

We redefine the inner product (11) in the following way:

〈Y, Z〉1 =
〈
(I + b b

∗
)−1/2Y, (I + b b

∗
)−1/2Z

〉
H
.

(13)
We notice that the above inner product is equivalent

to the one defined in (11). Finally, we define the operator
Ã : D(A) → H by the formula Ã = (I + b b

∗
)A, so

Eqn. (12) takes the form of an abstract wave equation with
a distribution control:

Ÿ (t) + ÃY (t) = bũ(t). (14)

Further on we discover basic properties of Ã.
Actually, the way the inner product 〈·, ·〉1 and the operator
Ã are defined make all needed properties of Ã satisfied.
They are contained in the following theorem.

Theorem 1. The operator Ã is self-adjoint with respect to
〈·, ·〉1 and has a compact resolvent.
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Proof. We start with showing that Ã is positive and
symmetric. We shall use the properties of the operator
A stated and proved by Sklyar and Szkibiel (2008b). Let
Y1, Z1 be arbitrary elements of D(A). Hence

Y =
(
Y1

θ

)
, Z =

(
Z1

τ

)

are elements of D(A). Using the definition of the inner
products (11), (13) and the self-adjointness of (I +
b b

∗
)1/2, we obtain

〈ÃY, Y 〉1 = 〈(I + b b
∗
)AY, Y 〉1

= 〈(I + b b
∗
)1/2AY, (I + b b

∗
)−1/2Y 〉H

= 〈AY, Y 〉H
= 〈AY1, Y1〉 ≥ 0.

Therefore Ã is non-negative. Moreover, 〈ÃY, Y 〉1 = 0 if
and only if Y1 =

(
0
0

)
. Thus Ã has one-dimensional kernel,

so the eigenspace corresponding to the eigenvector 0 is
one-dimensional.

To prove symmetry, we partly repeat the above
reasoning and get

〈ÃY, Z〉1 = 〈AY,Z〉H = 〈AY1, Z1〉
= 〈Y1, AZ1〉 = 〈Y, ÃZ〉1

by the self-adjointness of the operatorA.
In order to show that Ã is self-adjoint, we need to

justify the equalityD(A) = D(Ã∗), i.e., we need to prove
the inclusionD(Ã∗) ⊂ D(A), as the other one follows by
symmetry. For that purpose, we first prove that D(A

∗
) ⊂

D(A). To show this, we take an arbitrary
(
Z1
τ1

) ∈ D(A
∗
)

and consider Y =
(
Y1
0

)
with Y1 ∈ D(A).

Let (
Z2

τ2

)
= A

∗
(
Z1

τ1

)
.

We have

〈Y1, Z2〉 =
〈
Y,A

∗
(
Z1

τ1

)〉
H

=
〈
A

(
Y1

0

)
,

(
Z1

τ1

)〉
H

= 〈AY1, Z1〉.

Since A is surjective, one may find Z3 ∈ D(A) such that
AZ3 = Z2. Therefore

A

(
Z3

0

)
=

(
Z2

0

)
.

What follows is

〈Y1, Z2〉 =
〈
Y,

(
Z2

τ2

)〉
H

=
〈
Y,A

(
Z3

0

)〉
H

= 〈AY1, Z3〉.

Thus

0 = 〈AY1, Z1〉 − 〈AY1, Z3〉 = 〈AY1, Z1 − Z3〉.
That implies Z1 = Z3, so, in particular, Z1 ∈ D(A) and(
Z1
τ1

) ∈ D(A). As for the self-adjointness of Ã, let us take

any Y ∈ D(A) and Z ∈ D(Ã∗). As before, we obtain

〈Y, Ã∗Z〉1 = 〈ÃY, Z〉1 = 〈AY,Z〉H .

On the other hand, if Z ′ = Ã∗Z , then

〈Y, Ã∗Z〉1 = 〈Y, Z ′〉1 = 〈Y, (I + b b
∗
)−1Z ′〉H .

Thus, for each Y ∈ D(A), a dense set in H × C, we have
〈AY,Z〉H = 〈Y, (I + b b

∗
)−1Z ′〉H . Therefore A

∗
Z =

(I + b b
∗
)−1Z ′ and Z ∈ D(A

∗
) ⊂ D(A).

To prove that Ã has a compact resolvent, we recall
that A has a compact resolvent. Moreover, the resolvent
of A,

Rλ(A) = (A− λI)−1 =
(

(A− λI)−1 0
0 −λ−1

)
,

is compact. We consider (Ã − λI)Rλ(A) − I . Using the
definition of Ã, we find the last operator equal to

(A+ b b
∗
A− λI)Rλ(A) − I = b b

∗
ARλ(A)

= b b
∗
(I + λRλ(A)).

What follows is the identity

Rλ(Ã)(Ã − λI)Rλ(A) −Rλ(Ã)

= Rλ(Ã)b b
∗
(I + λRλ(A))

and, as a consequence,

Rλ(A) = Rλ(Ã)
(
I + b b

∗
(I + λRλ(A))

)
.

Since Rλ(A) and I + b b
∗
(I + λRλ(A)) are compact, so

must be Rλ(Ã). �

3. Spectral properties of the operator Ã

We shall study the spectral properties of the operator Ã.
First, we notice that the eigenvectors of A are ϕ0 =

(
0
1

)
and ϕk =

(
Yk

0

)
, where Yk for k > 0 are the eigenvectors

of A.

Remark 1. It was shown by Sklyar and Szkibiel (2008b)
that the eigenspaces of the operator A are at most of the
dimension 2. It is proved (Krabs and Sklyar, 2002) that if
the parameter functions �, R, K and E are constant (and
positive) then all the eigenvalues of A are simple. From
now on, we assume that the eigenvalues of A are simple
in general.
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Utilizing the assumption from Remark 1, we write
the eigenvalues of the operator A:

0 = λ0 < λ1 < · · · < λk < · · · → ∞.

We assume that Yk is an eigenvector of the
operator A. We call the radius r of the disc non-singular
if

〈Yk, b〉 
= 0 (15)

for all positive integers k. It was shown by Sklyar and
Szkibiel (2008a) that there are at most countably many
singular radiuses. From know on, we consider only
non-singular radiuses. We notice that Eqn. (15) holds also
for the operatorA, i.e.,

〈
ϕk, b

〉
H


= 0, (16)

where ϕk, k ≥ 0, are the eigenvectors of A. Indeed, for
k > 0 we have

〈
ϕk, b

〉
H

= 〈Yk, b〉 
= 0

by (15) and
〈
ϕ0, b

〉
H

= 1 
= 0.
Now we are are ready to prove the main theorem

about the spectrum of Ã.

Theorem 2. If the eigenspaces of the operatorA are one-
dimensional and the radius r of the rotating disc is non-
singular, the following statements hold:

1.
〈
ϕ̃, b

〉
1

= 0 for all eigenvectors ϕ̃ of the operator Ã.

2. Eigenvalues of the operator Ã are simple.

3. The eigenvalues λ̃k of the operator Ã alternate with
the ones of A:

0 = λ0 = λ̃0 < λ1 < λ̃1 < λ2 < λ̃2 < · · · .
Proof. We first notice that ϕ̃0 = (0, 0, 1)T is an
eigenvector of Ã that corresponds to the eigenvalue λ̃0.
Therefore, further on we consider only the eigenvalues
of Ã that are different from λ̃0.

We establish the equality

(
I + bb

∗)−1

= I − 1
1 + ‖b‖2

H

bb
∗
. (17)

Indeed,

(
I + bb

∗) (
I − 1

1 + ‖b‖2
H

bb
∗
)

= I + bb
∗ − 1

1 + ‖b‖2
H

bb
∗ − ‖b‖2

H

1 + ‖b‖2
H

bb
∗

= I.

As a consequence of (17), we obtain

(
I + bb

∗)−1

b =
1

1 + ‖b‖2
H

b.

To continue with the proof of Part 1, we take an
arbitrary eigenvector ϕ̃ of the operator Ã and couple it
with b. We have

〈
ϕ̃, b

〉
1

=
〈
ϕ̃,

(
I + bb

∗)−1

b

〉
H

=
1

1 + ‖b‖2
H

〈
ϕ̃, b

〉
H
.

Thus
〈
ϕ̃, b

〉
1

= 0 if and only if
〈
ϕ̃, b

〉
H

= 0. We
shall show that if the last equality holds, then ϕ̃ is an
eigenvector ofA, but this contradicts the formula (16) and
the statement 1 will be proved.

Let ϕ̃ be an eigenvector of Ã with the corresponding
eigenvalue λ̃ and with

〈
ϕ̃, b

〉
H

= 0. Using the definition

of Ã and (17) we get

Aϕ̃ =
(
I + bb

∗)−1

Ãϕ̃

= λ̃

(
I − 1

1 + ‖b‖2
H

bb
∗
)
ϕ̃

= λ̃ϕ̃− λ̃

1 + ‖b‖2
H

b
〈
ϕ̃, b

〉
H

= λ̃ϕ̃,

which means that ϕ̃ is an eigenvector of A with an
eigenvalue λ̃.

To prove Part 2, we proceed again by contradiction.
We assume that ϕ̃ and ψ̃ are two linearly independent
eigenvectors of the operator Ã with one corresponding
eigenvalue λ̃. Then, of course, for any c, d ∈ C,
cϕ̃+dψ̃ is also an eigenvector of Ãwith the corresponding

eigenvalue λ̃. We set c0 =
〈
ψ̃, b

〉
1

and d0 = − 〈
ϕ̃, b

〉
1
.

Then 〈
c0ϕ̃+ d0ψ̃, b

〉
1

= 0.

This contradicts the already proved first part of the
theorem.

To show the last part of the theorem, we observe that
λ̃0 = 0 is an eigenvalue of both A and Ã, but the other
eigenvalues of A are not the eigenvalues of the operator
Ã. Indeed, we assume that λ 
= 0 is a common eigenvalue,
i.e., λϕ̃ = Ãϕ̃ and λϕ = Aϕ, where ϕ̃ is an eigenvector
of Ã, ϕ, an eigenvector of A and both of them correspond
to λ. Then we have

λϕ̃ =
(
I + bb

∗)
Aϕ̃ = Aϕ̃+ b

〈
Aϕ̃, b

〉
H
. (18)
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A consequence of the above equation is the following:

λ 〈ϕ̃, ϕ〉H =
〈
Aϕ̃, ϕ

〉
H

+
〈
Aϕ̃, b

〉
H

〈
b, ϕ

〉
H
.

We recall that the eigenvector ϕ of A must be of the
form

(
Y
0

)
, where Y is the eigenvector of the operator A.

Therefore the corresponding eigenvalueλ is a positive real
number. Hence we get

〈
Aϕ̃, ϕ

〉
H

=
〈
ϕ̃, Aϕ

〉
H

= λ 〈ϕ̃, ϕ〉H .

Combining the above two equations, we obtain

〈
Aϕ̃, b

〉
H

〈
b, ϕ

〉
H

= 0

that holds if and only if
〈
b, ϕ

〉
H

= 0 or
〈
Aϕ̃, b

〉
H

= 0.
The first equation is impossible by (16), while the other
one implies, together with (18), that ϕ̃ is an eigenvector
of A with the corresponding eigenvalue λ. But then〈
Aϕ̃, b

〉
H

= λ
〈
ϕ̃, b

〉
H

= 0, which is impossible by the
already proved Part 1.

Proceeding further, let λ be an eigenvalue of Ã with
the corresponding eigenvector ϕ̃. Then

Aϕ̃ =
(
I + bb

∗)−1

Ãϕ̃ = λ
(
I + bb

∗)−1

ϕ̃.

By (17) it follows that

Aϕ̃ = λ

(
I − bb

∗

1 + ‖b‖2
H

)
ϕ̃,

and after some elementary transformations we obtain

(
A− λI

)
ϕ̃ = −λ

〈
ϕ̃, b

〉
H

1 + ‖b‖2
H

b.

The above equation is equivalent to

ϕ̃ = −λ
〈
ϕ̃, b

〉
H

1 + ‖b‖2
H

Rλ(A)b. (19)

Therefore Rλ(A)b is an eigenvector of Ã corresponding
to the eigenvalue λ and as such must satisfy (19). Hence

Rλ(A)b = −λ
〈
Rλ(A)b, b

〉
H

1 + ‖b‖2
H

Rλ(A)b

or (
1 +

λ
〈
Rλ(A)b, b

〉
H

1 + ‖b‖2
H

)
Rλ(A)b = 0.

What follows is
(

1 +
λ

〈
Rλ(A)b, b

〉
H

1 + ‖b‖2
H

)
= 0. (20)

We consider the identity λRλ(A) = −I +ARλ(A).
Applying it to (20), we get

1 +
〈
ARλ(A)b, b

〉
H

1 + ‖b‖2
H

= 0.

Therefore the equation
〈
ARλ(A)b, b

〉
H

= −1 (21)

must be satisfied by all non-zero eigenvalues λ of Ã.
Let (ϕn) be the (orthonormal) sequence of all

eigenvectors of A with λn being the eigenvalue
corresponding to ϕn (n is a non-negative integer). Then,
for some coefficients bn,

b =
∞∑

n=0

bnϕn, ARλ(A)b =
∞∑

n=1

λn

λn − λ
bnϕn.

Moreover, the series
∑∞

n=1 | bn|2 converges and (21) takes
form ∞∑

n=1

λn

λn − λ
| bn|2 = −1. (22)

We define

f(x) =
∞∑

n=1

λn

λn − x
| bn|2 + 1

for all x 
= λn, where n are positive integers. We
notice that, due to (22), the zeroes of f are exactly at the
eigenvalues of Ã. For those values of x for which f is
defined,

f ′(x) =
∞∑

n=1

λn

(λn − x)2
| bn|2.

Since f ′(x) > 0, the function f strictly increases on each
interval (λn, λn+1). Moreover, for each positive integer n

lim
x→λ−

n

f(x) = +∞, lim
x→λ+

n

f(x) = −∞.

Thus f has exactly one zero in (λn, λn+1). Furthermore,
since limx→−∞ f(x) = 0 and the function f increases, it
has no zeroes on (−∞, λ1). Hence Part 3 is true. �

Corollary 1. The eigenvectors of Ã form an orthonormal
basis in H with the inner product 〈·, ·〉1.

4. Weak solution

As has been noticed (Theorem 2), the operator Ã has
simple and non-negative eigenvalues. Therefore, we may

define Ã1/2 : D
(
Ã1/2

)
→ H by the formula

Ã1/2v =
∞∑

k=0

√
λ̃k 〈v, ϕ̃k〉 ϕ̃k,
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where (ϕ̃k)k≥0 is the (normalized) sequence of

eigenvectors of the operator Ã with
(
λ̃k

)
k≥0

being

the sequence of the corresponding eigenvalues and

D(Ã1/2) =

{
v ∈ H :

∞∑
k=0

λ̃k |〈v, ϕ̃k〉|2 <∞
}
.

We adjust the inner product 〈·, ·〉1 in H by defining
for v, w ∈ D(Ã1/2) the function

〈v, w〉2 = 〈v, ϕ̃0〉1 〈ϕ̃0, w〉1 +
∞∑

k=1

λ̃k 〈v, ϕ̃k〉1 〈ϕ̃k, w〉1 .

With the inner product 〈·, ·〉2, the set D(Ã1/2) becomes a
Hilbert space with the norm ‖ · ‖2.

There is exactly one weak solution of Eqn. (12) with
the initial conditions

w(x, 0) = ẇ(x, 0) = 0,

ξ(x, 0) = ξ̇(x, 0) = 0,

θ(0) = θ̇(0) = 0

for x ∈ [0, 1] and T > 0, which consist of the continuous
functions

⎛
⎝w(x, ·)
ξ(x, ·)
θ(·)

⎞
⎠ : [0, T ] → D(Ã1/2) (23)

and, simultaneously, those functions are of class C1 from
[0, T ] to H̄ . It is given by the following formula:

⎛
⎝w(x, t)
ξ(x, t)
θ(t)

⎞
⎠ =

(∫ t

0

(t− s)
〈
b, ϕ̃0

〉
1
ũ(s) ds

)
ϕ̃0(x)

+
∞∑

k=1

1√
λ̃k

Sk(t)ϕ̃k(x), (24)

where

Sk(t) =
∫ t

0

sin
(√

λ̃k(t− s)
) 〈

b, ϕ̃k

〉
1
ũ(s) ds.

Its (time) derivative is given by⎛
⎝ẇ(x, t)
ξ̇(x, t)
θ̇(t)

⎞
⎠ =

∞∑
k=0

Ṡk(t)ϕ̃k(x), (25)

where

Ṡk(t) =
∫ t

0

cos
(√

λ̃k(t− s)
) 〈

b, ϕ̃k

〉
1
ũ(s) ds.

In the next theorem, we shall show that the
solution (23) is, in fact, a member of D(A1/2) × C.

Theorem 3. The domains of the operators Ã1/2 andA
1/2

are equal to⎧⎨
⎩v ∈ H :

∞∑
j=0

λj

∣∣〈v, ϕj〉H
∣∣2 <∞

⎫⎬
⎭ (26)

This is, in turn, equal to D(A1/2) × C.

Proof. It is obvious that the set (26) is equal to

D(A1/2) × C and to D(A
1/2

). Let us write the norms
in both D(Ã1/2) and D(A1/2) × C:

‖v‖2 =

(
|〈v, ϕ̃0〉1|2 +

∞∑
k=1

λ̃k |〈v, ϕ̃k〉1|2
)1/2

,

‖v‖3 =

(
|〈v, ϕ0〉H |2 +

∞∑
k=1

λk |〈v, ϕk〉H |2
)1/2

.

In the following lemma, we shall prove that on
D(A) × C the norms ‖ · ‖2 and ‖ · ‖3 are equivalent.

Lemma 1. Let (vn) be a sequence inD(A)×C. Then (vn)
converges in ‖ · ‖2 if and only if it converges in the norm
‖ · ‖3. Moreover, if ‖vn − v‖2 → 0 and ‖vn − v′‖3 → 0,
for some v and v′, then v = v′.

Proof. First, we assume that (vn) is convergent to some v
in the norm ‖ · ‖2. Then, according to the norm definition,

‖vn − vm‖2
2 = |〈vn − vm, ϕ̃0〉1|2

+
∞∑

k=1

λ̃k |〈vn − vm, ϕ̃k〉1|2
(27)

for any positive integers n and m. But, for all k ≥ 1,

λ̃k |〈vn − vm, ϕ̃k〉1|2

=
〈
vn − vm, λ̃kϕ̃k

〉
1
〈ϕ̃k, vn − vm〉1

=
〈
Ã(vn − vm), ϕ̃k

〉
1
〈ϕ̃k, vn − vm〉1 ,

because vn and vm belong to D(A) × C = D(A) and the
operator Ã is self-adjoint. We remark that, if (ϕk) forms
an orthonormal basis in a Hilbert space and v, w are some
elements in this space, then

∞∑
k=1

〈v, ϕk〉〈ϕk, w〉 = 〈v, w〉.

Accordingly we have the following continuation of the
reasoning started in (27):

‖vn − vm‖2
2

= |〈vn − vm, ϕ̃0〉1|2 +
〈
Ã(vn − vm), vn − vm

〉
1

= |〈vn − vm, ϕ̃0〉1|2 +
〈
A(vn − vm), vn − vm

〉
H
.
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Therefore if ‖vn − vm‖2
2 → 0 as n, m→ ∞, so does

〈
A(vn − vm), vn − vm

〉
H
.

On the other hand,

‖v‖2
1 ≤

∞∑
k=0

|〈v, ϕ̃k〉1|2 ≤ ‖v‖2
2

for any v. Therefore ‖vn − vm‖1 → 0 as n, m → ∞ if
‖vn − vm‖2 → 0. Due to the equivalence of the norms
‖ · ‖1 and ‖ · ‖H , we also have ‖vn − vm‖H → 0.

Similarly we arrive at the following formula:

‖vn − vm‖2
3

= |〈vn − vm, ϕ0〉H |2 +
〈
A(vn − vm), vn − vm

〉
H
,

and what follows is the inequality

‖vn − vm‖2
3

≤ ‖vn − vm‖2
H

+
〈
A(vn − vm), vn − vm

〉
H
.

Therefore, we finally obtain that for n, m → ∞ we have
‖vn − vm‖3 → 0 if ‖vn − vm‖2 → 0. Thus (vn) is a
Cauchy sequence in the norm ‖ · ‖3, so it converges to
some v′.

Since

‖vn − v‖2 ≥ ‖vn − v‖1, ‖vn − v′‖3 ≥ ‖vn − v′‖H

and the norms ‖ · ‖1, ‖ · ‖H are equivalent, we have

‖vn − v‖1 → 0 and ‖vn − v′‖H → 0

as n tends to infinity. Therefore, v = v′.
The inverse assertion can be proved with the use of a

similar argument. �
As D(Ã1/2) and D(A1/2) × C are the completions

of D(A) andD(A)×C, respectively, and the last two are
equal, it follows from the above lemma that D(Ã1/2) =
D(A1/2) × C. To show the equivalence of the norms on
the completions, we consider the identity

I :
(
D(Ã1/2), ‖ · ‖2

)
→

(
D(A1/2) × C, ‖ · ‖3

)
.

By Lemma 1, I is continuous at 0, so it is bounded. The
inverse I−1 is also bounded, so ‖ · ‖2 and ‖ · ‖3 are
equivalent. �

5. Approximate control

Let us write the final state of the object considered:

YT =

⎛
⎝w(·, T )
ξ(·, T )
θ(T )

⎞
⎠ ẎT =

⎛
⎝ẇ(·, T )
ξ̇(·, T )
θ̇(T )

⎞
⎠

for T > 0, and define the operator

S̃ : L2(0, T ) → (D(A1/2) × C) ×H

by the formula

S̃(v) =

⎛
⎜⎜⎜⎜⎝

∞∑
k=0

(∫ T

0

Sk(t)v(t) dt

)
ϕ̃k

∞∑
k=0

(∫ T

0

Ṡk(t)v(t) dt

)
ϕ̃k

⎞
⎟⎟⎟⎟⎠ .

Here

S0(t) = a0(T − t)

Sk(t) =
1√
λ̃k

ak sin
√
λ̃k(T − t)

for k > 0 and

Ṡk(t) = ak cos
√
λ̃k(T − t),

ak = 〈b, ϕ̃k〉1

for k ≥ 0. We notice that the operator S̃ is continuous.
Also, we see that if ũ is a control, then S̃(ũ) is the
final state (compare with the weak solution (24), (25)).
Therefore the one of approximate controllability becomes
the problem of proving that the range of the operator S̃ is
dense inD(A1/2)×C)×H . This, however, is the problem
of proving that the adjoint operator S̃∗ is injective.

Theorem 4. Assuming the disc radius is non-singular
and

T > T0 = 2

(∫ 1

0

√
�(x)
K(x)

dx+
∫ 1

0

√
R(x)
E(x)

dx

)
,

the system (1)–(2) is approximately controllable from the
position of rest.

Proof. We have in explicit form

S̃∗ :
(
D(A1/2) × C

)
×H → L2(0, T ),

S̃∗
(
Y

Z

)
(t) = 〈Y, ϕ̃0〉1 a0(T − t)

+
∞∑

k=1

〈Y, ϕ̃k〉1
ak√
λ̃k

sin
√
λ̃k(T − t)

+
∞∑

k=0

〈Z, ϕ̃k〉1 ak cos
√
λ̃k(T − t)

for almost all t ∈ [0, T ]. Because the radius is
non-singular, ak 
= 0 for all non-negative values of k.
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Let

d(x) = max
{
k :

√
λk < x

}
,

d̃(x) = max
{
k :

√
λ̃k < x

}
.

From Theorem 2, d(x) − 1 < d̃(x) < d(x). Therefore

lim sup
x, y→∞

d̃(x+ y) − d̃(x)
y

= lim sup
x, y→∞

d(x + y) − d(x)
y

.

(28)
By the classical theorem of Paley and Wiener (1934)

in the version presented by Russell (1967) and reasoning
similar to the one of Sklyar and Szkibiel (2008b), we
obtain that the limit (28) is less than T/2π provided
T > T0. This means that the system

{
1, t, sin

√
λ̃kt, cos

√
λ̃kt : k > 0

}

is minimal for T > T0. In particular, the equality
S̃∗(Y

Z

)
= 0 holds only if 〈Y, ϕ̃k〉1 = 〈Z, ϕ̃k〉1 = 0 for

k ≥ 0. Since the system (ϕ̃k) is complete, we obtain
Y = Z = 0. Therefore S̃∗ is injective and, as remarked
above, the system is approximately controllable. �

6. Stabilizability

Gathering together the pieces of our discussion, we need
to find the bounded linear functional p = p(Y, Ẏ ),
such that every solution Y (t) = (w(·, t), ξ(·, t), θ(t)) of
Eqn. (14) with the feedback control

ũ(t) = p
(
w(·, t), ξ(·, t), θ(t), ẇ(·, t), ξ̇(·, t), θ̇(t)

)

tends to 0 as t→ ∞ in the sense of extinguishing the total
energy of the system, i.e., (6) is satisfied.

To deal with this problem, we need to rearrange the
operators and functionals we have dealt with before. Thus
we define b̄+ : H → C by the formula

b̄+Y =
〈
Y, b̄

〉
1
.

Then we define the control ũ0 = ũ + b̄+Y so Eqn. (14)
takes the form

Ÿ +A0Y = b̄ũ0, (29)

with A0 = Ã+ b̄b̄+ defined on D(A).

Proposition 1. The operator A0 is self adjoint (with
respect to 〈·, ·〉1) and has a compact resolvent.

For the proof, we notice that A0 is a finite
dimensional perturbation of a self-adjoint operator Ã with
compact resolvent (Kato, 1966).

Moreover, one can easily see that 〈A0Y, Y 〉1 ≥ 0
and the equality means ÃY = 0 and finally

〈
Y, b̄

〉
1

= 0,
which contradicts Part 1 of Theorem 2 or Theorem 1.

Thus the operator A0 has a discrete spectrum with
(strictly) positive eigenvalues. Using the arguments from
the proof of Part 3 of Theorem 2, we can prove that
the eigenvalues of A0 are simple. What follows is the
possessing of a complete orthonormal sequence {ψk}k∈N0

of eigenvectors that correspond to a sequence {μk}k∈N0

of simple positive eigenvalues (N0 denotes the set of
non-negative integers).

We shall use the operator A1/2
0 : D(A1/2

0 ) → H
given by the formulas

A
1/2
0 v =

∞∑
j=0

√
μj〈v, ψj〉1ψj

and

D(A1/2
0 ) =

⎧⎨
⎩v ∈ H :

∞∑
j=0

μj |〈v, ψj〉1| <∞
⎫⎬
⎭ .

The latter is a Hilbert space with the inner product

〈v, w〉4 =
∞∑

j=0

μj〈v, ψj〉1〈ψ,w〉1.

Lemma 2. We assume that (vn) is a sequence of elements
fromD(A)×C. Then (vn) is convergent in the norm ‖·‖4

(generated by the inner product 〈·, ·〉4) if and only if it is
convergent in the norm ‖ ·‖2. Moreover, if ‖vn−v‖4 → 0
for some v and ‖vn − v′‖2 → 0 for some v′ (as n→ ∞),
then v = v′.

Proof. We assume that

lim
n→∞ vn = v

for some v ∈ D(A1/2
0 ). Then (vn) is a Cauchy sequence

in ‖ · ‖4. Since vn ∈ D(A) for all positive integers n, we
have for n, m ∈ N

‖vn − vm‖2
4 = 〈A0(vn − vm), vn − vm〉1

= 〈Ã(vn − vm), vn − vm〉1
+

∣∣〈b̄, vn − vm〉1
∣∣2 .

Since ‖vn − vm‖4 → 0 as n, m→ ∞, we have

〈Ã(vn − vm), vn − vm〉1 → 0 (30)

and

‖〈b̄, ϕ̃0〉1〈ϕ̃0, vn − vm〉1 +
∞∑

j=1

〈b̄, ϕ̃j〉1〈ϕ̃j , vn − vm〉1‖

equal to
∣∣〈b̄, vn − vm〉1

∣∣ tends to 0.
Further on, we notice that

〈Ã(vn − vm), vn − vm〉1 ≥ λ1

∞∑
j=1

|〈ϕ̃j , vn − vm〉1|2 .
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Hence, by the Hölder inequality and (30),

‖
∞∑

j=1

〈b̄, ϕ̃j〉1〈ϕ̃j , vn − vm〉1‖2

≤
∞∑

j=1

∣∣〈b̄, ϕ̃j〉1
∣∣2 ∞∑

j=1

|〈ϕ̃j , vn − vm〉1|2 → 0

as n, m → ∞. In addition to that 〈b̄, ϕ̃0〉1 
= 0, so
〈ϕ̃0, vn − vm〉1 → 0. Finally, as n, m→ ∞,

‖vn − vm‖2
2

= |〈vn − vm, ϕ̃0〉1|2 + 〈Ã(vn − vm), vn − vm〉1
→ 0.

This means that (vn) is a Cauchy sequence in ‖ · ‖2, so
it must be convergent to some v′ ∈ D(Ã1/2). In order to
finish the proof, we need to see that v = v′. We notice that
‖vn − vm‖2 ≥ ‖vn − v′‖1 and ‖vn − vm‖4 ≥ √

μ0‖vn −
v‖1. Therefore, both ‖vn − v′‖1 and ‖vn − v‖1 tend to 0
as n→ ∞. But in ‖ · ‖1 the limit is unique, so v = v′.

We proceed in a similar way to prove the inverse
assertion. �

Corollary 2. The following holds:
(i) D(A1/2

0 ) = D(Ã1/2) = D(A1/2) × C,

(ii) ‖ · ‖2, ‖ · ‖3 and ‖ · ‖4 are equivalent.

The proof follows directly from the above lemma and
Lemma 1.

We conclude this section with the main result on
stabilizability (Theorem 6). In the proof we shall use the
following theorem, due to Krabs and Sklyar (2002) as well
as Sklyar and Rezounenko (2003).

Theorem 5. Let σ(A0)∩ iR be at most countable and A0

generate a contractive C0-semigroup. Then Eqn. (31) is
strongly stabilizable if and only if no eigenvector ψ of the
operator A0 corresponding to an imaginary eigenvalue
satisfies 〈b0, ψ〉H = 0. The stabilizing control is then
given by ũ0 = −〈Z, b0〉H.

Theorem 6. Assume the radius of the disk is non-singular.
The system (14) is strongly stabilizable with the control

ũ = −〈Y + Ẏ , (I + b̄b̄∗)−1b̄〉H .
Proof. We shall first set up a system of equations of the
first order. Let Z : [0, T ] → D(A) × H be given by the
equation

Z(t) =
(
Y (t)
Ẏ (t)

)
fort ∈ [0, T ].

Then we define the operator A0 : D(A) ×H → H ×H
by the formula

A0

(
Y1

Y2

)
=

(
Y2

−A0Y1

)
.

In addition to this, let

b0 =
(

0
b̄

)
.

Then Eqn. (29) takes the form

Ż = A0Z + b0ũ0. (31)

Now, we utilize the Hilbert space H = D(A1/2
0 )×H

with the inner product defined as follows:

〈Z1, Z2〉H = 〈V1, V2〉4 + 〈W1,W2〉1,
where

Z1 =
(
V1

W1

)
, Z2 =

(
V2

W2

)
,

Z1, Z2 ∈ H. Then A0 : D(A)×D(A1/2
0 ) → H generates

a contractive C0-semigroup on H. Moreover, A0 has a
discrete spectrum

{
μ+

k , μ
−
k : k ∈ N0

}
given by

μ+
k = i

√
μk, μ−

k = −i√μk,

where μk (for k ∈ N0) is an eigenvalue of the operator
A0 with the corresponding eigenvector ψk. As for
the eigenvalues μ+

k and μ−
k , they correspond to the

eigenvectors ψ+
k and ψ−

k , respectively, where

ψ+
k =

(
ψk

i
√
μkψk

)
, ψ−

k =
(

ψk

−i√μkψk

)
.

We shall show that for no non-negative integer k

〈b0, ψ+
k 〉H = 0 or 〈b0, ψ−

k 〉H = 0.

Assuming that the above holds for some non-negative
integer k, we obtain 〈b̄, ψk〉1 = 0 for that k. But then

ψk =
1
μk
A0ψk =

1
μk

(
Ãψk + 〈ψk, b̄〉1b̄

)
=

1
μk
Ãψk,

so ψk turns out to be an eigenvector Ã orthogonal to b̄.
This contradicts Part 1 of Theorem 2.

Thus all the hypotheses of Theorem 5 are satisfied.
After applying it, we only need to look closer at the
formula for the control. We have

ũ0 = −〈Z, b0〉H = −〈Ẏ , b̄〉1,
hence ũ = −b̄+Y + ũ0 = −〈Y + Ẏ , (I + b̄b̄∗)−1b̄〉H .
Moreover, for the system (29), we have ‖Y (t)‖4,
‖Ẏ (t)‖1 → 0 as t → ∞ for any solution of (29). We
apply Corollary 2 and immediately obtain

〈
A

(
w(·, t),
ξ(·, t

)
,

(
w(·, t),
ξ(·, t

)〉
+ |θ(t)|2 → 0,

∥∥∥∥
(
ẇ(·, t),
ξ̇(·, t

)∥∥∥∥ + |θ̇(t)|2 → 0
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as t→ ∞. The above equations are equivalent to

∫ 1

0

K(x) |w′(x, t) + ξ(x, t)|2 dx→ 0,
∫ 1

0

E(x) |ξ′(x, t)|2 dx→ 0,
∫ 1

0

|ẇ(x, t)|2 dx→ 0,
∫ 1

0

E(x)
∣∣∣ξ̇(x, t)

∣∣∣2 dx→ 0,

|θ(t)|2 → 0,

|θ̇(t)|2 → 0.

The latter, together with the Friedrichs inequality
imply (6). The proof of the theorem is complete. �

7. Conclusion

The studying of control of a rotating beam with the
aid of the torque is a natural consequence of a strictly
theoretical problem of rotating beam control. The
advantage of disregarding the torque is the possibility of
finding the exact location of eigenvalues of the movement
operator. Therefore solving the exact controllability
problem is possible, because the appropriate Riesz basis
is known. Moreover, dealing with the moment problem
with known basic functions gives rise to the solution of
the optimization problem. In the case studied here we
do not even have an approximation of the eigenvalue
locations. They may be placed anywhere in a (possibly
wide) interval. Anyway, the existence of control with
the aid of the torque is a consequence of the existence of
control in a usual sense.

In contrast to the control problem, the stabilizability
of the beam is the problem that is dealt with independently
for the control with or without the aid of the torque. In this
paper we have solved this problem for the case when the
torque is applied.
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