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This paper is concerned with actuator fault detection in nonlinear systems in the presence of disturbances. A nonlinear
unknown input observer is designed and the output estimation error is used as a residual for fault detection. To deal with the
problem of high Lipschitz constants, a modified mean-value theorem is used to express the nonlinear error dynamics as a
convex combination of known matrices with time-varying coefficients. Moreover, the disturbance attenuation is performed
using a modified H∞ criterion. A sufficient condition for the existence of an unknown input observer is obtained using a
linear matrix inequality formula, and the observer gains are obtained by solving the corresponding set of inequalities. The
advantages of the proposed method are that no a priori assumption on the unknown input is required and that it can be
applied to a large class of nonlinear systems. Performances of the proposed approach are shown through the application to
a diesel engine model.
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1. Introduction

In automotive industry, on-board diagnosis of engines
has become increasingly important because of
environmentally based legislative regulations such
as OBDII (On-Board Diagnostics-II) (CARB, 1993).
Model-based diagnosis of automotive engines has
been considered in earlier papers (see, e.g., Gertler
et al., 1995; Nyberg and Perkovic, 1998). However,
the engines investigated in these previous works
were all gasoline-fuelled and did not include Exhaust
Gas Recirculation (EGR) and Variable Geometry
Turbocharged (VGT). Both these components make the
diagnosis problem significantly more difficult since the
air flow through the EGR-valve and also the exhaust side
of the engine have to be taken into account. An interesting
approach to model-based air-path faults detection for an
engine which includes EGR and VGT can be found in
the works of Nyberg (2002) as well as Nyberg and Sutte
(2004). By using several models in parallel, where each
one is sensitive to one kind of fault, predicted outputs are
compared and a diagnosis is provided. In particular, the

hypothesis test methodology proposed by Nyberg (2002)
deals with multi-fault detection in an well as air-path
system. Nyberg and Sutte (2004) propose an extended
adaptive Kalman filter to find which faulty model best
matches with measured data, then a structured hypothesis
allows going back to the faults. Recently, a structural
analysis for the air path of an automotive diesel engine
has been developed in order to study the monitorability of
the system (Djemili et al., 2011b).

Other approaches to detect intake leakages in diesel
engines based on adaptive observers were proposed by
Ceccarelli et al. (2009a; 2009b) and recently by Djemili
et al. (2011a). Note that in all these approaches the
leakage size is assumed to be constant. Furthermore,
few works dealing with actuator faults detection in diesel
engines with EGR and VGT are proposed in the literature
due to the complexity of the system. Indeed, the engine
models have high nonlinearities with large Lipschitz
constants. In this paper, the engine model is divided
into two parts: a Linear Parameter Varying (LPV) part
and a nonlinear part. Notice that disturbances are also
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considered in this work. For the sake of fault detection and
diagnosis, each residual is designed to be sensitive to only
one fault and insensitive to the other faults that can affect
the system, which will be considered unknown inputs.
Therefore, the proposed approach takes into account the
presence of unknown inputs, which makes residual design
much more complicated.

Designing Unknown Input Observers (UIOs) has
received considerable attention in the literature. The
challenge in UIO design is to construct an observer such
that it can estimate the states of the system considered
asymptotically without any knowledge of the unknown
input. If this issue in the linear case is well solved, it
remains open in the nonlinear one. The first unknown
input observers dedicated to linear systems were proposed
by Kudva et al. (1980), Hou and Muller (1992), Darouach
et al. (1994), as well as Hui and Żak (2005). Necessary
and sufficient conditions of the existence of the UIO have
been well established.

For the nonlinear case, new sufficient conditions
formulated in terms of the Linear Matrix Inequality
(LMI) are given by Chen and Saif (2006). The major
advantage of this approach lies in its simplicity. Indeed,
here sufficient conditions of the existence of Nonlinear
Unknown Input Observers (NUIOs) are formulated only
in terms of LMIs, avoiding a combination of LMIs with
Linear Matrix Equalities (LMEs) as proposed by Yaz and
Azemi (1998). Notice that it is not an easy task to find a
solution satisfying together LMIs and LMEs.

The approach proposed by Chen and Saif (2006) will
be extended in this paper to cover a wide class of nonlinear
systems that cannot be treated by this approach as well as
nonlinear systems with large Lipschitz constants. Several
approaches have tried to extend unknown input observer
design for linear systems to nonlinear ones. The first
works were dedicated to UIOs for bilinear systems (e.g.,
Saif, 1993). Other approaches based on the transformation
of the nonlinear system into a canonical form are proposed
by Ding et al. (1990) as well as Seliger and Frank (1991).
A limitation of these approaches is that the required state
transformation does not exist for all nonlinear systems but
only for a limited class. Zemouche and Boutayeb (2009)
presented a UIO design method for a class of nonlinear
systems based on the modified H∞ criterion. The state of
the system and the unknown inputs are estimated jointly
despite the presence of the disturbances in the dynamics
and the output of the system.

The Mean Value Theorem (MVT) is used to deal with
the problem of a nonlinear system having a large Lipschitz
constant. However, this method is computationally
demanding since the number of LMIs that have to
be solved depends on the number of nonlinearities
and the dimension of the system. To overcome this
difficulty, an approach based on the Modified Mean Value
Theorem (MMVT) is proposed by Phanomchoeng et al.

(2011). It expresses the nonlinear error dynamics as a
convex combination of known matrices with time-varying
coefficients, which significantly reduces the number of
LMIs to be solved.

In this paper, the approach based on the MMVT will
be extended to the proposed class of nonlinear systems,
namely, nonlinear parameter varying ones. For the fault
detection purpose, several observer-based approaches are
proposed in the literature for nonlinear systems (see, e.g.,
Chen et al., 2011). The highlights of this work include the
following:

• the proposed method concerns a more general
class of nonlinear parameter varying systems with
unknown inputs for which the literature in this field
is very limited;

• the problem of robust fault detection and isolation
for nonlinear parameter varying systems with
unknown inputs and disturbances is investigated. The
advantage of the proposed method is that no a priori
assumption on the unknown input is required;

• sufficient conditions of the existence of the NUIO
are formulated, in an elegant way, in terms of linear
matrix inequalities;

• the MMVT approach is used for reducing the number
of LMIs to be solved;

• the performances of the proposed approach are
shown using the professional diesel engine simulator
AMEsim(LMS) in co-simulation with the Simulink
software.

This paper is organized as follows. Problem
formulation and preliminaries are presented in Section 2.
Section 3 is devoted to the design of a nonlinear unknown
input observer. A description of the diesel engine model
is presented in Section 4. The proposed approach is
successfully validated using an advanced diesel engine
professional simulator in Section 5. A conclusion ends
the paper.

2. Problem formulation and preliminaries

Some notation and definitions that will be used throughout
this paper are first introduced. R denotes the set of real
numbers. The set of p × q real matrices is denoted by
R

p×q . AT and A−1 represent the transpose of matrix A
and its left inverse (assuming that A has a full column
rank), respectively. Ir represents the identity matrix of
dimension r. 0 (in bold character) is a zero matrix with
appropriate dimensions. (�) is used for the blocks induced
by symmetry. ‖ · ‖ represents the usual Euclidean norm.
L2 denotes the Lebesgue space.
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Let us consider a general class of nonlinear systems
described by the following equations:

ẋ = A(ρ)x + Bgg(υ, y, u) + ϕ(x, u) + Bdd

+Bff + Bww, (1a)

y = Cx + Dww, (1b)

with A(ρ) =
∑nρ

j=1 ρjAj . Here x ∈ R
nx is the state

vector, u ∈ R
nu is the control input vector which is

assumed to be bounded, d ∈ R
nd represents the unknown

input vector, f is the actuator fault vector, y ∈ R
ny is the

output vector, w ∈ R
nw is the vector of disturbances and

υ ∈ R
nυ is the vector of measurable signals. Aj , with

j = 1, . . . , nρ, Bg , Bd, Bf , Bw, C and Dw are constant
matrices with appropriate dimensions.

Without loss of generality, Bd and Bf are assumed
to be of full column rank. The functions g(υ, y, u) and
ϕ(x, u) are nonlinear. The function ϕ(x, u) is assumed
to be Lipschitz in x and differentiable. The weighting
functions ρj are assumed to be known and depend on
measurable variables. It is supposed that

nρ∑

j=1

ρj = 1, ρj ≥ 0, ∀j ∈ {1, . . . , nρ}. (2)

For manipulating the nonlinear function ϕ(x, u), the
MMVT presented for a general vector function ϕ(x, u)
by Phanomchoeng et al. (2011) is applied in this work. It
will be used in Section 3 to express the nonlinear error
dynamics as a convex combination of known matrices
with time-varying coefficients. The main principle of the
MMVT is presented in the following theorem.

Theorem 1. (Phanomchoeng et al., 2011) Let the canoni-
cal basis of the vectorial space R

s for all s ≥ 1 be defined
by

Es =
{

es(i) | es(i) =
(
0, . . . , 0,

i−th
︷︸︸︷
1 , 0, . . . , 0

︸ ︷︷ ︸
s components

)T
,

i = 1, . . . , s
}
. (3)

Let ϕ(x) : R
n → R

n be a vector function continuous on
[a, b] ∈ R

n and differentiable on any convex hull of the
set (a, b). For s1, s2 ∈ [a, b], there exist δmax

ij and δmin
ij

for i = 1, . . . , n and j = 1, . . . , n such that

ϕ (s2)−ϕ (s1)

=

⎡

⎣

⎛

⎝
n,n∑

i,j=1

Hmax
ij δmax

ij

⎞

⎠+

⎛

⎝
n,n∑

i,j=1

Hmin
ij δmin

ij

⎞

⎠

⎤

⎦

× (s2−s1)

δmax
ij , δmin

ij ≥ 0, δmax
ij + δmin

ij = 1, (4)

where

hmax
ij ≥ max

(∂ϕi

∂xj

)
∀x ∈ (a, b),

hmin
ij ≥ min

(∂ϕi

∂xj

)
, ∀x ∈ (a, b),

Hmax
ij = en(i)eT

n (j)hmax
ij ,

Hmin
ij = en(i)eT

n (j)hmin
ij .

The proof of this theorem is given by Phanomchoeng
et al. (2011).

In our case, the nonlinear function ϕ depends on the
state vector x and also on the known input u. The previous
theorem is applicable in our case without changes or
modifications since u is bounded.

The aim now is to design a nonlinear unknown input
observer which can reconstruct the state behavior without
any knowledge of the unknown inputs.

3. Robust nonlinear unknown input
observer design

In this section, inspired by Chen and Saif (2006) we
present a Nonlinear Unknown Input Observer (NUIO)
design method for the class of Lipschitz nonlinear systems
given by (1). The discussed system (1) represents a
large class of nonlinear systems with a large or small
Lipschitz constant. It is well known that most of the
existing NUIO design approaches for this class of systems
fail to provide a solution when the Lipschitz constant is
large. In this context the modified mean value theorem
presented by Phanomchoeng et al. (2011) will be used.
The sufficient existence conditions for the observer design
are formulated in terms of LMIs.

3.1. NUIO design. The observer considered for the
system (1) is given by

ż = N(ρ)z+Gg(υ, y, u)+Mϕ(x̂, u)+L(ρ)y, (5a)

x̂ = z−Ey, (5b)

with

N(ρ) =
nρ∑

j=1

ρjNj ,

L(ρ) =
nρ∑

j=1

ρjLj.

All Nj are stable matrices. x̂ represents the state
estimation vector of x. Matrices N , G, M , L and E are
the observer gains and matrices which must be determined
such that x̂ converges asymptotically to x when f = 0
and in the absence of disturbances. Notice that the index
ρ is omitted where it is not necessary in order to keep the
notation clear and easy to read.
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Let us define the state estimation error as

e(t) = x̂(t) − x(t).

Using (1b) and (5b), the state estimation error e(t) can be
expressed as

e(t) = z − (Inx + EC)x(t) − EDww. (6)

By setting M = Inx + EC, the error dynamics can be
given by

ė =Ne+(G−MBg)g(υ, y, u)+(NM +LC−MA)x

− MBdd + Mϕ̃ − MBff + (KDw − MBw) w

− EDwẇ, (7)

with ϕ̃ = ϕ(x̂, u) − ϕ(x, u) and K = L + NE. Now, if
the following matrix equations are satisfied:

N(ρ) = MA(ρ)−K(ρ)C, (8a)

L(ρ) = K(ρ)(Inx + CE)−MA(ρ)E, (8b)

G = MBg, (8c)

M = Inx + EC, (8d)

MBd = 0, (8e)

e(t) goes to zero asymptotically when f = 0 and is
invariant with respect to the unknown input d(t).

To obtain matrices E, M , G, K , N and L, the
following steps should be followed:

• First, the conditions (8d) and (8e) are equivalent to
ECBd = −Bd. One necessary condition to have
ECBd = −Bd is that CBd must be of full column
rank since Bd is so. If CBd is of full column rank,
then all possible solutions of ECBd = −Bd can be
expressed as follows (Chen and Saif, 2006):

E = U + Y V, (9)

with
U = −Bd(CBd)†

and
V = (Iny − CBd(CBd)†),

where Y can be any compatible matrix and X† =
(XT X)−1XT .

• Then, the matrix M is obtained by substituting E in
(8c).

• Using (8c) and (8d), the matrix G is obtained.

• The matrix K is determined such that the matrix
MA(ρ) − K(ρ)C is stable. The gain K will be
obtained from the solution of the LMIs given in
Theorem 2.

• Finally, by substituting K , M and E in (8b), the gain
L will be obtained.

Then, the error dynamics become

ė = (MA − KC)e + Mϕ̃ + (KDw − MBw)w
− EDwẇ − MBff. (10)

As explained before, if the conditions (8a)–(8e)
hold, the estimation error e without fault (f = 0),
named ē, tends asymptotically to zero in the absence of
disturbances. Thus, the dynamics of ē are expressed as

˙̄e = (MA − KC)ē + Mϕ̃ + (KDw − MBw)w
− EDwẇ. (11)

3.2. Stability and convergence analysis. In order to
minimize the effect of disturbances on the estimation error
ē, the H∞ performance criterion can be used. However,
the presence of the term ẇ makes the task difficult because
it should be discarded from the derivative of the Lyapunov
function, as we shall see later. Another solution is to
add a negative term depending of ẇT ẇ as proposed by
Zemouche and Boutayeb (2009). This solution needs to
modify the classical H∞ criterion.

The modified H∞ estimation problem consists in
computing the matrices N and L such that

lim
t→∞ ē (t) = 0 for w(t) = 0 and f(t) = 0, (12a)

‖ē‖Lnx
2

≤ γ1,2‖w‖r
1,2 for w(t) �= 0, ē(0) = 0. (12b)

Then, to satisfy (12a)–(12b), it is sufficient to propose a
Lyapunov function Υ, where

Γ = Υ̇ + ēT ē − γ2
1,2w

T w − γ2
1,2ẇ

T ẇ < 0, (13)

Υ = ēT P ē with P a positive definite symmetric matrix.
From (11), Γ is given by

Γ

= ēT
(
(MA − KC)T P +P (MA − KC)

)
ē

+ ēT PMϕ̃ +(Mϕ̃)TP ē+ēTP (KDw−MBw)w

+wT (KDw−MBw)TP ē−ēT PEDwẇ

−ẇT (EDw)T P ē+ēT ē−γ2
1,2w

T w−γ2
1,2ẇ

T ẇ. (14)

Now, we can give a sufficient condition under which
the observer given by (5) is an NUIO.

Theorem 2. The observer error ē(t) converges asymp-
totically towards zero if there exists matrices K̄k, Ȳ , a
positive definite symmetric matrix P and a positive scalar
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μ such that the following LMIs are satisfied:

P > 0, (15a)
⎡

⎣
Ξmax

ijk Φk −PY Dw − Ȳ V Dw

(∗) −μInw 0,
(∗) (∗) −μInw

⎤

⎦ < 0, (15b)

⎡

⎣
Ξmin

ijk Φk −PY Dw − Ȳ V Dw

(∗) −μInw 0
(∗) (∗) −μInw

⎤

⎦ < 0, (15c)

∀i = 1, . . . , n, j = 1, . . . , n and k = 1, . . . , nρ,
where

Φk = −K̄kDw + P (Inx + UC)Bw + Ȳ V CBw,

(16)

Ξmax
ijk =

[
(Inx +UC)

(
Ak + H̄max

ij

)]T
P

+ P (Inx +UC)
(
Ak + H̄max

ij

)

− CT K̄T
k − K̄kC +

(
Ak + H̄max

ij

)T
CT V T Ȳ T

+ Ȳ V C
(
Ak + H̄max

ij

)
+ Inx ,

Ξmin
ijk =

[
(Inx +UC)

(
Ak + H̄min

ij

)]T
P

+ P (Inx + UC)
(
Ak + H̄min

ij

)− CT K̄T
k

− K̄kC +
(
Ak + H̄min

ij

)T
CT V T Ȳ T

+ Ȳ V C
(
Ak + H̄min

ij

)
+ Inx ,

H̄max
ij =ZHHmax

ij , H̄min
ij = ZHHmin

ij ,

with ZH = n × n. Solving the LMIs (15a)–(15c) leads
to finding matrices P , Ȳ and K̄k. The matrices Kk and
Y can be obtained from Kk = P−1K̄k and Y = P−1Ȳ .
The other matrices N and L can then be deduced easily
from Eqns. (8a) and (8b), respectively.

Proof. The proof is given in Appendix A. �

Notice that if there exist components of ∂ϕi

∂xj
which

equal 0, the scaling factor
∑n,n

i,j=1(δ
max
ij + δmin

ij ) is less
than 1. Consequently, the scaling factor Z̄H must be
redefined as follows:

Z̄H =
n,n∑

i,j=1

(
δmax
ij +δmin

ij

)
=n × n − n0,

n,n∑

i,j=1

(
δmax
ij + δmin

ij

)

Z̄H
= 1, (17)

where n0 is the number of terms in ∂ϕi

∂xj
that equal zero.

If the conditions (8a)–(8e) hold, the estimation error
e and a residual r can be expressed as

ė = Ne + (KDw − MBw)w − EDwẇ − MBff,
(18a)

r = Ce + Dww, (18b)

with

N = N + M

[⎛

⎝
n,n∑

i,j=1

Hmax
ij δmax

ij

⎞

⎠

+

⎛

⎝
n,n∑

i,j=1

Hmin
ij δmin

ij

⎞

⎠

]

.

As demonstrated before, the convergence of the
estimation error e without a fault is ensured by the gain K
obtained from Theorem 2. Notice also that the disturbance
effect is attenuated using the H∞ criterion. Thus, the
mean of the error vector e will be close to zero in fault free
operation mode, while its mean value will be significantly
different from zero in the presence of a fault. Note that, in
order to ensure the detection and isolation of the fault f ,
the following condition has to be satisfied:

rank(MBf) = rank(Bf ). (19)

4. Engine description

The diesel engine considered in this paper is a
four-cylinder engine with a high-pressure EGR circuit
and a VGT as described by Albrecht et al. (2006). A
principle illustration scheme is shown in Fig. 1. The air
path system consists of two parts: the turbocharger and
exhaust gas recirculation. The turbocharger is a turbine
driven by the exhaust gas and connected via a common
shaft to the compressor, which compresses the air in the
intake. Exhaust gas recirculation allows recirculating gas
from the exhaust manifold to the intake manifold. The
recirculation of the exhaust gas through an EGR valve into
the intake manifold where it dilutes the incoming fresh
air is a well-established and efficient means of reducing
in-cylinder NOx emissions.

The mean value engine modelling approach is the
most widely considered approach in the literature (Kao
and Moskwa, 1995). It uses temporal and spatial averages
of relevant temperatures, pressures and mass flow rates.
In this work, the used model is based on principles
described by Heywood (1992) as well as Nyberg and
Perkovic (1998). For diagnosing the faults of interest,
it is not necessary to include the compressor and the
Charge-Air Cooler (CAC) in the model as shown by
Nyberg and Perkovic (1998). The reason is that no fault
in the compressor or the CAC is considered, and also the
mass-flow and the temperature after the CAC are known
variables because they are measured by the production
sensors.

The engine is equipped with sensors measuring
the in-flowing air WHFM, temperature after the CAC
TCAC , inlet-manifold pressure PInlet, exhaust-pressure
PExh and exhaust-temperature TExh. The control inputs
are the injected fuel WFuel, the turbine vane position
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Fig. 1. Schematic picture of the air-intake system.

XVGT, and the EGR-valve position determining the valve
opening-area AEGR.

The diesel engine model considered is expressed as
follows:

ṖInlet =
1

VInlet

(
RAircp,Air

cv,Air
WHFMTCAC

+
RExhcp,Exh

cv,Exh
WEGRTEGR

−RInletcp,Inlet

cv,Inlet
WInletTInlet

)

, (20)

ṁAir = WHFM − mAir

mAir + mEGR
WInlet, (21)

ṁEGR = WEGR − mEGR

mAir + mEGR
WInlet, (22)

ṁExh = WExh − WTurb − WEGR, (23)

with

Ψ
(

p1

p0

)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
√
√
√ 2κ

κ − 1

{((
p1

p0

) 2
κ

−
(

p1

p0

)κ+1
κ

)}

if

(
p1

p0

)

≥
(

2
κ + 1

) κ
κ−1

,

√

κ

(
2

κ + 1

) κ+1
κ−1

otherwise,

(24)

WInlet = fvol

(

Neng,
PInlet

TInletRInlet

)
NengPInlet

TInletRInlet

VEng

120
, (25)

WEGR =
AEGRPExh√
RExhTExh

ΨκExh

(
PInlet

PExh

)

, (26)

TInlet =
PInletVInlet

(mAir + mEGR) RInlet
, (27)

TEGR =
(

PInlet

PExh

)κExh−1
κExh

TExh, (28)

WExh = WInlet + WFuel, (29)

TExh = TInlet +
QLHVλ (WFuel, NEng)
cp,Exh (WInlet + WFuel)

, (30)

PExh =
mExhTExh

VExh
, (31)

WTurb =
PExh√
TExh

τ

(
PExh

PAtm
, XVGT

)

, (32)

RInlet =
RAirmAir + RExhmEGR

mAir + mEGR
, (33)

cv,Inlet =
cv,AirmAir + cv,ExhmEGR

mAir + mEGR
, (34)

cp,Inlet = cv,Inlet + RInlet, (35)

where PInlet is the pressure in the intake manifold. mAir

and mEGR are respectively the mass of air and EGR-gas in
intake manifold. mExh represents the mass of exhaust gas
in exhaust manifold. The other variables and parameters
used in this model are listed in Table B1. The temperature
TEGR is assumed to be constant and equal to 329.436K.
The static functions fvol, λ and τ are represented as
interpolation in lookup tables. Indeed, the modeling step
is not evoked in this paper and it has been assumed
that the diesel engine model used is well known and
all its parameters are correctly identified. However, an
interesting work about diesel engines modeling (engines
with VGT and EGR) is presented and validated by
Wahlstrom and Eriksson (2011).

The system (20)–(23) can be written in the state
space form as (1), where the state, known input and output
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vectors and the variables ρ and υ are defined as

x =
[

PInlet mAir mEGR mExh
]T

, (36)

u =
[

AEGR XVGT WFuel
]T

, (37)

y =
[

PInlet PExh
]T

, (38)

ρ = NEng, (39)

υ =
[

TCAC WHFM
]T

. (40)

In diesel engines, actuator faults can be any
dysfunction on the EGR-valve, in the position of VGT
vanes or a fuel leakage. In this paper, the fuel leakage
is the only fault considered. However, it is also possible
to construct other residuals where each one is sensitive
only to one actuator fault (EGR or VGT actuator faults)
and insensitive to all other faults. For the fault isolation
purpose, only one component of u is considered to be
faulty. The other components of u are considered to be
unknown inputs (d).

The variables ρ1 and ρ2 are defined as

ρ1 =
N eng − Neng

N eng − N eng

, ρ2 =
Neng − N eng

N eng − N eng

, (41)

where N eng and N eng are respectively the minimum and
maximum values of the measurable variable Neng.

Matrices A1 and A2 are given by

A1 =

⎡

⎢
⎢
⎣

−�1 0 0 0
0 −�1 0 0
0 0 −�1 0
0 �1 �1 0

⎤

⎥
⎥
⎦ ,

A2 =

⎡

⎢
⎢
⎣

−�2 0 0 0
0 −�2 0 0
0 0 −�2 0
0 �2 �2 0

⎤

⎥
⎥
⎦ ,

with

�1 =
fvolN engVEng

120VInlet
,

�2 =
fvolN engVEng

120VInlet
.

Matrices Bg , C, BD, Bf and Bw are expressed as

Bg =

⎡

⎢
⎢
⎢
⎢
⎣

RAircp,Air

cv,AirVInlet
0

0 1
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎦

,

C =

⎡

⎣
1 0 0 0

0 0 0
RExhT

avg
Exh

VExh

⎤

⎦ , (42)

Bd =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

RExhcp,ExhTEGR

cv,ExhVInlet
√

RExhTExh
0

0 0

1√
RExhTExh

0

1√
RExhTExh

−1√
TExh

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

T

,

Bf =

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦ , (43)

Bw =
[

0 0 0 0
]T

, (44)

with T avg
Exh being the mean value of the measurable variable

TExh. In fact, this approximation is chosen in order to
decrease the number of variables to be used in observer
design, which results in decreasing the number of LMIs
to be solved, which is important from a practical point of
view. Indeed, the general case when the output equation
can be rewritten as

y =
nρ∑

j=1

�jCjx

= Cx +
nρ∑

j=1

�j (Cj − C) x = Cx + Dww,

with
Dw =

[
0 1
]T

.

Hence, w is regarded as disturbances which can be
rejected using the H∞ performance.

Finally, the functions g and ϕ are given by

g =
[

WHFMTCAC WHFM
]T

,

ϕ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

RInletPInlet

cv,Inlet

0

AEGRmExhΨκExhTExh√
RExhTExh

−
RExhTExhmExhτ

(
PExh
PAtm

, XVGT

)

VExh
√

TExh

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

5. Simulation results

5.1. Diagnosis setup. The proposed approach has
been tested on a four-cylinder diesel engine model
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running on AMEsim� platform in co-simulation with
Mathworks Matlab�/Simulink. The geometrical engine
characteristics are presented in Table 1.

The co-simulation environment allows us to run two
separate models with two different kinds of software at
the same time. Both solvers compute independently their
respective systems and exchange information with a fixed
communication step interval. The co-simulation platform
is used to run the engine model on the AMESim part and
the diagnosis algorithm (robust observer) on the Simulink
part.

Table 1. Geometrical engine characteristics.
stroke 86.5 mm
bore 86.5 mm

connecting rod length 150 mm
compression ratio 18

squish height 0.8 mm

5.2. Model validation. The model described in
Section 4 was simulated and compared with validation
data obtained by AMEsim by Djemili et al. (2011a). All
co-simulation tests have been done on load transients at
1500 rpm, i.e., each load kept for 15 seconds. A typical
difference between simulated and measured pressures
(AMESim) PInlet was observed and the model was shown
to have an average error less than 3%, which is acceptable.
The source of differences is explained by the following
reasoning:

• In the model heat exchangers volume and pipes
volumes are neglected.

• The volumetric efficiency fvol is obtained from
a lookup table which differs from the real
instantaneous value and depends on the engine
operating point. This may lead to errors in real
estimation of the gas taken into cylinders.

5.3. Residual generation. Let us first present the
numerical values of the variables and parameters used in
this work. For our application, we have

U = 10−8 ×
[

0 0 −1.5988 0
0 0 0 −0.8951

]T
, (45)

V = 10−15 ×
[ −0.4441 0.0215

−0.4441 −0.4441

]

, (46)

and

hmax
11 = −10, hmax

12 = 776.8324,

hmax
13 = −538.883, hmax

14 = 1.14192× 108,

hmax
34 = 2.2691, hmax

44 = −1.5663,

hmin
11 = −15, hmin

12 = 24.273,

hmin
13 = −2.651× 103, hmin

14 = 4.959 × 106,

hmin
34 = 0.0793, hmin

44 = −44.8256. (47)

the rest of hmax
ij and hmin

ij being zeros.
The scalar factor ZH is equal to 6 (4 × 4 − 10).

We obtain, after solving the LMIs (15a)–(15c) using
YALMIP, a toolbox for modeling and optimization in
Matlab�, the following results:

P =

⎡

⎢
⎢
⎣

0.0500 0 0 0
0 0.0612 0 0
0 0 0.0842 −0.0039
0 0 −0.0039 0.0500

⎤

⎥
⎥
⎦ ,

Ȳ = 106 ×

⎡

⎢
⎢
⎣

0 0
0 0

−3.0296 −0.1464
0.1152 0.0056

⎤

⎥
⎥
⎦ ,

K̄1 = 10−7 ×

⎡

⎢
⎢
⎣

1.79 × 107 0
30.62 −2.08

0 0
4.9 16.11

⎤

⎥
⎥
⎦ ,

K̄1 = 10−7 ×

⎡

⎢
⎢
⎣

1, 79 × 107 0
0 0

−0.0209 0.013
0.2 0.16

⎤

⎥
⎥
⎦ .

The value of the attenuation of the disturbance term
is chosen as γ1,2 = 0.0316. Now, we can easily deduce
Y and Kk from P−1Ȳ and P−1K̄k, respectively. The
matrix E is found as

E = U + Y V =
[ −1 0 0 0

0 0 0 0

]T
.

The observer gain matrices can now be computed and
given by

M =

⎡

⎢
⎢
⎣

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤

⎥
⎥
⎦ ,

L1 = 10−7×

⎡

⎢
⎢
⎣

0 0
−0.8841 0.0007
0.0064 0
0.0502 −0.0001

⎤

⎥
⎥
⎦ ,

L2 =10−8×

⎡

⎢
⎢
⎣

0 0
0 0

0.0792 −0.0001
0.1625 −0.0007

⎤

⎥
⎥
⎦ ,
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N1 =

⎡

⎢
⎢
⎣

−35.839 0.0001 0
−0.0001 −29.2698 0

0 −21.6507 −14.5833
0 −468.3496 −0.0003

0
380.9507
−2.7758
−36.2167

⎤

⎥
⎥
⎦ ,

N2 =

⎡

⎢
⎢
⎣

−35.8393 0 0
0 −29.1667 0
0 0 −29.1667
0 −0.0006 −0.0006

0
0.0005
−3.4134
−36.1644

⎤

⎥
⎥
⎦ .

Notice that the approach proposed by Chen and Saif
(2006) gives no solution since the Lipschitz constant is
greater than 108. Other methods can be used, or extended
to our case, as that proposed by Zemouche and Boutayeb
(2009) for estimating the state and unknown input vectors.
Unfortunately, this method is computationally demanding
since the number of LMIs that should be solved is equal to
NLMI = 2n×nf , where nf is the number of nonlinearities
in the system. So, in our case NLMI = 24×4 = 65536.
In addition, it is only proposed for standard systems with
a linear time-invariant part (Ax). The number of LMIs
will largely increase if this method is extended to our LPV
case.

The initial conditions for the observer are chosen
arbitrarily and given by

z0 =
[

9 0.0004 0.0008 9 × 10−11
]T

. (48)

For illustrating the performance of the proposed
approach, the unknown input vector d, which represents
in our case the two other possible actuator faults affecting
the EGR-valve and the position of VGT vanes, is taken as

d =

⎧
⎪⎪⎨

⎪⎪⎩

(
0
0

)

, 0 ≤ t ≤ 30,
( −10%AEGR

0

)

, otherwise.
(49)

The fault considered is a step-like fault with a
magnitude equal to −30% of the mass-flow of the injected
fuel. This fault is due either to a drop in the pressure in
the common rail or a dysfunction of one or more injectors,
introduced at t = 10 s (see (50)),

f =
{

0, 0 ≤ t ≤ 10,
−30%WFuel, otherwise.

(50)

To show the insensitivity of the residuals to operating
point changes and unknown inputs, the following scenario

was performed. First, a drift-like change in the engine
speed starts at t = 20 s is introduced (see 3). Next, an
abrupt change in the AEGR equivalent to 10% of the EGR
valve effective area, which is computed or fixed by the
controller, is considered. Notice that, for the observer
design purpose, the minimum and maximum values of
Neng (N eng and N eng) are taken as 2000 and 4000 rpm,
respectively.
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Fig. 2. Engine speed behavior.

The measured inlet and exhaust pressures are shown
in Fig 3. The residual behavior is illustrated in Fig. 4.
In the nominal case, in the time interval [0, 10] s, the
residuals r tend asymptotically to zero, as expected. As
seen in this figure, the sensitivity of the proposed observer
to the fault in the fuel mass flow is well shown from
the time instant t = 10 s. Besides, its insensitivity
to unknown inputs and operating point changes is well
illustrated on the time intervals [20, 30] s and [30, 60] s,
respectively.
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Fig. 3. Measured inlet pressure (continuous line) and exhaust
pressure (dashed line).
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Fig. 4. Residual behavior.

6. Conclusion

In this paper, a robust nonlinear unknown input observer
for actuator fault detection is proposed. It is developed
for a general class of nonlinear systems with a locally
or globally bounded Jacobian. Sufficient conditions
for the existence of the NUIO are given in terms of
matrix inequalities. An H∞ performance index is used
to attenuate the disturbances. The developed approach
is used successfully to design an NIUO for diesel
engines. The performances of the proposed approach
are shown using the professional diesel engine simulator
AMEsim(LMS) in co-simulation with the Simulink
software. A validation of this result with real data issued
from the Caterpillar 3126b Engine, located at Sussex
University, UK, is a subject of future research.
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Appendix A

Proof of Theorem 2

Using Theorem 1, the nonlinear term ϕ̃ can be written as

ϕ̃ =

⎡

⎣

⎛

⎝
n,n∑

i,j=1

Hmax
ij δmax

ij

⎞

⎠+

⎛

⎝
n,n∑

i,j=1

Hmin
ij δmin

ij

⎞

⎠

⎤

⎦ ē,

(A1)

δmax
ij , δmin

ij ≥ 0, δmax
ij + δmin

ij = 1. (A2)

To simplify the form of the final result as in the work of
Phanomchoeng et al. (2011), the term

n,n∑

i,j=1

(δmax
ij + δmin

ij )

must be scaled to one. If all the terms in ∂ϕi

∂xj
are not zero,

then the scaling factor ZH can be computed by

n,n∑

i,j=1

(
δmax
ij + δmin

ij

)
= n × n = ZH ,
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n,n∑

i,j=1

(
δmax
ij + δmin

ij

)

ZH
= 1.

Then, (A1) is rewritten as

ϕ̃ =

[(
n,n∑

i,j=1

H̄max
ij δ̄max

ij

)

+

(
n,n∑

i,j=1

H̄min
ij δ̄min

ij

)]

ē, (A3)

δ̄max
ij , δ̄min

ij ≥ 0,

δ̄max
ij +δ̄min

ij =
1

ZH
,

n,n∑

i,j=1

(
δ̄max

ij +δ̄min
ij

)
=1,

where

• H̄max
ij = ZHHmax

ij and H̄min
ij = ZHHmin

ij ,

• δ̄max
ij = δmax

ij /ZH and δ̄min
ij = δmin

ij /ZH .

Based on (A3), the function Γ becomes

Γ =

⎡

⎣
ēT

wT

ẇT

⎤

⎦

⎡

⎣
Λ P (KDw − MBw) −PEDw

(∗) −μInw 0
(∗) (∗) −μInw

⎤

⎦

×
⎡

⎣
ēT

wT

ẇT

⎤

⎦ ,

where μ = γ2
1,2,

Λ =
n,n∑

i,j=1

δ̄max
ij Ξmax

ij +
n,n∑

i,j=1

δ̄min
ij Ξmin

ij ,

Ξmax
ij =

(
MA−KC+MH̄max

ij

)T
P

+
(
MA−KC+MH̄max

ij

)
+ Inx ,

Ξmin
ij =

(
MA−KC+MH̄min

ij

)T
P

+P
(
MA−KC+MH̄min

ij

)
+ Inx ,

the negativity of Γ being ensured if

n,n∑

i,j=1

δ̄max
ij

⎡

⎣
Ξmax

ij P (KDw − MBw) −PEDw

(∗) −μInw 0
(∗) (∗) −μInw

⎤

⎦

︸ ︷︷ ︸
Mmax

ij

+

n,n∑

i,j=1

δ̄min
ij

⎡

⎣
Ξmin

ij P (KDw − MBw) −PEDw

(∗) −μInw 0
(∗) (∗) −μInw

⎤

⎦

︸ ︷︷ ︸
Mmin

ij

< 0.

(A4)

Since we have δ̄max
ij , δ̄min

ij ≥ 0, the previous
equation is equivalent to

Mmax
ij < 0 and Mmin

ij < 0. (A5)

By substituting the matrices A, L and K by their
expressions, (A5) can be written as follows:

nρ∑

k=1

ρkMmax
ijk < 0,

nρ∑

k=1

ρkMmin
ijk < 0, (A6)

where

Mmax
ijk =

⎡

⎣
Ξmax

ijk P (KkDw − MBw) −PEDw

(∗) −μInw 0
(∗) (∗) −μInw

⎤

⎦ ,

Mmin
ijk =

⎡

⎣
Ξmin

ijk P (KkDw − MBw) −PEDw

(∗) −μInw 0
(∗) (∗) −μInw

⎤

⎦ ,

with

Ξmax
ijk =

(
MAk−KkC+MH̄max

ij

)T
P

+ P
(
MAk−KkC+MH̄max

ij

)
+ Inx ,

Ξmin
ijk =

(
MAk−KkC+MH̄min

ij

)T
P

+ P
(
MAk−KkC + MH̄min

ij

)
+ Inx .

Since ρk > 0, ∀k = 1, . . . , nρ, the condition (A6) holds
if

Mmax
ijk < 0, Mmin

ijk < 0, (A7)

∀i = 1, . . . , n, j = 1, . . . , n and k = 1, . . . , nρ.
From (8c), M can be written as

M = Inx + UC + Y V C.

To obtain the LMIs (15)–(15b), it suffices to
substitute the formula of M in (A7) and to take K̄k =
PKk and Ȳ = PY . This ends the proof.
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Appendix B

Nomenclature

Table B1. Variables used in the engine model.
Symbol Quantity Unit

PInlet Pressure in intake manifold Pa
VInlet Volume of intake manifold m3

RAir Gas constant of air J · (Kg · K)
cp,Air Specific heat at const. pres. J · (Kg · K)

of air
cv,Air Specific heat at const. vol. J · (Kg · K)

of air
RExh Gas constant of exhaust gas J · (Kg · K)

of exhaust gas
cp,Exh Specific heat at const. pres. J · (Kg · K)

of exhaust gas
cv,Exh Specific heat at const. vol. J · (Kg · K)

of exhaust gas
RInlet Gas constant in intake manifold J · (Kg · K)
cp,Inlet Specific heat at const. pres. J · (Kg · K)

in intake manifold
cv,Inlet Specific heat at const. vol. J · (Kg · K)

in intake manifold
κ Ratio of specific heats cp/cv

WHFM Air mass-flow past air kg · s−1

mass-flow sensor
TCAC Temperature of air after K

charge-air cooler
WEGR EGR mass-flow into intake Kg · s−1

manifold
TEGR Temperature of EGR gas- K

flow into i.m
WInlet Mass-flow into engine inlet-ports kg · s−1

TInlet Temperature in intake K
manifold

mAir Mass of air in intake manifold Kg
mEGR Mass of EGR-gas in intake manifold kg
WExh Exhaust mass-flow into kg · s−1

exhaust manifold
mExh Mass of exhaust gas in kg

exhaust manifold
PExh Pressure in exhaust manifold Pa
TExh Temperature in exhaust K

manifold
AEGR Effective area of EGR valve m2

VEng Engine displacement m3

NEng Engine speed min−1

WFuel Mass-flow of injected fuel kg · s−1

QLHV Lower heating value J · kg−1

VExh Volume of exhaust manifold m3

pAtm Atmospheric pressure Pa
WTurb Exhaust mass-flow past kg · s−1

turbine
XVGT Position of VGT vanes %
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