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The focus of this paper is to develop reliable observer and filtering techniques for finite-dimensional battery models that
adequately describe the charging and discharging behaviors. For this purpose, an experimentally validated battery model
taken from the literature is extended by a mathematical description that represents parameter variations caused by aging.
The corresponding disturbance models account for the fact that neither the state of charge, nor the above-mentioned pa-
rameter variations are directly accessible by measurements. Moreover, this work provides a comparison of the performance
of different observer and filtering techniques as well as a development of estimation procedures that guarantee a reliable
detection of large parameter variations. For that reason, different charging and discharging current profiles of batteries
are investigated by numerical simulations. The estimation procedures considered in this paper are, firstly, a nonlinear
Luenberger-type state observer with an offline calculated gain scheduling approach, secondly, a continuous-time extended
Kalman filter and, thirdly, a hybrid extended Kalman filter, where the corresponding filter gains are computed online.
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1. Introduction

Battery systems are integral components in hybrid electric
power train structures. Recent advances in both efficiency
and energy density of battery systems allow their usage as
a secondary power source in various applications. These
applications range from hybrid drive chains in automotive
applications to load shaping devices for fuel cell systems.
Moreover, batteries can be used as intermediate storage
elements to provide an additional degree of freedom
for the decoupling of the operating point in an internal
combustion engine from the drive cycle. In this case,
batteries are charged both during regenerative braking
phases and by means of a load level increase of the internal
combustion engine. The current research does not only
focus on automotive or truck applications but also on the
hybridization of even larger diesel engines. In the work
of Leska et al. (2011), for example, batteries are used as a
secondary power source for hybrid railway vehicles.

To fully exploit the recuperation capabilities of
a battery by means of reliable control and/or state
estimation procedures, it is necessary to develop a
reasonably low-dimensional mathematical model that
adequately describes the dynamic behavior of the battery.

The complexity of mathematical battery models
ranges from static and quasi-static descriptions to complex
electro-chemical models (Benger et al., 2009; Gomadam
et al., 2002). In the case of static and quasi-static
modeling, the relationship between battery parameters,
operating conditions as well as terminal voltages and
currents is either described by a set of algebraic equations
or by numeric data represented in lookup tables (Johnson,
2002). For this reason, static and quasi-static models
require only small computational effort. However, these
models are insufficient to account for the dynamics
during the charging and discharging of batteries. Hence,
they are not suitable to implement accurate control and
estimation strategies for dynamic operating conditions.
Moreover, these static descriptions do not allow detection
of aging phenomena such as degradation of the battery
performance, which is related to an increasing internal
resistance or to a decreasing internal battery capacitance.
Aging occurs due to various factors such as temperature
variations, capacity loss due to long-lasting time of
storage, and repeated charging and discharging cycles.

To overcome the lack of information with respect
to the battery dynamics and their corresponding aging
effects, which goes along with using (quasi-) static
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battery models, the development of more detailed
electro-chemical descriptions has been considered, for
example, by Gu and Wang (2000), Wang and Srinivasan
(2002), Klein et al. (2012) or Smith et al. (2010).
Such electro-chemical models are based on mathematical
formulations of the chemical reactions taking place inside
batteries.

Commonly, these models are represented by a set
of partial differential equations with a large number
of parameters that are not directly accessible by
measurements in commercial applications. To allow
real-time implementations of control and state estimation
procedures for batteries, a trade-off between static
and quasi-static descriptions on the one hand and
high-dimensional electro-chemical models on the other
is inevitable. Such system models, in the following
referred to as control-oriented models, are typically based
on electric equivalent circuits that can be described by sets
of ordinary differential equations or differential algebraic
equations (Salameh et al., 1992; Buller et al., 2005;
Benini et al., 2001; Aylor et al., 1992). Control-oriented
models allow introducing model simplifications—such as
constant operating temperatures—to adapt the degrees
of freedom with respect to the application at hand.
Furthermore, as shown in this paper, aging phenomena
can be easily included by expressing them as variations of
the battery parameters. As an alternative to the presented
observer approaches, fault estimation techniques such as
those described, for example, by Xu et al. (2012) could be
applied to detect aging-relevant parameters.

In any application of batteries in both purely electric
and hybrid drive systems, knowledge of the amount
of energy available from the battery is essential for
the reliability of control and operating strategies. This
amount of energy imposes a restriction on how long a
battery can be used without requiring further recharging.
Mathematically, this energy can be given as a function of
the state of charge. The higher the state of charge, the
longer the battery can provide energy, and vice-versa.

In addition, accurate knowledge of the state of charge
is a crucial prerequisite to keep its value within those
limits that guarantee maximum battery life time. Since the
only measured data available from the battery in practical
applications are the charging and discharging currents as
well as the terminal voltage, it is not possible to determine
the state of charge directly. This leads to the need for
state estimation techniques that adapt automatically to a
varying state of health of the battery. Various techniques
to estimate the state of charge have been proposed in
previous works (cf. Aylor et al., 1992; Zhang et al.,
2008; Bhangu et al., 2005; Kim, 2006; Chiasson and
Vairamohan, 2005).

Zhang et al. (2008) estimated the state of charge
by using a linear relationship between the open circuit
voltage and the state of charge itself. This estimation

approach, hence, is only applicable for quasi-static
operating conditions in a restricted range for the state
of charge. Neural network methods for state of charge
estimation such as those proposed by Chan et al. (2000),
Bo et al. (2008) or Shen (2010) do not require linearity
assumptions between the open circuit voltage and the state
of charge. However, this method suffers from problems
due to the computational burden for the training of the
neural network involving a large number of data points.
Representatives for state of charge estimation procedures
relying on dynamic system models given by sets of
ordinary differential equations are, for example, sliding
mode observers as described by Zhang et al. (2008) or
Kim (2006). The effects of uncertain parameters as well
as battery aging have not been examined explicitly in the
above-mentioned estimation techniques.

To handle such phenomena, a nonlinear
Luenberger-type state observer has been proposed
by Rauh et al. (2010). The results of this paper are
briefly summarized in Section 3.1. The Luenberger-type
observer is designed in such a way as to estimate
parameter variations as well as the state variables
of equivalent circuit models for batteries under both
nominal and pre-aged operating conditions. This
observer technique is compared with a Continuous-Time
implementation of an Extended Kalman Filter (CT-EKF)
as well as with a Hybrid Extended Kalman Filter
(H-EKF). The underlying battery model, taken from the
works of Chen and Rincon-Mora (2006) as well as Erdinc
et al. (2009), is based on an experimental identification of
the state of charge dependencies of all system parameters.
In such a way, practical applicability can be guaranteed
for all estimation procedures presented in this paper.

The structure of this paper is as follows. In Section 2,
a control-oriented mathematical model of the battery is
stated that takes into account the explicit relationship
between the parameters of an equivalent circuit model and
the state of charge of the battery. This mathematical model
is extended to include parameter variations resulting
from degradation. In Section 3, different nonlinear
model-based observer and filtering techniques exploiting
either an offline or an online computation of the
respective gains are described in detail along with their
mathematical formulations. Corresponding simulation
results are provided in Section 4 for both nominal
operating conditions and disturbed parameters. These
simulations are carried out to compare the performance of
the Luenberger-type state observer, the CT-EKF and the
H-EKF, with the aim to identify operating conditions for
which either of the approaches is more reliable. Finally,
conclusions and an outlook on future work are given in
Section 5.
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2. Control-oriented mathematical models
for battery systems

As mentioned before, purely static and quasi-static
battery models cannot be employed to quantify the
dynamic behavior during charging and discharging
phases, whereas electro-chemical models often involve
a huge number of internal parameters that cannot be
identified properly in real-time applications. Therefore,
the control-oriented modeling approach is preferred to
develop different estimation procedures in the following.
Such control-oriented models range from purely ohmic
networks to RC network representations taking into
account charging and discharging effects. Pang et al.
(2001) proposed a simplified purely resistive network
as an equivalent circuit model for batteries. Since
batteries are typically exposed to time-varying charging
and discharging currents, for example, in power train
applications, the Thevenin equivalent circuit including RC
networks to account for charging and discharging cycles
has been proposed by Salameh et al. (1992), Buller et al.
(2005), Benini et al. (2001) or Aylor et al. (1992). In the
Thevenin equivalent circuit model, lumped RC networks
are introduced which allow studying the effects of both
slow and fast charging cycles. Further extensions of these
battery models, directly incorporating aging effects, can
be found, e.g., in the works of Serrao et al. (2005), Rong
and Pedram (2006) or Remmlinger et al. (2011).

In this paper, an extended battery model based on
Thevenin’s equivalent circuit model is used. The basic
battery model is shown in Fig. 1, where the shaded blocks
represent aging by parameter variations as described in
Section 2.2. The electric equivalent circuit contains
two first-order lag elements to describe the dynamics of
charging and discharging with different time constants.
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Fig. 1. Extended equivalent circuit of a battery.

As a model simplification, temperature variations are
neglected in this contribution. The effect of temperature
variations has been described by Rauh and Aschemann
(2012) by introducing it as an additional state variable
in the dynamic battery model. The following derivation
of a battery model is divided into two parts: first, a
nominal model of the battery is developed, where all

equivalent circuit parameters are assumed to be accurately
known; second, parameter variations and uncertainties are
introduced in the mathematical model to deal with aging
effects resulting in the extended battery model presented
by Rauh et al. (2010), as well as Rauh and Aschemann
(2012).

2.1. Nominal battery model. In the nominal battery
model, the state of charge σ(t) as well as the voltages
vTL(t) and vTS(t) across the RC networks shown in
Fig. 1 represent the state variables, whereas the terminal
current iT (t) is the known input applied to the battery.
The terminal voltage vT (t) is employed as the measured
system output.

The state of charge is considered to be a normalized
quantity σ(t) ∈ [0; 1], where σ(t) = 1 corresponds
to the fully charged battery and σ(t) = 0 represents
the completely discharged battery. Assuming exactly
known values for the terminal current iT (t) and the battery
capacitance CBat, the state of charge can be determined by
integrating the first-order differential equation

σ̇(t) = − iT (t)
CBat

. (1)

Unfortunately, the battery capacitance CBat depends
on external effects such as aging and temperature
variations and is therefore not precisely known. For this
reason, it is essential to consider measured data along with
(1) to reconstruct σ(t) (for which the initial condition σ(0)
cannot be measured directly) over sufficiently long time
intervals. In the nominal model, the open circuit voltage
vOC(t) is a function of the state of charge σ(t) (Chen
and Rincon-Mora, 2006; Erdinc et al., 2009; Rauh et al.,
2010), leading to the necessity to include it explicitly as
a state variable. The battery model summarized in the
remainder of Section 2.1 is based on the works of Chen
and Rincon-Mora (2006) as well as Erdinc et al. (2009),
where both the structure of the equivalent circuit shown
in Fig. 1 and its parameterizations have been validated
experimentally for nominal operating conditions of a new
battery that has not yet been exposed to aging.

The relationship between the open circuit voltage
vOC(t) and the state of charge σ(t) can be described by a
parameterizable nonlinear algebraic function

vOC(σ(t)) = v0 · ev1·σ(t) + v2 + v3 · σ(t)

+ v4 · σ2(t) + v5 · σ3(t).
(2)

The corresponding nonlinear characteristic for the open
circuit voltage is displayed in Fig. 2.

Ohmic losses are taken into account by a series
connection of the internal resistance of the battery,
denoted by RS(t), with two RC subnetworks. This
resistance,

RS(t) = RSa · eRSb·σ(t) + RSc, (3)
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Fig. 2. Open circuit voltage vOC(t) = vOC(σ(t)) as a function
of the state of charge σ(t).

depends on the state of charge σ(t) in a nonlinear way.
As shown in Fig. 1, the charging and discharging

dynamics are modeled by the previously mentioned RC
subnetworks accounting for processes with short and
large time constants (TS and TL, respectively). The
parameter values of the RC subnetworks can be identified
experimentally on the basis of an impedance spectroscopy.
They typically show an exponential dependency on the
state of charge σ(t), where the parameters are given by

RTS(t) = RTSa · eRT Sb·σ(t) + RTSc, (4)

CTS(t) = CTSa · eCTSb·σ(t) + CTSc, (5)

RTL(t) = RTLa · eRTLb·σ(t) + RTLc, (6)

CTL(t) = CTLa · eCTLb·σ(t) + CTLc, (7)

according to Chen and Rincon-Mora (2006), as well as
Erdinc et al. (2009). The voltages of the RC subnetworks
are represented by vTS(t) and vTL(t) according to the
differential equations

v̇TS(t) =
−vTS(t)

CTS(t) · RTS(t)
+

iT (t)
CTS(t)

(8)

and

v̇TL(t) =
−vTL(t)

CTL(t) · RTL(t)
+

iT (t)
CTL(t)

. (9)

Finally, the terminal voltage vT (t) can be computed
by an evaluation of Kirchhoff’s voltage law as the
algebraic equation

vT (t) = vOC(t) − iT (t) · RS(t) − vTS(t) − vTL(t).
(10)

It can be seen from Eqns. (1)–(10) that all parameters
in the equivalent circuit model are in general nonlinear
functions of the state of charge σ(t).

For further investigations, the mathematical model of
the nominal system is written in the compact form

ẋ(t) = f(x(t), u(t)), (11)

with the state vector

x(t) := [σ(t) vTS(t) vTL(t)]T (12)

and the input current u(t) = iT (t). Here, the set of
differential equations contains the expressions (1), (8),
and (9).

The corresponding output equation (10) is stated as

vT (t) = h(x(t), u(t)). (13)

Since the battery is constantly exposed to external
effects such as temperature variations and aging—which
cannot be accounted for in detail in the above-mentioned
model—the influence of these effects is described in a
sufficiently accurate way by variations of the battery
parameters. This leads to the extended battery model
described in the following.

2.2. Extended battery model. As shown in Fig. 1,
parameter variations are assumed to have an impact on the
series resistance RS(t) as well as on the RC subnetwork
parameters RTS(t), CTS(t), RTL(t), and CTL(t), as
indicated by the gray boxes around the corresponding
network components. This assumption helps to preserve
the structure of the nominal battery model by taking into
account aging effects in terms of additional parameters
α(t), β(t), and γ(t) (Rauh et al., 2010; Rauh and
Aschemann, 2012).

Commonly, the series resistance RS(t) of the battery
increases to a value R̃S(t) due to aging. This motivates
the use of the parameter α(t) according to the definition

R̃S(t) = α(t) · (RSa · eRSb·σ(t) + RSc), (14)

where α = 1 denotes the nominal system behavior.
Similarly, both RC subnetwork models are extended to
include aging effects by the parameters β(t) and γ(t),
expressing changes in the corresponding time constants
and resistances. The new mathematical models for the RC
subnetworks are then given by

ṽTS(t) = β(t) · RTS(t) · (iT (t) − CTS(t) · ˙̃vTS(t))
(15)

and

ṽTL(t) = γ(t) · RTL(t) · (iT (t) − CTL(t) · ˙̃vTL(t)).
(16)

As for the variable α(t), also the parameters β(t) and
γ(t) are set to β = 1 and γ = 1 for nominal operating
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conditions, for which ṽTS(t) = vTS(t) and ṽTL(t) =
vTL(t) hold.

Since the aging parameters are characterized by
time constants that are larger by several orders of
magnitude than the remaining system dynamics, they
can be described by independent integrator disturbance
models

α̇(t) = 0, (17)

β̇(t) = 0, (18)

γ̇(t) = 0. (19)

The differential equations that describe the extension of
the system model (11) and (12) can be written in compact
form according to

˙̃x(t) = f̃(x̃(t), u(t)). (20)

The variation rates of the extended state vector

x̃(t) := [σ(t) ṽTS(t) ṽTL(t) α(t) β(t) γ(t)]T (21)

are expressed by Eqns. (1) and (15)–(19), where the new
output is given by

ṽT (t) = vOC(t) − iT (t) · R̃S(t) − ṽTS(t) − ṽTL(t)
(22)

as a generalization of (10). This equation is abbreviated
in the following by

ỹ(t) = ṽT (t) = h̃(x̃(t), u(t)). (23)

In the remainder of this paper, the variables available
by measurements are the terminal voltage ṽT (t) and the
battery current iT (t). All other states of the battery are
assumed to be inaccessible in a direct way.

3. Observer and filter design

Luenberger-type observers and EKF techniques which
are based on a continuous-time implementation of the
extended battery model derived in Section 2.2 are
proposed in the following. State observer techniques are
utilized to estimate all components of the extended state
vector x̃(t) in a deterministic way. To be able to estimate
all components of x̃(t), it is necessary that the model be
fully state observable (Zeitz, 1987; Krener and Isidori,
1983). Local observability can be verified by using
Kalman’s observability criterion, where the observability
matrix is computed for the nonlinear system model after
a linearization at the currently estimated state. Further
approaches for the analysis of observability of nonlinear
dynamic systems can be found in the work of Zhirabok
and Shumsky (2012).

Using only ṽT (t) and iT (t) as available data for
an observer, the extended battery model (20) with (23)

is unobservable if it is linearized at a fixed operating
point before the observer is designed. This difficulty
can be overcome by designing an observer that directly
accounts for the nonlinear system dynamics. This can be
achieved by extending the system output (terminal voltage
ṽT (t)) by its first three low-pass filtered time derivatives
(with time constants that are significantly smaller than the
system dynamics) according to (Rauh et al., 2010)

ỹ(t) = h̃(x̃(t), u(t))

= [ṽT (t) ˙̃vT (t) ¨̃vT (t)
...
ṽ T (t)]T . (24)

Here, the function h̃(x̃(t), u(t)) contains symbolic
expressions for the time derivatives of ṽT (t), which are
computed recursively by an evaluation of the term

ṽ
(i)
T (t) =

diṽT (t)
dti

=

(
∂ṽ

(i−1)
T (t)
∂x̃(t)

)T

· ˙̃x(t) (25)

for i ≥ 1, where u̇(t) ≈ 0 has been assumed.
Using techniques for symbolic formula

manipulation, it can be shown that the observability
mapping (Rauh et al., 2009; Isidori, 1995) contains
additional information that is not present in the cases in
which the system model is linearized first. Moreover,
the Jacobian of this observability mapping is a matrix of
full rank, corresponding to a sufficient criterion for local
observability.

Therefore, the following nonlinear Luenberger-type
state observer and both EKF variants considered make use
of the extended output definition ỹ(t) that is given by (24)
and (25).

An illustrative example about the dynamic extension
of the output equations according to (24) is given in
Appendix A. This example aims at highlighting how
local observability can be achieved by the corresponding
procedure.

3.1. Nonlinear gain-scheduled Luenberger-type state
observer. Using the extended battery model (20)–(24),
the observer ansatz is given by the following set of
equations (Rauh et al., 2010):

˙̃̂x(t) = f̃(ˆ̃x(t), u(t)) + LLB · (ỹ(t) − ˆ̃y(t)), (26)

ˆ̃y(t) = h̃(ˆ̃x(t), u(t)), (27)

where ˆ̃x(0) and x̃(0) are the initial conditions of the
battery model included in the observer and the real battery
system, respectively. Note that the observer design has to
guarantee the convergence of ˆ̃x(t) towards x̃(t), even in
the cases in which ˆ̃x(0) �= x̃(0) holds.

In (26), a parallel model f̃(ˆ̃x(t), u(t)) of the system
dynamics is included in the differential equations of
the observer which is corrected online on the basis of
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measured data by a feedback of the output error Δỹ(t) :=
ỹ(t) − ˆ̃y(t).

To guarantee that the state estimation error Δx̃(t) :=
x̂(t) − ˆ̃x(t) and as well as the output error Δỹ(t) :=
ŷ(t) − ˆ̃y(t) converge to zero, the error dynamics have
to be asymptotically stable. This can be achieved by
minimizing the integral cost function

J =

∞∫
0

(
Δx̃(t)T QLBΔx̃(t) + Δỹ(t)T RLBΔỹ(t)

)
dt

(28)

with a positive semi-definite matrix QLB = QT
LB ≥ 0

and a positive definite matrix RLB = RT
LB > 0. Here, the

matrices QLB and RLB are chosen as constant weighting
matrices. The solution of the corresponding quadratic
optimization problem is given by the algebraic Riccati
equation

PLB(σ∗)C(σ∗)T R−1
LBC(σ∗)PLB(σ∗)

− A(σ∗)PLB(σ∗) − PLB(σ∗)A(σ∗)T − QLB = 0
(29)

with a symmetric, positive definite matrix PLB(σ∗)1.
Equation (29) is evaluated offline for fixed values

0 ≤ σ∗ ≤ 1 of the state of charge. During the solution of
the algebraic Riccati equation (29), this value σ∗ is treated
as a gain-scheduling parameter with the matrices

A(σ∗) : =
∂ f̃(x̃(t), u(t))

∂x̃

∣∣∣∣∣
σ=σ∗

(30)

and

C(σ∗) : =
∂h̃(x̃(t), u(t))

∂x̃

∣∣∣∣∣
σ=σ∗

. (31)

The matrices (30) and (31) denote the Jacobians of the
state and output equations, respectively. During their
evaluation, all state variables—except for σ(t)—as well
as the input current iT (t) are set to a fixed representative
operating point of the battery.

In such a way, the offline solution of (29) and the
corresponding evaluation of the observer gain matrix

LLB(σ∗) = PLB(σ∗)C(σ∗)T R−1
LB (32)

become possible.
Note that this offline evaluation of the Riccati

equation is performed under the consideration of nominal
parameter values α = β = γ = 1. This simplifying
assumption is removed in the following by the two
presented variants of the EKF.

1An outline of this solution procedure can be found in Appendix B.

Using the offline computed matrices LLB(σ∗), the
actual observer gain LLB(σ̂) is adjusted online by means
of a linear interpolation of the corresponding matrix
entries, where the current state-of-charge estimate σ̂(t)
serves as a substitute for its unknown, true value σ(t).

The performance of this gain-scheduled
Luenberger-type state observer is compared for both
nominal and disturbed system parameters with an EKF
that utilizes a continuous-time model of the battery.
Note that the cost function (28) exploits the analogy
between the linear-quadratic control and state observer
design (cf. Appendix B). If the solution of the matrix
Riccati equation (29) is compared with the matrix Riccati
differential equation in (38), it can be moreover seen that
the design criterion for the Luenberger-type observer
structurally corresponds to the steady-state solution of a
continuous-time extended Kalman filter design. However,
Eqns. (28) and (29) do not contain any stochastic
system model. Instead, the matrices QLB and RLB are
rather chosen in such a way as to represent the level of
confidence in the measured variables and to minimize the
estimation errors over reasonable time intervals.

3.2. Extended Kalman filter design. Discrete-time
implementations of EKFs for the purpose of state of
charge estimation have been described by Bhangu
et al. (2005), Junping et al. (2009) and Plett
(2004a; 2004b; 2004c). In contrast, two EKF
implementations are considered in the following that
utilize the continuous-time battery model directly. In
the first case, a CT-EKF that contains a continuous-time
model with continuous-time measurements is described.
In the second case, an H-EKF is proposed. The letter
employs a continuous-time system model with the
practically relevant case of discrete-time measurements.

3.2.1. Continuous-time extended Kalman filter.
For the nonlinear extended battery model described by
(20)–(24), the CT-EKF design is based on reformulating
the state and measurement equations (20) and (24)
according to the stochastic model

dx̃(t) = f̃(x̃(t), u(t)) dt + Q
1
2
KF dwp(t), (33)

ỹ(t) dt = h̃(x̃(t), u(t)) dt + R
1
2
KF dwm(t), (34)

where Q
1
2
KF and R

1
2
KF are the volatility parameters

that characterize the process and measurement noise.
Moreover, the noise processes dwp and dwm are
then described by standard Brownian motions (Wiener
processes) with zero mean. The need for including the
process noise wp(t) arises due to modeling inaccuracies
and a lack of an explicit aging model for the parameters
α, β, and γ. Here, the standard deviation of the system
noise has to be chosen such that it covers all typical model
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variations that are not explicitly accounted for in the
deterministic system part f̃(x̃(t), u(t)). Additionally, the

measurement noise R
1
2
KF dwm(t) represents inaccuracies

and errors resulting from the use of low-pass filtered
derivatives in (24).

As shown in the following, the design of the CT-EKF
involves the linearization of the nonlinear function
f̃(x̃(t), u(t)) and the output function h̃(x̃(t), u(t)) at
the current state estimate ˆ̃x(t). For the nonlinear
system described by (33) and (34), the CT-EKF can be
implemented by the following set of equations (Mohinder
and Andrews, 2001; Rauh and Aschemann, 2012; Stengel,
1994):

˙̃̂x(t) = f̃(ˆ̃x(t), u(t)) + LKF ·
(

ỹ(t) − ˆ̃y(t)
)

, (35)

F(t) =
∂ f̃(x̃(t), u(t))

∂x̃

∣∣∣∣∣
x̃(t)=ˆ̃x(t)

, (36)

H(t) =
∂h̃(x̃(t), u(t))

∂x̃

∣∣∣∣∣
x̃(t)=ˆ̃x(t)

, (37)

ṖKF (t) = F(t)PKF (t) + G(t)QKF (t)GT (t)

− PKF (t)HT (t)R−1
KF (t)H(t)PKF (t)

+ PKF (t)FT (t),
G(t) = I, (38)

LKF (t) = PKF (t)HT (t)R−1
KF (t), (39)

where the error covariance matrix PKF (t) is symmetric
and positive definite.

In Eqn. (35), ˆ̃x(t) denotes the estimated states, ˆ̃y(t)
stands for the filter output, and LKF (t) is the gain of
the CT-EKF. Stability of the error dynamics has to be
guaranteed as before for the initial states ˆ̃x(0) and x̃(0),
which are typically not identical, i.e., ˆ̃x(0) �= x̃(0). In (36)
and (37), the matrices F(t) and H(t) are the Jacobians of
the state and output equations evaluated at the current state
estimate ˆ̃x(t), respectively.

The measurement noise covariance matrix RKF (t),
the process noise covariance matrix QKF (t), and the
covariance PKF (0) of the estimation error at the initial
point of time represent free design parameters. The
matrix PKF (t) = PT

KF (t) is calculated by solving the
matrix Riccati differential equation (38) in real time.
Note that the prediction and correction steps, which are
well known for discrete-time (extended) Kalman filter
implementations, are coupled in the CT-EKF (Mohinder
and Andrews, 2001; Stengel, 1994).

The CT-EKF is computationally more expensive than
the gain-scheduled Luenberger-type state observer. An
increase in the computational effort arises due to the
online computation of the Kalman gain LKF (t), which
depends on the Jacobian H(t) as well as the solution
of the matrix Riccati differential equation according

to (35)–(39). In comparison with the Luenberger-type
observer, the CT-EKF involves additional ordinary
differential equations to calculate the error covariance
matrix PKF (t); see (38). However, the advantage of this
extension is that the Kalman gain matrix LKF (t) is not
only scheduled as a function of the state of charge σ(t) but
also depends on the estimates for the parameters α, β, and
γ. This implies faster convergence to the true states and
parameters in the case of large parameter uncertainties,
especially for a slowly varying terminal current iT (t).

However, in real-life battery systems, measured data
of both the terminal current and voltage are only available
at fixed discrete sampling times. This is accounted for
in the following subsection by the H-EKF, where the
measurement model (34) is replaced by the discrete-time
formulation

ỹ(tk) = h̃(x̃(tk), u(tk)) + wm(tk), (40)

with the normally distributed discrete-time measurement
noise wm(tk) ∼ N (0, Rh) and the covariance Rh.

3.2.2. Hybrid extended Kalman filter. To overcome
the problem that the CT-EKF requires continuous values
for the output voltage and the battery input current, an
H-EKF is proposed. On the one hand, this hybrid
filter considers a continuous-time dynamic model (33)
of the battery within the observer for the state and
covariance propagation. On the other hand, discrete-time
equations (40) are used in the update step when the
measured data become available with a fixed sampling
period. Block diagrams as well as further detailed
descriptions of the methodological background of the
state estimation procedures presented in this paper can be
found in the work of Stengel (1994).

During the propagation step, the continuous-time
model of the battery is used to estimate the states as well
as the covariance matrix. The set of equations for the
propagation step is given as (Stengel, 1994)

ˆ̃x
−

(tk) = ˆ̃x+(tk−1) +

tk∫
tk−1

f̃(ˆ̃x−(τ), u(τ))dτ, (41)

P−
h (tk) = P+

h (tk−1) +

tk∫
tk−1

[
Fh(τ)Ph(τ) + Ph(τ)FT (τ)

+ G(τ)QKF (τ)GT (τ)
]
dτ, G(τ) = I. (42)

As soon as measured data are available, the filter gain
Lh(tk) is computed. It is then used to update both the

states ˆ̃x
+
(tk) and the covariance matrix P+

h (tk).
According to Stengel (1994), the set of equations
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governing the update step is given by

Lh(tk) = P−
h (tk)HT

h (tk)
[
Hh(tk)P−

h (tk)HT
h (tk)

+ RKF (tk)
]−1

, (43)

ˆ̃x
+
(tk) = ˆ̃x−(tk) + Lh(tk)

[
ỹ(tk) − ˆ̃y(tk)

]
, (44)

P+
h (tk) =

[
In − Lh(tk)Hh(tk)

]
P−

h (tk). (45)

As for the previous filter approach, the Jacobian

Fh(τ) =
∂ f̃(x̃(τ), u(τ))

∂x̃

∣∣∣∣∣
x̃(τ)=ˆ̃x

−
(τ)

(46)

represents a linearization of the state equations, which is

evaluated for the values ˆ̃x
−

(τ) before the application of
the update step. The corresponding output Jacobian

Hh(tk) =
∂h̃(x̃(tk), u(tk))

∂x̃

∣∣∣∣∣
x̃(tk)=ˆ̃x

−
(tk)

(47)

is evaluated for ˆ̃x
−

(tk) at the end of the propagation
step (41).

Suitable initial conditions for the state ˆ̃x
+
(t0) and

the error covariance matrix P+
h (t0) are important for

a good estimation behavior. Furthermore, the noise
covariance matrices RKF (t) and QKF (t) represent free
design parameters as in the case of the CT-EKF. In
contrast to the CT-EKF, the prediction and update steps
are decoupled for the hybrid filter and can, hence, be
evaluated subsequently.

4. Simulation results

To compare the performance of the Luenberger-type state
observer as well as the CT-EKF and the H-EKF, two
different input current profiles are used. On the one hand,
a current profile iT (t) with a low frequency and a small
magnitude is employed. On the other hand, a rapidly
changing input current with an increased magnitude is
studied. Furthermore, in the case of the H-EKF, the
measured data are assumed to be available in a discrete
sampling interval of 10 ms.

The observer gain matrix LLB(σ∗) in Eqn. (32)
is computed offline after discretizing the range [0, 1] for
the state of charge σ(t) into 20 equally spaced points.
The weighting matrices RLB and QLB are initialized as
identity matrices. In the case of the CT-EKF and the
H-EKF, large initial values of the error covariance matrix
PKF (0) are chosen to achieve a fast error convergence.
It has been assumed that the correlation between the
elements in the covariance matrices QKF , RKF , Qh, and
Rh is zero, hence resulting in diagonal matrices.

The covariance matrices for the process and
measurement noise are set to the constant matrices

QKF = diag(σ2
w1; σ

2
w1; σ

2
w1; σ

2
w2; σ

2
w2; σ

2
w2),

RKF = diag(0.012; 0.012; 0.012; 0.012) (48)

for the CT-EKF and to

Qh = 0.01 · QKF ,

Rh = RKF (49)

for the H-EKF. The values of the standard deviations σw1

and σw2 are chosen in such a way that the estimation
quality, its convergence rate, and the robustness of the
filters are sufficiently good.

To assess the performance of the Luenberger-type
state observer and both the CT-EKF and the H-EKF,
three different scenarios are considered for the simulation
analysis. In Section 4.1, simulations are carried out for
the Luenberger-type state observer as well as the CT-EKF
and the H-EKF with nominal operating conditions. In
Section 4.2, the performance of the observers is compared
for disturbed parameters that represent aging phenomena.
Since it is difficult to measure the internal resistance of
a battery directly, a further simulation analysis is carried
out in Section 4.3. It aims at determining the internal
resistance RS(t) of the battery directly with the help
of the proposed observers. Finally, a relative measure
for the performance of the Luenberger-type observer and
both the CT-EKF and the H-EKF is introduced in terms
of the root of the integral square error in the state of
charge estimation to provide a fair comparison between
the alternative observer techniques.

4.1. Estimation of the state of charge and param-
eter variations under nominal operating conditions.
In the first case, a nominal model of the battery is used,
that is, all aging parameters α, β, and γ are initialized
with 1 in both the battery and the observer model. The
input current profile has a low magnitude as well as a low
frequency. The extended battery model is initialized with
the vector

x̃0 = [0.7 0 0 1 1 1]T . (50)

Moreover, the Luenberger-type state observer as well as
the CT-EKF and the H-EKF are initialized with

ˆ̃x0 = [0.6 0 0 1 1 1]T . (51)

Note that x̃0 �= ˆ̃x0 was chosen to visualize the capabilities
of the estimation techniques to deal with initial conditions
that are not exactly known. The simulation results for the
Luenberger-type state observer and both the CT-EKF and
the H-EKF are shown in Fig. 3.
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Fig. 3. Estimation results for a low frequency current with nominal parameters: terminal current iT (t) (a), estimate α̂(t) for the

parameter α(t) (b), estimate β̂(t) for the parameter β(t) (c), estimate γ̂(t) for the parameter γ(t) (d), estimate σ̂(t) for the state
of charge σ(t) (e), estimation error Δσ̂(t) = σ(t) − σ̂(t) (f).

The performance of the different observers is also
compared for a rapidly changing current iT (t). The
current profile with a high frequency is given as

iT (t) = (−0.25 + 4 · sign(sin(2πft))) [A], (52)

where the frequency is chosen as f = (30 s)−1. The
simulation results for the current profile in (52) are shown
in Fig. 4.

These simulation results indicate that the observed
state of charge converges more quickly to the true value
in the case of the Luenberger-type state observer than for

the CT-EKF and the H-EKF if the current with a low
frequency is used. However, for a current with a high
frequency, the convergence rate is better for the CT-EKF
in comparison with the Luenberger-type state observer
and the H-EKF. The parameter estimates α̂(t), β̂(t),
and γ̂(t) remain close to the assumed nominal operating
conditions for all approaches in Fig. 3. Concerning this
property, the CT-EKF leads to the best behavior in Fig. 4.

4.2. Estimation of the state of charge and parame-
ter variations with aging effects. In the second case,
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Fig. 4. Estimation results for a high frequency current with nominal parameters: estimate α̂(t) for the parameter α(t) (a), estimate β̂(t)
for the parameter β(t) (b), estimate γ̂(t) for the parameter γ(t) (c), estimate σ̂(t) for the state of charge σ(t) (d), estimation
error Δσ̂(t) = σ(t) − σ̂(t) (e).

the battery parameters are subject to aging effects. Aging
enlarges the internal resistance of the battery and, hence,
the parameter α is increased. At the same time, the
time constants of the RC subnetworks are also affected.
Thus, the parameters β̂ and γ̂ are set to values differing
from their nominal values β and γ that are used in the
simulation model of the battery.

To study the effect of parameter variations, the
battery is initialized with

x̃0 = [0.7 0 0 1.1 0.95 0.95]T , (53)

while the initial conditions for the observer and the filters
are given by

ˆ̃x0 = [0.6 0 0 1.05 0.85 0.85]T . (54)

Figure 5 shows the simulation results for all
estimators with the corresponding current profile with low
frequency.

For the current profile with a high frequency given
by (52), the simulation results are depicted in Fig. 6.
According to the simulation analysis, both the CT-EKF
and the H-EKF perform better in estimating the state of
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Fig. 5. Estimation results for a low frequency current with disturbed parameters: terminal current iT (t) (a), estimate α̂(t) for the
parameter α(t) (b), estimate β̂(t) for the parameter β(t) (c), estimate γ̂(t) for the parameter γ(t) (d), estimate σ̂(t) for the state
of charge σ(t) (e), estimation error Δσ̂(t) = σ(t) − σ̂(t) (f).

charge as well as the parameter variations in comparison
to the Luenberger-type observer for the low frequency
current profile. However, both the CT-EKF and the
H-EKF have the drawback of an increased computational
effort. In contrast to the CT-EKF, the computational
effort for the H-EKF is smaller because the update step
is initiated only when the measured data are available.
Moreover, both the CT-EKF and the H-EKF exhibit the
same performance considering the estimation of the state
of charge and the parameter variations. The performance
improvement of the EKF with respect to the deterministic

observer is due to the online computation of the observer
gain LKF and its simultaneous adaptation with respect to
the parameters α, β and γ.

The rapid changes in the current profile lead to a
faster state of charge convergence to the true value in the
case of the CT-EKF compared with the H-EKF and the
Luenberger-type observer.

4.3. Direct estimation of the internal resistance.
In the third case, the internal resistance RS(t) of the
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Fig. 6. Estimation results for a high frequency current with disturbed parameters: estimate α̂(t) for the parameter α(t) (a), estimate
β̂(t) for the parameter β(t) (b), estimate γ̂(t) for the parameter γ(t) (c), estimate σ̂(t) for the state of charge σ(t) (d), estimation
error Δσ̂(t) = σ(t) − σ̂(t) (e).

battery is estimated directly for varying current profiles
iT (t). The parameter α̂ is used as an estimate for RS(t)
according to R̃S(t) := α(t), whereas the remaining
battery model given by Eqns. (20) and (22) remains
unchanged. The terminal voltage for the observer is then
given as

ˆ̃vT (t) = vOC(t) − iT (t) · α(t) − ṽTS(t) − ṽTL(t).
(55)

The simulation results are shown in Figs. 7 and 8 for the
current profile with a low frequency and for the rapidly

changing current given by (52), respectively. In Fig. 8, the
variation in the reference value of the internal resistance
RS(t) is of small magnitude around its nominal value and,
hence, it seems to be a constant line.

Again, both the CT-EKF and the H-EKF provide
a superior estimation quality for the state of charge as
well as the internal resistance for both current profiles,
yet at the cost of an increased computational effort. In
practical applications, this type of observer can replace
the identification of the state of charge dependency of the
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Fig. 7. Estimation results for the internal resistance RS(t) with a low frequency current and nominal parameters: terminal current

iT (t) (a), estimate R̂S(t) for the parameter RS(t) (b), estimation error ΔR̂S(t) = RS(t) − R̂S(t) (c), estimate σ̂(t) for the
state of charge σ(t) (d), estimation error Δσ̂(t) = σ(t) − σ̂(t) (e).

internal battery resistance, which is typically carried out
by means of an impedance spectroscopy. Note again that
the Luenberger-type observer approach is expected to be
less time consuming for real-life applications than the two
EKF variants.

A performance index χ (based on the root of the
integral square error between the true state of charge σ(t)
and observed state of charge σ̂(t)) is chosen to compare
the prediction accuracy of the state of charge for the
Luenberger-type observer as well as for the CT-EKF and
the H-EKF for different current profiles. The performance

index χ is given by

χ =
1
tf

√√√√√
tf∫
0

(σ(t) − σ̂(t))2 dt, (56)

where tf denotes the final time for the complete length of
simulation.

It can be seen from Table 1 that the performance
index χ shows better results for the Luenberger-type
observer with nominal operating conditions and low
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Fig. 8. Estimation results for the internal resistance RS(t) with a high frequency current and nominal parameters: estimate R̂S(t)
of the parameter RS(t) (a), estimation error ΔR̂S(t) = RS(t) − R̂S(t) (b), estimate σ̂(t) of the state of charge σ(t) (c),
estimation error Δσ̂(t) = σ(t) − σ̂(t) (d).

Table 1. Comparison of the performance indices χ.

Case study CT-EKF χ H-EKF χ Luenberger-type state observer χ

Nominal parameter with a low frequency current 9.700 · 10−3 8.400 · 10−3 2.000 · 10−3

Nominal parameter with a high frequency current 3.158 · 10−4 1.610 · 10−2 1.710 · 10−2

Disturbed parameter with a low frequency current 9.000 · 10−3 8.500 · 10−3 4.100 · 10−3

Disturbed parameter with a high frequency current 5.211 · 10−4 1.310 · 10−2 1.350 · 10−2

RS(t) estimation with a low frequency current 1.100 · 10−3 7.000 · 10−3 5.000 · 10−3

RS(t) estimation with a high frequency current 9.000 · 10−3 1.780 · 10−2 9.800 · 10−3

frequency current profiles. As high frequency profiles for
the current iT (t) might lead to noise in the differentiation
of the terminal voltage ṽT (t), the stochastic model used in
the EKF leads to improved results.

5. Conclusions

In this paper, an experimentally validated control-oriented
battery model has been extended by further parameter
variations that cannot be determined directly on the basis
of measurements to represent the battery’s state of health.
The state of charge, the internal resistance, and parameter

variations are estimated by applying different current
profiles using, first, a gain-scheduled Luenberger-type
observer, second, a CT-EKF and, third, an H-EKF.
Numerical simulation results show the impact of the
amplitudes and variation rates of these profiles on the
estimation quality.

The Luenberger-type state observer is characterized
by a fast error convergence for nominal operating
conditions with a slowly varying charging and discharging
current profile. The computational effort required for the
Luenberger-type observer is smaller than for the EKF due
to the offline computation of the observer gain matrix. The
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CT-EKF and the H-EKF suppress noise resulting from
the numerically differentiated terminal voltage vT (t) for a
rapidly changing current iT (t) by using a stochastic model
for both the system and measurement noise.

For rapidly changing currents, the CT-EKF and
the H-EKF provide improved estimates for the internal
battery resistance and the state of charge as well as
for parameter variations due to aging. The enhanced
performance of the CT-EKF and the H-EKF results from
the online computation of the filter gains at the cost of
its computational effort. Moreover, the H-EKF meets the
basic requirements for a real-time implementation, where
measurements are available only at discrete sampling
times.

Future work aims at including temperature variations
explicitly in the model equations to further investigate
the performance of both observer and filter types. A
problem that often arises when implementing the EKF
is the calculation of the process noise covariance. As
the process noise covariance cannot be measured directly,
suitable criteria for selecting this covariance matrix will be
further investigated. Furthermore, the presented observer
approaches can be used for closed-loop control strategies
ensuring asymptotic stability. Moreover, a sensitivity
analysis with respect to the current iT (t) can be carried
out to select the best suited current profile for a fast and
robust estimation as well as a reduction in the required
number of charging and discharging cycles.
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Appendix A

Observability of nonlinear systems

Assume that a nonlinear dynamic system is described by
the ordinary differential equations

ẋ1(t) = x1(t),

ẋ2(t) =
1
2
·
(

1
x1(t)

− x2(t)
)

(A1)

and by the output

y(t) = x1(t) · x2
2(t) + x1(t). (A2)

Now, the goal is to check the local observability of
the system model (A1), (A2) at a fixed operating point
x1 = x10 �= 0 with x2 = 0. Obviously, the linearization
of the output equation (A2) at the above-mentioned
operating point yields

y(t) ≈ [
x2

2 + 1 2x1x2

]∣∣∣
x1 = x10
x2 = 0

·
[
x1(t)
x2(t)

]

=
[
1 0

] · [x1(t)
x2(t)

]
= x1(t).

(A3)

This linearized output equation only depends on the
state variable x1(t). Since the first state equation in (A1)
is also independent of x2(t), the linearized system model
is clearly unobservable.

Now, the system output y(t) is extended by its
first-order time derivative.

The computation of the derivative leads to

ẏ(t) =
(
x2

2(t) + 1
) · ẋ1(t) + 2x1(t)x2(t) · ẋ2(t)

=
(
x2

2(t) + 1
) · x1(t) + 2x1(t)x2(t)

·
(

1
2
·
(

1
x1(t)

− x2(t)
))

= x1(t) + x2(t).

(A4)

Linearizing the extended system output y(t) at the
operating point x1 = x10 �= 0 with x2 = 0 yields

y(t) =
[
y(t)
ẏ(t)

]
=

[
x1(t) · x2

2(t) + x1(t)
x1(t) + x2(t)

]

≈
[
1 0
1 1

]
·
[
x1(t)
x2(t)

]
.

(A5)

As can be clearly seen, this augmented output equation is
locally observable for x1 �= 0.

In analogy to this example, the state equations (24)
in combination with the time derivatives of the battery’s
terminal voltage turn out to be a locally observable
structure for which gain-scheduled state observers and
Kalman filters can be designed. The i-th time derivatives
(i ≥ 1) of the measured system outputs can be determined
either by low-pass filtered linear approaches or by means
of higher-order sliding mode derivative estimation (cf.
Levant, 2003).

Appendix B

Optimal state estimation

In this appendix, the duality between the LQR control
design and optimal deterministic state estimation is briefly
summarized. As is well known, an optimal control design
can be performed for a linear multi-input multi-output
system

ẋ(t) = Ax(t) + Bu(t) (B1)

by the minimization of the quadratic cost function

J =
1
2

∞∫
0

(
xT (τ)QCx(τ) + uT (τ)RCu(τ)

)
dt. (B2)

Solving this minimization problem (e.g., by
means of Pontryagin’s maximum principle or by the
Hamilton–Jacobi–Bellman equation) leads to the linear
state feedback controller

u(t) = −Kx(t), (B3)

where the controller gain K is determined by

K = R−1
C BTPC . (B4)

Here, the matrix PC is the solution of the algebraic
Riccati equation

PCBR−1
C BTPC − ATPC − PCA− QC = 0. (B5)

Hence, the closed-loop control system has the
structure

ẋ(t) = (A − BK) · x(t). (B6)
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To exploit the duality principle of the control and
observer design, the error dynamics of a linear state
observer can be stated as

Δẋ(t) = (A − HC) · Δx(t), (B7)

where Δx(t) = x(t) − x̂(t) is the difference between the
true and estimated states x(t) and x̂(t), respectively, and
H denotes the observer gain matrix. Using the transpose
of Eqn. (B7), the error dynamics result in

ΔẋT (t) = ΔxT (t) · (AT − CTHT
)
. (B8)

Therefore, Eqn. (B8) can be interpreted as a virtual
control system with the input

− HΔy(t), (B9)

where Δy(t) = y(t) − ŷ(t) = C · (x(t) − x̂(t)) is the
output error. Moreover, the gain H is determined by

H = PLBCT R−1
LB, (B10)

with

PLBCT R−1
LBCPLB−APLB−PLBAT−QLB = 0 (B11)

and the equivalent cost function

JLB =

∞∫
0

(
Δx(t)T QLBΔx(t) + Δy(t)T RLBΔy(t)

)
dt.

(B12)
The corresponding stochastic interpretation of (B11)

and (B12) leads to the steady-state solution of the Kalman
filter design (Stengel, 1994).
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