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A simple semi-recursive routine for nonlinearity recovery in Hammerstein systems is proposed. The identification scheme
is based on the Haar wavelet kernel and possesses a simple and compact form. The convergence of the algorithm is
established and the asymptotic rate of convergence (independent of the input density smoothness) is shown for piecewise-
Lipschitz nonlinearities. The numerical stability of the algorithm is verified. Simulation experiments for a small and
moderate number of input-output data are presented and discussed to illustrate the applicability of the routine.
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1. Introduction

A majority of natural phenomena, objects, or man-made
systems have dynamic and nonlinear nature. Discovering
this nature is an important and interesting yet difficult
scientific problem, particularly when the prior knowledge
is poor. Usually, two (very often opposite) requirements
are needed to be jointly satisfied:

• a universal character of the approach, which allows
finding the best (or the genuine) description of the
system at hand, and

• the simplicity of the identification algorithms (and
the resulting models), which makes them realizable
in practice.

In the paper we apply these generic guidelines to
the problem of a nonlinearity recovery in Hammerstein
systems working in a stochastic environment. The
Hammerstein system (Fig. 1(a)) is a cascade connection
of a memoryless subsystem with a nonlinear characteristic
and a linear dynamic one. Due to its simplicity,
it is a popular nonlinear system modeling tool and
has already found applications in various areas like,
e.g., automatic control, signal processing, economy and
biomedical engineering, (cf., e.g., Chen et al., 1989;
Coca and Billings, 2001; Capobianco, 2002; Jyothi
and Chidambaram, 2000; Lortie and Kearney, 2001;
Westwick and Kearney, 2003; Marmarelis, 2004; Zhou

and DeBrunner, 2007; Kukreja et al., 2005; Nordsjo and
Zetterberg, 2001; Clancy et al., 2012). Moreover, a
number of systems encountered in applications, e.g., the
multibranched, Uryson and MISO systems can be reduced
to the equivalent canonical Hammerstein structure. Our
goal is to recover a non-linear part of such systems. The
rationale is twofold (cf. Hasiewicz et al., 2005; Greblicki
and Pawlak, 2008, Ch. 2.3):

• The linear subsystem can be recovered in a separate
routine, independent of the nonlinear static one.

• The problem of linear subsystem recovery appears to
be much simpler.

Fig. 1. Hammerstein system (a), equivalent identified memory-
less nonlinear system (b).

To obtain an algorithm recovering a nonlinearity of
virtually any shape, we use a nonparametric approach;
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see the work of Greblicki and Pawlak (2008) for
its comprehensive presentation. In this approach the
measurement data are the only information about the
nonlinearity and, in random environments, the number of
measurements has to be large. We construct a convenient
semi-recursive identification algorithm based on Haar
wavelet functions (the simplest member of the popular
family of Daubechies functions (see Mallat, 1998). It
can process large amounts of data without an excessive
computational overhead (cf., e.g., Skubalska-Rafajłowicz,
2001; Rutkowski, 2004; Saeedi et al., 2011). We also
examine the convergence conditions and the asymptotic
convergence rate of the algorithm.

This locates our study in the framework of papers
such as those by Greblicki and Pawlak (1987) or
Krzyżak (1986; 1993), where the non-wavelet kernel
recursive identification algorithms were investigated,
and the ones by Greblicki (2004) or Chen (2004; 2010),
where identification algorithms based on stochastic
approximation were proposed and analyzed, and
eventually those by Pawlak and Hasiewicz (1998) or
Hasiewicz (1999; 2000), where the batch (non-recursive)
Haar wavelet estimation algorithm was discussed. The
originality and main advantages of our proposition can be
summarized as follows:

1. In contrast to previously examined quotient-form
wavelet algorithms (see, e.g., Hasiewicz, 1999;
Hasiewicz and Śliwiński, 2002; Hasiewicz et al.,
2005),

μ̂K(k) (x) =
∑k

l=1 yl · φK(k) (x, xl)
∑k

l=1 φK(k) (x, xl)
, (1)

(here φK(k) (x, v) is a wavelet kernel and K (k) is
the scale adjusted to the overall measurement set
size k), which could have potentially been ill-posed
or could have exploded for the denominator being
close to zero, in the proposed Haar wavelet based
approach such a menace does not exist as the scheme
the possesses numerical stability property, i.e., for
bounded input data it produces a bounded estimate
(see Lemma 1 in Section 4).

2. The algorithm is straightforward and easy to
implement. Due to the basic form of the Haar
wavelet kernel, it is also computationally much
simpler than other recursive orthogonal series kernel
estimation algorithms (Greblicki and Pawlak, 1989;
Krzyżak, 1993; Györfi et al., 2002, Ch. 24).

3. The range of applicability of the algorithm is rather
wide. It can be successfully used to recover
virtually any nonlinearity in any stable Hammerstein
system driven by a random signal having almost any
probability density functions (cf. also Greblicki and
Pawlak, 1987; Vörös, 2003).

4. For a class of piecewise-Lipschitz nonlinear
characteristics, the asymptotic efficiency of the
procedure cannot be outperformed by any other
routine, since its asymptotic convergence rate is
optimal (i.e., the best possible in the sense of Stone
(1980)). Furthermore, this rate is independent of the
input density smoothness.

There are some weaker points of the presented
procedure: the estimates are computed separately for
each of the a priori chosen estimation points1 and the
resulting estimate is discontinuous (piecewise-constant).
Nevertheless, one can consider interpolation as a simple
remedy to these deficiencies. It yields a global and
continuous model of the nonlinearity and can be easily
refined with the successively incoming measurement data;
see Remark 8 (in the numerical experiments in Section 5.1
we demonstrate potential advantages of an interpolation
scheme (see also, e.g., Pawlak et al., 2003; Śliwiński,
2013).

2. Problem statement

Our task is to recover a characteristic of the nonlinear
memoryless part of a Hammerstein system from the pairs
of successively incoming measurements of the system
input and output, (xk, yk), k = 0, 1, . . . , in a recur-
sive fashion, i.e., without the necessity of memorizing
the measurement data. Similarly as, e.g., Greblicki and
Pawlak (1989), Krzyżak (1993), Pawlak and Hasiewicz
(1998), Hasiewicz (1999; 2000), Greblicki (2002) or
Śliwiński (2010), we assume the following:

A1. The input signal xk is a second order random i.i.d.
sequence possessing a probability density function,
say f (x), which is bounded away from zero in the
identification region.

A2. The unknown nonlinearity, m (x), is an arbitrary
function such that |m (x)| ≤ c0 + c1 |x| for some
c0, c1 > 0.

A3. The linear dynamic part, with an impulse response
{λi} , i = 0, 1, . . ., is asymptotically stable, i.e.,

∞∑

i=0

|λi| < ∞, (2)

and λ0 �= 0.

A4. The external output noise, zk, is a zero-mean second
order stationary process, i.e.,

Ez1 = 0, var z1 < ∞,

1Such local and pointwise nature of the estimate is typical for all
kernel nonparametric algorithms and can be directly attributed to the lack
of prior knowledge about the shape of the estimated characteristic.
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with an arbitrary correlation structure. The signals
zk and xk are mutually independent.

A5. The interconnecting signal vk is not available for
measurements.

A6. The input-output measurements (xk, yk) are not
stored in a memory.

The above assumptions (typical for nonparametric
identification tasks) are qualitative in nature. The
underlying system cannot be therefore described by a
parametric equation of the known form. Moreover, the
assumption A1 does not impose any restriction on the
smoothness of the input signal density function. The
requirement that f (x) be locally bounded away from
zero follows from a rather obvious observation that the
recovery of a nonlinearity can in general be performed
only in these regions where the measurements can occur.
It does not preclude that the input density vanishes
elsewhere.

It is well known that, if E |m (x)| is finite, then (see,
e.g., Greblicki and Pawlak, 1986)

E {yk |xk = x} = λ0m (x) + β, (3)

where the shift term, β = Em (x1)
∑∞

i=1 λi, is a
system-dependent constant. Using only the input-output
data (xk, yk) we can retrieve μ (x) = λ0m (x) + β,
the scaled and shifted version of the true nonlinear
characteristic m (x). That is, from the algorithmic point
of view, we recover a nonlinear characteristic μ (x) of
an equivalent fictitious memoryless system shown in
Fig. 1(b), disturbed by the combination of the external
output noise zk and the ‘system noise’ ξk =

∑∞
i=1 λiζk−i

(where ζk = m (xk) − Em (x1)). Note that the latter
depends on the input signal xk and is correlated due to the
system dynamics.

Remark 1. The condition in the assumption A3, stating
that there is no delay in the system, is imposed only to
make the presentation simpler. If there is a d-step delay
in the system, i.e., we have λι = 0 for all ι < d, one can
take in (3) any other λι �= 0 for ι = d + 1, . . . , and then
use the data pairs (xk−ι, yk) in place of (xk, yk) in the
identification routine.

3. Identification algorithm

Let I (x) be the indicator function of the unit interval
[0, 1]. Let us define the function φK(k) (x, u) =
φ(2K(k)x, 2K(k)u), where φ (x, u) = I (x − �u�). This
function is equal to the kernel of the Haar wavelet series
2K(k)φ

(
2K(k)x, 2K(k)u

)
, up to the scaling factor 2K(k),

and will further be called the kernel (Walter and Shen,
2001, Ch. 3).

Fig. 2. Visualization of the identification problem. The only
available information is carried by the heavily noised
input-output measurements {(xk, yk)} of the Hammer-
stein system (here with a quantizer-like nonlinearity as
in (21) and with dynamics described by various impulse
responses

{
λi

}
; monotonic with λ = 1/2, or oscillating

with λ = −1/4,−3/4; cf. Fig. 5 in Section 5.1).

Algorithm 1.
At each estimation point x, and for each measurement pair
(xk, yk), k = 1, 2, . . . , the nonlinearity μ (x) is estimated
by the following semi-recursive2 formula:

μ̂k (x) = μ̂k−1 (x) + γk (x, xk) (4)

× [yk − μ̂k−1 (x)] φK(k) (x, xk) ,

where γk (x, xk) = 1/κk (x, xk) is a weighting factor
with a denominator updated recursively in a separate
subroutine:

κk (x, xk) = κk−1 (x, xk−1) + φK(k) (x, xk) . (5)

At each point x, the algorithm starts from the natural
initial conditions3

μ̂0 (x) = 0, K (0) = 0, κ0 (x, x0) = 0.

The scale factors K (k), k = 1, 2, . . . , form an increasing
sequence and its proper selection rule with respect to k
will be discussed in detail further on. Certainly, because
of the recursive character of the routine (4)–(5), for each
estimation point x only the previously estimated value
μ̂k−1 (x) and the number κk−1 (x, xk−1) need to be
stored.

The form of the proposed routine resembles both the
stochastic approximation algorithms (see, e.g., Kushner
and Yin, 2003) and the classic two-step recursive

2The proposed routine is referred to as a semi-recursive algorithm to
emphasize its two-step update procedure (4) and (5), and to distinguish it
from the recursive stochastic approximation-based algorithms; (cf., e.g.,
Györfi et al., 2002; Greblicki and Pawlak, 2008).

3The estimated values μ̂k (x) are kept zero for each estimation point
x until the weighting factor γk (x, xk) corresponding to x is undefined,
i.e., until the first measurement pair (xk, yk) with xk inside the support
of the kernel φK(k) (x, xk) appears.
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least-squares methods. Moreover, one can easily see that
(4) can be written in the following convex combination
form:

μ̂k (x) = [1 − ρk (x)] · μ̂k−1 (x) + ρk (x) · yk, (6)

with ρk (x) = φK(k) (x, xk) /κk (x, xk) ∈ [0, 1). This
links our procedure with the standard recursive formula
for computing an empirical mean x̂k = (1/k)

∑k
l=1xl,

i.e.,
x̂k = (1 − ρk) · x̂k−1 + ρk · xk (7)

where ρk = 1/k.

Remark 2. One can find yet another link between
the routine considered and the least-squares approach by
recalling that the batch-form estimate in (1) is in fact the
solution to the optimization problem

μ̂K(k) (x) = arg min
c∈R

Φ (c; x) ,

where

Φ (c; x) =
k∑

l=1

[yl − c]2 φK(k) (x, xl) .

From the formulas in (6) and (7), one can derive an
intuitive interpretation of Algorithm 1 for each estimation
point x, the associated kernel function φK(k) (x, u)
‘picks’ only these new measurement pairs (xk, yk) in
which inputs xk have fallen into a proper neighborhood
of this point. The term κk (x, xk) in (5) acts as a
counter of these measurement pairs and the estimated
value μ̂k (x) is just a locally weighted empirical mean
of the corresponding outputs yk. With the growing
number of measurements k (and the subsequently growing
scale factor K (k); see Section 4), the kernel support is
successively contracted

| supp φK(k) (x, u) | = 2−K(k), (8)

and the estimate (4) takes into account the measurements
from the narrowing neighborhood of x, thus becoming
more and more localized around the estimation points.

Remark 3. In Algorithm 1, the explicit constant-form
and simple kernel function of Haar wavelet series is used.
We emphasize this feature because this computationally
desired property of a kernel function is unique amongst
the Daubechies wavelet family (which Haar wavelets
belong to) and not shared by other orthogonal series
counterparts either. For instance, the Dirichlet kernel
(i.e., the kernel of the Fourier trigonometric series) and
the kernels of polynomial series are of different (and
rather complicated) forms for different scale factors K
(cf. Sansone, 1959; Szego, 1974; Greblicki and Pawlak,
2008).

4. Convergence of the algorithm

Algorithm 1 does not require the bulk of measurements to
be stored in memory and hence is much more convenient
in use than its off-line counterpart (1). Nevertheless,
if properly tuned, it still maintains the asymptotic
properties of the latter. Our first theorem characterizes its
convergence conditions.

Theorem 1. Let the assumptions A1–A4 be in force. If the
scale factor K (k) successively grows with the growing
number of processed data k in such a way that

K (k) → ∞ (9a)

and
k∑

l=1

2−K(l) → ∞, (9b)

as k → ∞, then the estimate converges to the identified
nonlinearity,

μ̂k (x) → μ (x) as k → ∞ in probability,

at all continuity points of μ (x).

Proof. As it follows directly from the way of obtaining
(4)–(5) described in Section 3, and from derivation of
the identification scheme in Appendix A, the recursive
estimate (4) can be written in the equivalent batch form:4

μ̂k (x) =
∑k

l=1 yl · φK(l) (x, xl)
∑k

l=1 φK(l) (x, xl)
. (10)

We shall further use the following, equivalent to (10) and
hence to (4), form of the estimate (this idea is borrowed
from Greblicki and Pawlak (1987)):

μ̂k (x) =
ϑ̂k (x)
η̂k (x)

=

1
∑k

l=1 EφK(l) (x, xl)

k∑

l=1

ylφK(l) (x, xl)

1
∑k

l=1 EφK(l) (x, xl)

k∑

l=1

φK(l) (x, xl)
.

(11)

4Note that the estimation formula (10) significantly differs from the
batch version (1) (worked out and discussed earlier by, e.g., Pawlak and
Hasiewicz (1998), Hasiewicz (1999) or Hasiewicz and Śliwiński (2002))
in the sense that, in the former, the scale K = K (l) is not determined
a priori but gradually adapts to the current number of processed data
{(xl, yl)}, l = 1, . . . , k, . . . , while in the latter it is fixed and selected
as K = K (k) either a posteriori just as the whole set of data {(xl, yl)},
l = 1. . . . , k is collected, and the data length k is established, or in
advance, for the a priori assumed length of data which are planned to
be collected in an identification experiment. In the latter case, the batch
estimates suffer from undersmoothing (when the actual measurements
number is smaller than the designed one), or from oversmoothing in the
opposite situation).
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For notational simplicity we employ the shortened
symbols φl = φK(l) (x, xl), μl = μ (xl) , and

κ
Δ=

k∑

l=1

EφK(l) (x, xl) =
k∑

l=1

Eφl.

Furthermore, to make the proofs less tedious (in particular,
the covariance analysis part in Appendix B), we will
consider the case when the noise signal zk is white (the
analysis with the correlated external noise resembles the
one performed for the correlated ‘system noise’ ξk; see
Appendix B). The proof has two main steps: (i) we
show the MSE convergence of the numerator ϑ̂k (x) to
μ (x) and of the denominator η̂k (x) to 1, and (ii) we
conclude the convergence of the whole quotient μ̂k (x) =
ϑ̂k (x) /η̂k (x) to μ (x) in probability.

Bias error analysis. Consider the expectation of the
numerator ϑ̂k (x) in (11). Recalling that yl = μl + ξl +zl,
we have

Eϑ̂k (x) =
∑k

l=1 Eylφl
∑k

l=1 Eφl

=
∑k

l=1 Eμlφl
∑k

l=1 Eφl

,

since ξl and zl are zero-mean and independent of φl for a
given l. For the bias error, defined here for the numerator
ϑ̂k (x) as follows, we have that

biasϑ̂k (x) = E
[
ϑ̂k (x) − μ (x)

]

=
∑k

l=1 Eμlφl −
∑k

l=1 Eμ (x) φl
∑k

l=1 Eφl

=

∑k
l=1 Eφl ·

=bl
︷ ︸︸ ︷

E

{

[μl − μ (x)]
φl

Eφl

}

∑k
l=1 Eφl

. (12)

To see that bias ϑ̂k (x) vanishes as K (l) → ∞ (cf. (9a)),
observe that (cf. (8))

bl =
∫

suppφK(l)

|μ (x) − μ (u)| f (u)
∫
suppφK(l)

f (u) du
du → 0,

as K (l) , l → ∞, i.e., that bl vanishes in all continuity
points of μ (x), i.e., almost everywhere (by virtue of
Luzin’s theorem) (see, e.g., Wheeden and Zygmund,
1977, Theorem 10.49; Greblicki and Pawlak, 2008,
Lemma A.10).

Observe now that

(i) under the assumption A1, the sequence {2K(l)Eφl}
is uniformly lower bounded in l (cf., e.g., Gomes and
Cortina, 1995; Wheeden and Zygmund, 1977, Theorem
10.49).

(ii) From the condition in (9b), we obtain

κ =
k∑

l=1

Eφl =
k∑

l=1

2−K(l)
[
2K(l)Eφl

]
→ ∞,

since the term in square brackets is no less than inf f (x) ·
∑k

l=1 2−K(l), where the infimum is taken over all x ∈
supp φ1. By virtue of these facts, the bias error (12)
vanishes in all continuity points of μ (x) since, by the
Toeplitz lemma (see, e.g., Van der Vaart, 2000; Greblicki
and Pawlak, 2008) we have that

∑k
l=1 blEφl

∑k
l=1 Eφl

→ 0 as k → ∞.

Variance error. Examining the variance of the numerator
ϑ̂k (x) in (11) we get

varϑ̂k (x) = var

{∑k
l=1 ylφK(l) (x, xl)

κ

}

=
1
κ2

var

{
k∑

l=1

ylφl

}

, (13)

where

var

{
k∑

l=1

ylφl

}

=
k∑

l=1

var {ylφl}

+
k∑

i=1

k∑

j=1
i�=j

cov {yiφi, yjφj}

=
k∑

l=1

var {ylφl}

+ 2
k∑

i=1

k∑

j=i+1

cov {yiφi, yjφj} .

(14)

After rather cumbersome derivations (see
Appendix B) we conclude that

varϑ̂k (x) ≤ cvar + ccov

κ2

k∑

l=1

Eφl =
cvar + ccov

κ
,

where cvar and ccov are some positive constants (cf.
(B1) and (B3) in Appendix B). This leads to the final
ascertainment that there exists some cϑ = cvar+ccov > 0,
such that

varϑ̂k (x) ≤ cϑκ−1.

Recalling now that φl = φK(l) (x, xl) and that in
all continuity points of μ (x) the quantity 2K(l)Eφl is
uniformly lower bounded in l, we realize that if the
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sequence K (l) satisfies the condition in (9b), then the
variance of the estimate numerator varϑ̂k vanishes as k
grows, since we have

κ =
k∑

l=1

2−K(l) ·
[
2K(l)Eφl

]
→ ∞ as k → ∞

at all these points x. The above mean-square error analysis
can immediately be repeated for η̂k (x), the denominator
in (11), since η̂k (x) = ϑ̂k (x) for yl ≡ 1, l = 1, . . . , k. In
particular, it is straightforward to observe that η̂k (x) is an
unbiased estimate of unity, i.e.,

Eη̂k (x) = E

{ ∑k
l=1 φK(l) (x, xl)

∑k
l=1 EφK(l) (x, xl)

}

= 1

for all k while for the variance, because of the whiteness
of the inputs, we have that

varη̂k (x) ≤
∑k

l=1 Eφ2
l

κ2
=

∑k
l=1 Eφl

κ2
= κ−1.

Since both bias and variance errors of ϑ̂k (x) and
η̂k (x) vanish almost everywhere, by applying the Slutsky
theorem (cf., e.g., Serfling, 1980), we see that the quotient
μ̂k (x) = ϑ̂k (x) /η̂k (x) converges to μ (x) in probability.

�
We have thus shown that the estimate μ̂k (x)

converges to μ (x) almost everywhere and that the
convergence holds independently of the shape of the input
probability density function (provided that the assumption
1 is fulfilled) and of the particular system dynamics as
well as correlation structure of the external output noise.

As an example of the scale factor K (k) satisfying
(9a)–(9b) one can take �α log2 k� with any 0 < α < 1.

Remark 4. The convergence condition in (9a) can be
replaced by the following one (cf. (12)):

∑k
l=1 2−K(l)I(K(l)<δ)

∑k
l=1 2−K(l)

→ 0, (15)

as k → ∞ for any δ > 0, which is weaker than ours
and admits, for instance, non-monotonic sequences, of
the form (see, e.g., Greblicki and Pawlak, 1987; Krzyżak,
1993, Remark 2)

K (k) =
{

0 if k is a dyadic integer,
�α log2 k� otherwise.

Remark 5. In the paper we are focused on the in
probability convergence properties of the algorithm. It
is, however, interesting to note that, for a memoryless
system and white output noise, the conditions (9a)
and (15) are sufficient (and necessary) for the estimate
μ̂k (x) to converge not only in probability, but also with

probability 1 (Greblicki and Pawlak, 1987; Krzyżak and
Pawlak, 1984; Rutkowski, 1984). In turn, if (in the
case of a Hammerstein system) the output signal is a
stationary process of order s > 2, then (as claimed by
Krzyżak, 1993, Theorem VI) the algorithm converges
with probability 1 to the nonlinearity μ (x) almost
everywhere if the condition in (15) and the following one:

k− s+2
2s√

log k

k∑

l=1

2−K(l) → ∞ as k → ∞ (16)

hold true; see the works of Krzyżak (1992; 1993) for
technical details. Note that the condition (16) is more
stringent than (9b): an example of a scale factor sequence
K (k) satisfying (15)–(16) is �α log2 k� with 0 < α <
(s − 2) /2s.

4.1. Convergence rate. Assume now that the
nonlinearity μ (x) is piecewise-Lipschitz, that is, it has
an unknown (but finite) number of step discontinuities
(jumps) and is Lipschitz continuous between them, i.e.,

|μ (x) − μ (v)| ≤ cm |x − v| > 0 (17)

for some cm. The asymptotic rate of convergence of the
estimate μ̂k (x) to such nonlinearities is the subject of the
next theorem.

Theorem 2. Let (17) hold together with the assumptions
A1, A3–A4. If

K (k) =
⌊

1
3 log2 k

⌋
, (18)

then, for k → ∞, the estimate converges with the rate

|μ̂k (x) − μ (x)| = O(k− 1
3 ) in probability,

at all continuity points of μ (x).

Proof. After a suitable reasoning (see Appendix C), we
obtain that

MSEϑ̂k (x) = bias2ϑ̂k (x) + varϑ̂k (x) ≤ cMSEk− 2
3

(19)
for some cMSE > 0. Similarly, for the denominator
η̂k (x), we get

MSEη̂k (x) = varη̂k (x) ≤ c′MSEk− 2
3 , (20)

some c′MSE > 0. Based on (19) and (20), and employing
Lemma C.8 of Greblicki and Pawlak (2008), we conclude
the proof. �

The theorem demonstrates that for
piecewise-Lipschitz nonlinearities the estimate μ̂k (x)
with the scale selection rule (18) attains the best possible
convergence rate in the framework of nonparametric
inference (cf. Stone, 1980) and is robust to the smoothness
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of the input probability density function, the character
of the system dynamics, and the external output noise.
In particular, the convergence rate is preserved at points
where the density function f (x) is discontinuous. It
should be, however, noted, that—because of the limited
approximation properties of the Haar functions—the
rate will not be faster when the nonlinearity is smoother
than Lipschitz, e.g., when it has p = 1, 2, . . . continuous
derivatives.

Remark 6. The asymptotic rate O(k−1/3) is the same as
for the Haar batch identification algorithm (1) (cf. Pawlak
and Hasiewicz, 1998) in spite of the fact that the recursive
version has no immediate access to the whole data set but
only to the consecutively incoming single measurements
(xk, yk), and that the scale factor K (k) is not kept fixed
but changes (step-wise) with increasing k.

Remark 7. For any scale selection rule other than
(18), i.e., for any α �= 1/3, the resulting asymptotic
convergence rate will be slower than O(k−1/3). For
example, taking α = 1/2 or α = 1/4 would yield the
rate O(k−1/2).

5. Numerical properties

The quotient form of the equivalent representation (10)
and the randomness of its denominator may put in
question the estimate numerical stability, especially when
the number of the processed measurements is small. The
following lemma states that μ̂k (x) in (4) is bounded
provided that the measurements (xk, yk) are bounded, too.

Lemma 1. Assume that (xk, yk) are bounded. Then the
estimate μ̂k (x) is also bounded for any k = 1, 2, . . . .

Proof. To verify the boundedness of the estimate,
μ̂k (x), it suffices to observe that, since φK(k) (x, xk) is
non-negative for any k, then

|μ̂k (x)| =

∣
∣
∣
∑k

l=1 yl · φK(l) (x, xl)
∣
∣
∣

∣
∣
∣
∑k

l=1 φK(l) (x, xl)
∣
∣
∣

≤
∑k

l=1 |yl| · φK(l) (x, xl)
∑k

l=1 φK(l) (x, xl)
≤ max

l=1,...,k
|yl| .

�
In view of the assumptions A2–A3, the requirement

that maxl=1,...,k |yl| < ∞ is fulfilled when, along with
bounded xk , also the external noise zk is bounded.

5.1. Numerical experiments. To illustrate the
properties of the recursive Algorithm 1(4) for small
or moderate (viz. k = 1, . . . , 512) numbers of
data, and compare it with its batch prototype (1),
some numerical tests were performed. Two nonlinear

Fig. 3. Semi-recursive, μ̂k (x) , and batch, μ̂K(k) (x) , esti-
mates of the piecewise-polynomial (left) and piecewise-
constant (right) nonlinearities for λ = −1/4; ‘U’ and
‘D’ stand for the uniform and discontinuous input den-
sity functions, respectively.

characteristics m (x) of the Hammerstein system, i.e., the
piecewise-polynomial with a jump at the point x = 0.5,
and the piecewise-constant quantizer-like one:

m (x) = −5
(
2x3 − 3x2 + x

) − 1
2

sgn
(

x − 1
2

)

× 1
2
�2 (2x − 1) +

1
2
�

(21)

were estimated in the unit interval [0, 1]. The scale
selection rule (18) was employed. The inputs xk were
drawn from that interval assuming either a uniform (i.e.,
smooth), f (x) = I[0,1) (x), or a piecewise-constant (i.e.,
discontinuous) input density,

f (x) =
8∑

i=0

fiI[0,1/9) (x − i/9) ,

fi ∈ {.08, .14, .08, .1, .2, .1, .08, .14, .08} . The dynamics
with infinite length impulse responses, {λi = λi, i =
0, 1, . . .} for λ = −1/4 or −3/4, were used to
model systems with small and large damped oscillations,
respectively. The external zero-mean white noise, zk

5,
was uniformly distributed and set to give maxk |zk|
/ maxx |m (x)| = 10%. A numerically evaluated MSE,
averaged over 128 equidistant estimation points, was
an empirical measure of the pointwise quality of the

5Note that, in such a setting, the identity μ (x) = m(x) holds in the
experiments.
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algorithms. The value of the MSE was computed for
an increasing number of data points k = 1, . . . , 512,
and, purposefully, only for one random data sequence
(i.e., with no typical averaging of the experiment results
over a number of independent runs) to mimic the realistic
conditions where only one particular data set is processed
by the recursive identification procedure. Moreover,
the cubic spline interpolation based on the interpolation
knots {(xi, μ̂k (xi))}7

i=0, where xi = i/8 + 1/16 and
k = 512 was performed to assess the capabilities of the
interpolation scheme.

The results, presented in Figs. 3–5, confirm several
advantageous properties of the routine (4) established
formally in previous sections. Namely, one can observe
the following:

1. the (almost monotonous for less oscillating
dynamics) decrease in the estimation errors with the
growing number k of measurements, which confirms
the convergence and to the established stability of
the algorithm (Section 4, Theorem 1 and Lemma 1);

2. the robustness of the estimate behavior to the
smoothness of the input probability density function
supporting the ‘density-free’ convergence rate shown
in Section 4 (Theorem 2);

3. comparable performances of the proposed recursive
and the earlier batch algorithms. Note, however,
a larger bias error for the recursive algorithm in
the case of the piecewise-continuous nonlinearity,
and a larger variance error (‘wiggles’ of the error
plot) of the batch algorithm when the nonlinearity
is polynomial. They seem to be the obvious
consequences of the adaptive way the scale K is
selected in the recursive identification algorithm.

In turn, Figs. 5(a)–(b) confirm rather good quality
of the produced estimates and reveal that incorporating
cubic spline interpolation can actually be a useful tool for
modelling unknown nonlinearities when their true values
can be recovered (estimated) at only a finite and rather
small number of points, particularly when the nonlinearity
is supposed to be a (piecewise-)smooth function.

Remark 8. The location and number of estimation
points is arbitrary. Nevertheless, having in mind a
prospective application of an interpolation scheme, the
most (computationally) convenient solution is to put them
on an equidistant grid (see also the work of Śliwiński
(2013) for an alternative, density-adaptive, approach). A
number of estimation points

q (k) = 2K(k),

for a given number of measurements k, can, e.g., be
derived from the scale selection rule K (k) in (18) and

Fig. 4. Semi-recursive, μ̂k (x) , and batch, μ̂K(k) (x) , esti-
mates of the piecewise-polynomial (left) and piecewise-
constant nonlinearities (right) for a uniformly distributed
input signal and for dynamics with λ = −1/4 or −3/4.
The larger bias error of the recursive estimate for the lat-
ter is not as apparent as for the former one.

from the length of the scaled Haar kernel support in (8).
Note further that the scale factors K (k) = 0, 1, 2, . . .
form an integer number sequence. The number of new
estimation points q (x) is thus doubled each time the scale
K (k) increases, and the new estimation points appear in
the midpoints between the old ones. The estimate values
at the new points can be zero-initialized or interpolated
(see, e.g., Śliwiński, 2010).

6. Conclusions

The simple semi-recursive Haar wavelet scheme for
estimating the nonlinearity in Hammerstein systems has
been proposed and examined. The routine considered
has a computationally convenient form and exploits raw
data, i.e., it does not need collecting and preprocessing
of measurements. Asymptotic analysis of the routine
shows its efficiency and a wide range of applicability
due to weak, and rather only theoretical in nature,
limitations imposed on the input probability density and
unknown system characteristic. It is shown that for
piecewise-Lipschitz nonlinearities the estimate converges
to the target nonlinearity with the optimal convergence
rate regardless of the smoothness of the input density
function. Furthermore, the limit properties are robust
to the correlation structure of the external noise and
the structure of the system dynamics. Combination of
these asymptotic properties with implementation-relevant
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numerical stability and computational simplicity makes
the presented algorithm an interesting offer in the system
identification area, e.g., fault detection (Chen et al., 2011;
Patan and Korbicz, 2012).

Fig. 5. Estimates of the piecewise-polynomial and piecewise-
constant quantizer-type nonlinearities and their cubic
spline interpolations built upon the values of the esti-
mates in the equidistant interpolation knots xi = i/8 +
1/16, i = 0, . . . , 7 (evaluated from k = 512 measure-
ments for λ = −1/4).

6.1. Examples of Hammerstein-type structures. As
mentioned in Introduction, the Hammerstein system is the
simplest instance of Uryson or MISO (i.e., multiple-input
single-output) dynamic systems—the multi-branch
structures composed of Hammerstein systems connected
in parallel; see Fig. 6. In the former, the input signal, xk,
is common for all subsystems, while in the latter, each of
the U branches is driven independently.

We shortly examine the problem of nonlinearity
recovery in these systems beginning with the Uryson one
(cf. Gallman, 1975). Let all the branch subsystems satisfy
the assumptions A2–A3, and let m (x) be a nonlinearity
of interest. The input-output description equation of the
Uryson system has the form

yk =
∞∑

i=0

λim (xk−i) +
U∑

u=1

∞∑

i=0

ωu,iηu (xk−i) + zk,

and the regression function of the system output on the
system input is a weighted sum of scaled nonlinearities
from all the system branches (shifted by a constant factor
β), cf. (3),

E {yk |xk = x}
= λ0E {m (xk) |xk = x}

+
U∑

u=1

ωu,0E {ηu (xk) |xk = x}

+
∞∑

i=1

λu,iEm (xk−i) +
U∑

u=1

∞∑

i=1

ωu,iEηu (xk−i)

︸ ︷︷ ︸
=β

= λ0m (x) + β
︸ ︷︷ ︸

=μ(x)

+
U∑

u=1

ωu,0ηu (x)

︸ ︷︷ ︸
=μu(x)

= μU (x) . (22)

Nevertheless, there exist specific situations of practical
significance6, when

E {yk |xk = x} = μU (x) = μ (x)

holds and the nonlinearity μ (x) can be separately
estimated (as in the canonical Hammerstein system):

• if ωu,0 = 0 for all u = 1, . . . , U , i.e., if all other
dynamic subsystems, {ωu,i}, have a non-zero delay;

• if supp μ (x)∩supp ηu (x) = ∅ for all u = 1, . . . , U,
i.e., if all the branch nonlinearities are active in the
input signal ranges non-overlapping with the active
input range of μ (x).

Fig. 6. Uryson system.

Compared with the Uryson system case, the
nonlinearity identification conditions in the MISO
structure as in Fig. 7 are much less stringent: if the

6In the original paper by Gallman (1975), it was assumed that the
nonlinearities in each branch were known orthogonal functions (Hermite
polynomials).
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input signals xk and xu,k, u = 1, . . . , U, are stochastically
independent, then (cf. (3) and (22))

E {yk |xk = x}
= λ0m (x)

+
∞∑

i=1

λu,iEm (xk−i) +
U∑

u=1

∞∑

i=0

ωu,iEηu (xu,k−i)

︸ ︷︷ ︸
=β

= μ (x) ,

and, by estimating the regression function from the
measurement pairs (xk, yk), the nonlinearity μ (x) can
be recovered independently of other nonlinearities and
properties of the component dynamic subsystems.

Fig. 7. MISO system.
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Śliwiński, P. (2010). On-line wavelet estimation of Hammerstein
system nonlinearity, International Journal of Applied
Mathematics and Computer Science 20(3): 513–523, DOI:
10.2478/v10006-010-0038-y.

Śliwiński, P. (2013). Nonlinear System Identification by
Haar Wavelets, Lecture Notes in Statistics, Vol. 210,
Springer-Verlag, Heidelberg.

Stone, C.J. (1980). Optimal rates of convergence
for nonparametric regression, Annals of Statistics
8(6): 1348–1360.

Szego, G. (1974). Orthogonal Polynomials, 3rd Edn., American
Mathematical Society, Providence, RI.

Van der Vaart, A. (2000). Asymptotic Statistics, Cambridge
University Press, Cambridge.

Vörös, J. (2003). Recursive identification of Hammerstein
systems with discontinuous nonlinearities containing
dead-zones, IEEE Transactions on Automatic Control
48(12): 2203–2206.

Walter, G.G. and Shen, X. (2001). Wavelets and Other Orthogo-
nal Systems With Applications, 2nd Edn., Chapman & Hall,
Boca Raton, FL.

Westwick, D.T. and Kearney, R.E. (2003). Identification of
Nonlinear Physiological Systems, IEEE Press Series on
Biomedical Engineering, Wiley-IEEE Press, Piscataway,
NJ.

Wheeden, R. L. and Zygmund, A. (1977). Measure and Inte-
gral: An Introduction to Real Analysis, Pure and Applied
Mathematics, Marcel Dekker Inc., New York, NY.

Zhou, D. and DeBrunner, V.E. (2007). Novel adaptive nonlinear
predistorters based on the direct learning algorithm, IEEE
Transactions on Signal Processing 55(1): 120–133.
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Appendix A

Algorithm derivation

Denote for shortness the estimate in (1) with the fixed
scale K (k) and for the k data length by μ̂k (x) instead
of μ̂K(k) (x). We have

μ̂k (x) =
∑k

l=1 φK(k) (x, xl) yl
∑k

l=1 φK(k) (x, xl)

=
1

∑k
l=1 φK(k) (x, xl)

k−1∑

l=1

φK(k) (x, xl) yl

+
φK(k) (x, xk)

∑k
l=1 φK(k) (x, xl)

yk

=
∑k−1

l=1 φK(k) (x, xl)
∑k

l=1 φK(k) (x, xl)
μ̂k−1 (x)

+
φK(k) (x, xk)

∑k
l=1 φK(k) (x, xl)

yk

= (μ̂k−1 (x) − μ̂k−1 (x))

+
∑k−1

l=1 φK(k) (x, xl)
∑k

l=1 φK(k) (x, xl)
μ̂k−1 (x)

+
φK(k) (x, xk)

∑k
l=1 φK(k) (x, xl)

yk

= μ̂k−1 (x) − [μ̂k−1 (x) − yk]

× φK(k) (x, xk)
∑k−1

l=1 φK(k) (x, xl) + φK(k) (x, xk)

= μ̂k−1 (x)
+ γk (x, xk) [yk − μ̂k−1 (x)] φK(k) (x, xk) ,

where γk (x, xk) = 1/κk (x, xk) with κk (x, xk) =
κk−1 (x, xk−1)+φK(k) (x, xk). Now, varying K (k), i.e.,
taking K (l) for each incoming new data point (xl, yl)
instead of the fixed scale K (k), we get (10) and, in
consequence, Algorithm 1.

Appendix B

Convergence analysis

Variance term. Our intermediate goal is to show that, for
some c > 0, the following bound holds:

var

{
k∑

l=1

ylφl

}

≤ cκ.

For the variance term in (14), we have (recall that ξl and
zl are zero-mean and independent of each other and of φl

and μl)

var {ylφl} = E {ylφl}2 − E2 {ylφl}
= E {[μl + ξl + zl] φl}2

− E2 {[μl + ξl + zl] φl}
= Eμ2

l φ
2
l + Eφ2

l Eξ2
l

+ Eφ2
l Ez2

l − E2 {μlφl}
+ 2Eμlφ

2
l Eξl + 2Eμlφ

2
l Ezl

+ 2Eφ2
l EξlEzl

= Eμ2
l φ

2
l − E2 {μlφl} + Eφ2

l Eξ2
l + Eφ2

l Ez2
l

= var {μlφl} + Eφ2
l varξl + Eφ2

l varzl.

Observing that in our case φK(l) (x, u) = φ2
K(l) (x, u) for

each l, we get

var {ylφl} ≤ Eφ2
l · cvar = Eφl · cvar, (B1)

where cvar = maxx μ2 (x) + varξl + varzl.

Covariance term. By definition

cov {yiφi, yjφj} = Eyiφiyjφj − EyiφiEyjφj ,

where for the latter two expectations we have

Eyiφi = Eμiφi + EξiEφi + EziEφi (B2)

= Eμiφi and Eyjφj = Eμjφj ,
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after recalling again that ξi and zi are zero-mean and
independent of each other and for a given i they are also
independent of φi and μi. Next, observe that

Eyiφiyjφj = E {(μi + ξi + zi) (μj + ξj + zj)φiφj}

and that, after some reordering, we get

Eyiφiyjφj = Eμiφiμjφj + Eξjμiφiφj

+ Eμjξiφjφi + Eφiξiφjξj

+ Eμiφiφjzj + Eμjφjφizi

+ Eφiξiφjzj + Eφiφjξjzi + Eφiφjzizj.

Exploiting the assumed whiteness of the external noise,
zk, and the fact that Ez1 = 0, we get

Eyiφiyjφj = Eμiφiμjφj + Eξjμiφiφj

+ Eμjξiφjφi + Eφiξiφjξj

+ EμiφiφjEzj + EμjφjφiEzi

+ EφiξiφjEzj + EφiφjξjEzi

+ EφiφjEziEzj

= Eμiφiμjφj + Eξjμiφiφj

+ Eμjξiφjφi + Eφiξiφjξj ,

while recalling that ξi =
∑∞

l=1 λlζi−l and using the fact
that Eξi = 0 (as, by definition, ζi = μi − Eμi) and that
φj , μj and φi are independent of all ξi (since j > i; see
the formula in (14)), we get

E {yiφiyjφj} = EμiφiEμjφj + EξjμiφiEφj

+ EμjφjφiEξi + EφjEφiξiξj

= EμiφiEμjφj + EξjμiφiEφj

+ EφjEφiξiξj .

The latter combined with (B2) yields

cov {yiφi, yjφj} = EφjEμiφiξj + EφjEφiξiξj .

Assume now for simplicity that Eμi = 0, i.e., ζi = μi.
We get

cov {yiφi, yjφj}

= Eφj

∞∑

l=1

λlE {μiφiμj−l}

+ Eφj

∞∑

k=1

∞∑

l=1

E {φiλkμi−kλlμj−l} .

Since μi’s are i.i.d. and zero-mean (hence Eμiμj = 0 for
i �= j), the former sum reduces to the single term

∞∑

l=1

λlEμiφiμj−l = λj−iEμ2
i Eφi,

while the latter double sum to the single one

∞∑

k=1

∞∑

l=1

E {φiλkμi−kλlμj−l}

=
∞∑

k=1

λkλk−j−iE
{
φiμi−kμj−(j−(i−k))

}

=
∞∑

k=1

λkλk−j−iEφiμ
2
i−k

= Eφiμ
2
i

∞∑

k=1

λkλk−j−i.

Hence

cov {yiφi, yjφj} = EφjEμ2
i φi

(

λj−i +
∞∑

k=1

λkλk−j−i

)

.

Recalling (14), we get

k∑

i=1

k∑

j=i+1

cov {yiφi, yjφj}

≤
k∑

i=1

Eμ2
i φi

k∑

j=i+1

(

λj−i +
∞∑

k=1

λkλk−j−i

)

,

since Eφj ≤ 1. Moreover, the following term is bounded,
i.e., for some c > 0 we have that

k∑

j=i+1

(

λj−i +
∞∑

k=1

λkλk−j−i

)

=
k∑

j=i+1

λj−i +
∞∑

k=1

λk

k∑

j=i+1

λk−j−i < c,

assuming stability. Thus

2
k∑

i=1

k∑

j=i+1

cov |yiφi, yjφj | ≤ ccov

k∑

i=1

Eφi, (B3)

where ccov = 2c · maxx μ2
i . Finally, combining (B1) and

(B3), we obtain

var

{
k∑

l=1

ylφl

}

≤ cvar

k∑

i=1

Eφi + ccov

k∑

i=1

Eφi,

and recalling that κ =
∑k

l=1 Eφl (as in (13)) we get

varϑ̂k (x) ≤ cvar + ccov

κ2

k∑

l=1

Eφl =
cvar + ccov

κ
.
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Appendix C

Convergence rate

From the assumption A1 we easily conclude that for each
estimation point x there exist some constants Δx ≥ δx >
0 being, respectively, the upper and lower bounds of f (x)
in the neighborhood of x. Hence, for positive scale K (l),
the following bound holds for all l = 1, 2, . . . :

Δx ≥ EφK(l) (x, xl)
2−K(l)

≥ δx.

Exploring now the bias formula in (12) under the
assumption that the nonlinearity μ (x) satisfies the
Lipschitz condition in a neighborhood of x, we get that
for sufficiently large K (l) it holds that

0 ≤ bl =
∫

suppφK(l)

|μ (x) − μ (u)| f (u)
∫
suppφK(l)

f (u) du
du

≤ cm

∫

suppφK(l)

|x − u| f (u)
∫
suppφK(l)

f (u) du
du

≤ 2−K(l)cm

for some Lipschitz constant cm > 0 (cf. the assumption
A2), and hence that

0 ≤ biasϑ̂k (x) ≤ cm

∑k
l=1 2−K(l) · Eφl

∑k
l=1 Eφl

≤ cm

∑k
l=1 2−K(l) · 2−K(l)Δx

∑k
l=1 2−K(l)δx

.

Observe that the obvious identity
∑k

l=1 l−α =
∫ k

0
�x�−α dx implies (for sufficiently large k) the lower

and upper bounds

cαk1−α <

∫ k

0

(x + 1)−α
dx ≤

k∑

l=1

l−α ≤
∫ k

0

x−αdx

= Cαk1−α

for some cα, Cα > 0, and taking K (l) = 3−1 log2 l (as in
(18)) results in the following bound for the bias error:

0 ≤ biasϑ̂k (x) ≤ cm
Δx

δx

∑k
l=1 l−

2
3

∑k
l=1 l−

1
3

≤ cbiask
− 1

3 (C1)

for some cbias > 0. Passing to the variance error we
obtain, for some c′ϑ > 0, that

varϑ̂k (x) ≤ cϑ
1

∑k
l=1 Eφl

≤ cϑ

δx

1
∑k

l=1 2−K(l)
≤ c′ϑk− 2

3 .

Combining the above results we get, for some
cMSE > 0, that

MSEϑ̂k (x) = bias2ϑ̂k (x) + varϑ̂k (x) ≤ cMSEk− 2
3 .

In a similar way one can derive for the denominator η̂k (x)
that

MSEη̂k (x) = var η̂k (x) ≤ c′MSEk− 2
3 ,

some c′MSE > 0.
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