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Fractional positive asymptotically stable continuous-time linear systems are approximated by fractional positive asympto-
tically stable discrete-time systems using a linear Padé-type approximation. It is shown that the approximation preserves
the positivity and asymptotic stability of the systems. An optional system approximation is also discussed.
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1. Introduction

In positive systems inputs, state variables and outputs
take only non-negative values. Examples of positive
systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns,
storage systems, compartmental systems, or water and
atmospheric pollution models. A variety of models having
positive linear behavior can be found in engineering,
management science, economics, social sciences, biology
and medicine, etc. Positive linear systems are defined on
cones and not on linear spaces. Therefore, the theory of
positive systems is more complicated and less advanced.
An overview of state of the art in positive systems theory
is given by Farina and Rinaldi (2000) as well as Kaczorek
(2002).

The stability of positive linear systems was
investigated by Farina and Rinaldi (2000) as well as
Kaczorek (2002), and that of fractional linear systems by
Busłowicz (2008; 2012), Busłowicz and Kaczorek (2009),
as well as Kaczorek (2011). The problem of preservation
of positivity by approximating the continuous-time linear
systems by the corresponding discrete-time linear systems
was addressed by Kaczorek (1999).

A linear Padé-type approximation of the exponential
matrix of positive asymptotically stable continuous-time
linear systems was applied by Kaczorek (2013). It was
shown that the approximation preserves the positivity and
asymptotic stability of the systems.

In this paper the linear Padé-type approximation will

be applied to fractional positive continuous-time linear
systems.

The paper is organized as follows. In Section 2, basic
definitions and theorems concerning positive standard
and fractional continuous-time and discrete-time linear
systems are recalled. In Section 3, the main result of the
paper is presented. It is shown that the approximation
preserves the positivity and asymptotic stability of the
systems. Concluding remarks are given in Section 4.

The following notation will be used:

• R: the set of real numbers,

• R
n×m: the set of n × m real matrices,

• R
n×m
+ : the set of n × m matrices with nonnegative

entries and R
n
+ = R

n×1
+ ,

• Mn: the set of n× n Metzler matrices (real matrices
with nonnegative off-diagonal entries),

• Mns: the set of n × n asymptotically stable Metzler
matrices,

• In: the n × n identity matrix.

2. Preliminaries and problem formulation

2.1. Standard positive systems. Consider the
continuous-time linear system

ẋ(t) = Acx(t) + Bcu(t), x(0) = x0, (1)
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where x(t) ∈ R
n, u(t) ∈ R

m are the state and input
vectors and Ac ∈ R

n×n, Bc ∈ R
n×m.

Definition 1. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The continuous-time system (1) is called (internally) po-
sitive if x(t) ∈ R

n
+, t ≥ 0 for any initial conditions

x(0) = x0 ∈ R
n
+ and all inputs u(t) ∈ R

m
+ , t ≥ 0.

Theorem 1. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The continuous-time system (1) is positive if and only if

Ac ∈ Mn, Bc ∈ R
n×m
+ . (2)

Definition 2. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The positive continuous-time system (1) is called asymp-
totically stable if for u(t) = 0, t ≥ 0,

lim
t→∞ x(t) = 0 for all x0 ∈ R

n
+. (3)

Theorem 2. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The positive continuous-time system (1) is asymptotically
stable if and only if all coefficients of the polynomial

det[Ins − Ac] = sn + an−1s
n−1 + · · · + a1s + a0 (4)

are positive, i.e., ai > 0 for i = 0, 1, . . . , n − 1.

Now let us consider the discrete-time linear system

xi+1 = Adxi + Bdui, i ∈ Z+, (5)

where xi ∈ R
n, ui ∈ R

m are the state and input vectors
and Ad ∈ R

n×n, Bd ∈ R
n×m.

Definition 3. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The discrete-time system (5) is called (internally) positive
if xi ∈ R

n
+, i ∈ Z+, for any initial conditions x0 ∈ R

n
+

and all inputs ui ∈ R
m
+ , i ∈ Z+.

Theorem 3. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The discrete-time system (5) is positive if and only if

Ad ∈ R
n×n
+ , Bd ∈ R

n×m
+ . (6)

Definition 4. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The positive discrete-time system (5) is called asymptoti-
cally stable if for ui = 0, i ∈ Z+,

lim
i→∞

xi = 0 for all x0 ∈ R
n
+. (7)

Theorem 4. (Farina and Rinaldi, 2000; Kaczorek, 2002)
The positive discrete-time system (5) is asymptotically sta-
ble if and only if all coefficients of the polynomial

det[In(z + 1) − Ad]

= zn + ān−1z
n−1 + · · · + ā1z + ā0 (8)

are positive, i.e., āi > 0 for i = 0, 1, . . . , n − 1.

It is well-known that if sampling is applied to
the continuous-time system (1) then the corresponding
discrete-time system (5) has the matrices

Ad = eAch, Bd =
∫ h

0

eActBc dt, (9)

where h > 0 is the sampling period.
If detAc �= 0 and rank Bc = m, then from (9) we

have
Bd = A−1

c (eAch − In)Bc (10)

and
rank Bd = m (11)

since det[eAch − In] �= 0.

2.2. Fractional positive systems. Consider the
continuous-time fractional linear system described by the
state equation

dαx(t)
dtα

= Acx(t) + Bcu(t), 0 < α ≤ 1, (12)

where x(t) ∈ R
n, u(t) ∈ R

m are respectively the state
and input vectors, and Ac ∈ R

n×n, Bc ∈ R
n×m,

dαx(t)
dtα

=0 Dα
t x(t) =

1
Γ(1 − α)

∫ t

0

ẋ(τ)
(t − τ)α

dτ,

ẋ(τ) =
dx(τ)

dτ

(13)

is the Caputo fractional derivative, while

Γ(x) =
∫ ∞

0

e−ttx−1dt, Re(x) > 0. (14)

is the Euler gamma function.

Theorem 5. (Kaczorek, 2011) The solution of Eqn. (12)
has the form

x(t) = Φ0(t)x0 +
∫ t

0

Φ(t − τ)Bcu(τ) dτ,

x(0) = x0 (15)

where

Φ0(t) =
∞∑

k=0

Ak
c tkα

Γ(kα + 1)
, Φ(t) =

∞∑
k=0

Ak
c t(k+1)α−1

Γ[(k + 1)α]
.

(16)

Definition 5. The fractional continuous-time system (12)
is called (internally) positive fractional if the state vector
x(t) ∈ R

n
+, t ≥ 0, for all initial conditions x0 ∈ R

n
+ and

all inputs u(t) ∈ R
m
+ , t ≥ 0.

Theorem 6. (Kaczorek, 2011) The fractional continuous-
time system (12) is internally positive if and only if

Ac ∈ Mn, Bc ∈ R
n×m
+ . (17)
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Theorem 7. (Kaczorek, 2011) The fractional positive
continuous-time system (12) is asymptotically stable if
and only if the eigenvalues of Ac are located in the open
left half of the complex plane.

Theorem 8. (Farina and Rinaldi, 2000; Kaczorek, 2002;
2011) The fractional positive continuous-time system (12)
is asymptotically stable if and only if all coefficients of
the polynomial (4) are positive, i.e., ai > 0 for i =
0, 1, . . . , n − 1.

Now let us consider the fractional discrete-time
linear system

Δαxi+1 = Adxi +Bdui, i ∈ Z+, 0 < α < 1, (18)

where xi ∈ R
n is the state vector, ui ∈ R

m is the input
vector and Ad ∈ R

n×n, Bd ∈ R
n×m while

Δαxi = xi +
i∑

j=1

(−1)j

(
α
j

)
xi−j ,

(
α
j

)

=

⎧⎪⎪⎨
⎪⎪⎩

1

α(α − 1) . . . (α − j + 1)
j!

for j = 0,

for j = 1, 2, . . .

(19)

is the fractional α order difference of xi.
Substituting (19) into (18) we obtain

xi+1 = Aαxi +
i+1∑
j=2

(−1)j+1

(
α
j

)
xi−j+1

+ Bdui, i ∈ Z+,

(20)

where
Aα = Ad + Inα. (21)

Theorem 9. The solution of Eqn. (20) has the form

xi = Φix0 +
i−1∑
j=0

Φi−j−1Bdui, (22)

where the matrix Φi can be computed from the formula

Φi+1 = ΦiAα +
i+1∑
j=2

(−1)j+1

(
α
j

)
Φi−j+1,

Φ0 = In.

(23)

Definition 6. (Kaczorek, 2011) The fractional
discrete-time system (18) is called (internally) positive if
xi ∈ R

n
+, i ∈ Z+, for all initial conditions x0 ∈ R

n
+ and

all input sequences ui ∈ R
m
+ , i ∈ Z+.

Theorem 10. (Farina and Rinaldi, 2000; Kaczorek, 2002;
2011) The fractional discrete-time system (18) is positive
if and only if

Aα ∈ R
n×n
+ , Bd ∈ R

n×m
+ . (24)

Theorem 11. (Kaczorek, 2011) The fractional positive
discrete-time system (18) is asymptotically stable if and
only if the positive system

xi+1 = (Ad + In)xi (25)

is asymptotically stable.

Theorem 12. (Kaczorek, 2011) The fractional positive
discrete-time system (18) is asymptotically stable if and
only if all coefficients of the polynomial

det[Inz−Ad] = zn + ân−1z
n−1 + · · ·+ â1z + â0 (26)

are positive, i.e., âi > 0 for i = 0, 1, . . . , n − 1.

3. Application of a linear Padé
approximation

In a similar way as for standard linear systems (Kaczorek,
2013), it can be easily shown that if sampling is applied
to the fractional continuous-time system (12) then the
corresponding fractional discrete-time system (20) has the
matrices

Aα = Φ0(h), (27a)

Bd =
∫ h

0

Φ(t)Bc dt, (27b)

where Φ0(t) and Φ(t) are defined by (16).
In this paper the matrix Ad will be approximated by

Ad = [Ac + Inβ][Inβ − Ac]−1, (28a)

where the coefficient β > 0 is chosen so that Ac + Inβ ∈
R and [Inβ − Ac]−1 ∈ R

n×n
n , h > 0 is the sampling

period. If Ac ∈ Mns, then det[Inβ−Ac] ∈ R
n×n
= for any

β > 0.
For detAc �= 0, using the Padé approximation from

(27b) we obtain

Bd = A−1
c {[Ac + Inβ][Inβ − Ac]−1 − In}Bc. (28b)

Remark 1. Knowing Ac, Bc and h and using (27b) we
may compute the exact matrix Bd.

Therefore, the fractional continuous-time linear
system (12) can be approximated by the fractional
discrete-time linear system (20) with the matrices Ad and
Bd defined by (27b) and (28), respectively.

Theorem 13. If the fractional continuous-time system
(12) is positive and asymptotically stable, then the corre-
sponding fractional discrete-time system (20) with (27a)
and (28b) is also positive and its matrix eigenvalues are
located inside the unit circle |zk| < 1 for k = 1, . . . , n,
and any sampling period h > 0.
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Proof. If the fractional continuous-time system (12) is
positive and asymptotically stable, then Ac ∈ Mns, and
for any β ≥ max(−ac

i,i) (where ac
i,i is the i-th diagonal

entry of Ac, i = 1, 2, . . . , n) we have [Ac+Inβ] ∈ R
n×n
+ ,

[Inβ − Ac]−1 ∈ R
n×n
+ (Berman and Plemmons, 1994;

Kaczorek, 2011) and Ad ∈ R
n×n
+ . From (27b) (and also

from (28)) we have Bd ∈ R
n×m
+ since Φ(t) ∈ R

n×n
+ ,

t ≥ 0 and Bc ∈ R
n×m
+ . Therefore, the corresponding

fractional discrete-time system (20) is positive for any
h > 0 if the fractional continuous-time system (12) is
positive and asymptotically stable since (Kaczorek, 2011)

(−1)j+1

(
α
j

)
> 0 (29)

for 0 < α < 1 and j = 2, 3, . . . .

If the fractional positive system (12) is
asymptotically stable, then the real parts αk of the
eigenvalues sk = −αk ± jβk, k = 1, 2, . . . , n, of the
matrix Ac are negative. By Lemma A1 (see Appendix)
and Theorem 11, from (A2) we obtain

|zk| =
∣∣∣∣β − αk ± jβk

β + αk ∓ jβk

∣∣∣∣
=

√
(β − αk)2 + β2

k√
(β + αk)2 + β2

k

< 1.

(30)

Therefore, the eigenvalues of the matrix of the fractional
positive discrete-time system (20) with (27a) and (28) are
located inside the unit circle for any sampling period h >
0. �

Remark 2. Note that the precision of the approximation
of the fractional positive continuous-time system (12) by
the fractional positive discrete-time system (20) depends
on the choice of the coefficient β. It is recommended
to choose the coefficient β so that the square of the
difference between the solutions of the continuous-time
and discrete-time systems be minimal.

Example 1. Consider the fractional positive and
asymptotically stable continuous-time linear system (12)
with 0 < α < 1 and the matrices

Ac =
[ −2 1

0 −3

]
, Bc =

[
0
1

]
, (31)

The step response of the fractional continuous-time
system with matrices (31) and zero initial conditions is
given in Fig. 1.

Using (27a) and (28), we may compute the matrices
Ad and Bd of the fractional discrete-time system (20) for

Fig. 1. Step response of the fractional continuous-time system
(31).

β = 4,

Ad = [Ac + Inβ][Inβ − Ac]−1

=
[

2 1
0 1

] [
6 −1
0 7

]−1

=
1
21

[
7 4
0 3

]
, (32a)

Bd = Φ (Ach) =
[

0.0875267
0.2365546

]
, (32b)

and

Bd = A−1
c {[Ac + Inβ][Inβ − Ac]−1 − In}Bc

=
[ −2 1

0 −3

]−1
{

1
21

[
7 4
0 3

]

−
[

1 0
0 1

] } [
0
1

]

=
1
21

[
1
6

]
. (33)

By Theorem 10, the fractional discrete-time system with
(32) is positive.

The step response of the fractional discrete-time
system with matrices (32) and zero initial conditions is
given in Fig. 2.

The matrix Ac given by (31) of fractional positive
asymptotically stable continuous-time systems has the
eigenvalues s1 = −2, s2 = −3. Using (A2) we obtain,
for β = 4,

z1 =
β + s1

β − s1
=

4 − 2
4 + 2

=
1
3
,

z2 =
β + s2

β − s2
=

4 − 3
4 + 3

=
1
7
.

(34)
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Fig. 2. Step response of the fractional discrete-time system (32).

Therefore, the fractional positive discrete-time
system satisfies also the condition |zk| < 1 for k =
1, . . . , n. �

The discussion of stabilization by state feedbacks of
positive systems presented by Kaczorek (2013) can be
easily extended to fractional positive linear systems.

4. Concluding remarks

The approximation of fractional positive asymptotically
stable continuous-time linear systems with the use of
a linear Padé-type approximation by fractional positive
asymptotically stable systems was addressed. It was
shown that the approximation preserves the positivity and
asymptotic stability of the systems (Theorem 13). The
optimal choice of the coefficient β so that the square
of the difference between solutions of continuous-time
and discrete-time systems be minimal was also discussed.
The discussion was illustrated with a numerical example.
The presented approach can be extended to fractional 2D
linear systems (Kaczorek, 2011).
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Appendix

Lemma A1. If sk, k = 1, 2, . . . , n, are eigenvalues
of the matrix Ac ∈ Mn, then the eigenvalues zk, k =
1, 2, . . . , n, of the matrix

Ad = [Ac + Inβ][Inβ − Ac]−1 (A1)

are given by

zk =
sk + β

β − sk
for k = 1, 2, . . . , n. (A2)

Proof. If Ac ∈ Mn, β > 0 is chosen so that [Ac + Inβ] ∈
R

n×n
+ and β �= sk, then the function

f(sk) =
sk + β

β − sk

is well defined on the spectrum sk, k = 1, 2, . . . , n, of
the matrix Ac. In this case it is well known (Gantmakher,
1959; Kaczorek, 1998; 2013) that the equality (A2) holds.
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