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The Linear Discriminant Analysis (LDA) technique is an important and well-developed area of classification, and to
date many linear (and also nonlinear) discrimination methods have been put forward. A complication in applying LDA
to real data occurs when the number of features exceeds that of observations. In this case, the covariance estimates
do not have full rank, and thus cannot be inverted. There are a number of ways to deal with this problem. In this
paper, we propose improving LDA in this area, and we present a new approach which uses a generalization of the
Moore–Penrose pseudoinverse to remove this weakness. Our new approach, in addition to managing the problem of in-
verting the covariance matrix, significantly improves the quality of classification, also on data sets where we can invert the
covariance matrix. Experimental results on various data sets demonstrate that our improvements to LDA are efficient and
our approach outperforms LDA.
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1. Introduction

Linear discrimination is widely used in practice (e.g.,
face recognition (Song et al., 2007), medicine (Kwak
et al., 2002), chemometrics (Cozzolino et al., 2002), etc.).
Additionally, LDA is a supervised dimension-reduction
method (a special case of canonical correlation analysis),
which is important in data mining and machine learning
(Shin and Park, 2011). LDA easily handles the case
where the within-class frequencies are unequal and their
performances have been examined on randomly generated
test data. Although relying on heavy assumptions which
are not true in many applications, LDA has been proved
to be effective (Lim et al., 2000). This is mainly due
to the fact that a simple, linear model is more robust
against noise, and most likely will not overfit. Also, the
linear discriminant function is a linear combination of the
measured variables, being easy to interpret. Classical
LDA involves a sample covariance matrix which is
required to be nonsingular. However, in many applications
such as text mining, microarray data classification and
face recognition, this matrix can be singular, since the

data points are in a very high-dimensional space and the
sample size does not exceed this dimension. This is
known as the singularity (undersampled) problem or the
Small Sample Size (SSS) problem.

When the class sample sizes are small compared
with the dimension of the measurement space d, the
covariance matrix estimates, especially, become highly
variable. Moreover, when the sample size is less than d,
not all of their parameters are even identifiable. In this
case, the covariance estimates do not have full rank, and
thus cannot be inverted. There are a number of ways to
deal with this:

• Employ a regularization method. These techniques
have been highly successful in the solution of ill-
and poorly-posed inverse problems (Titterington,
1985; Friedman, 1989; Kuo and Landgrebe, 2002).
However, the computational complexity is very high.

• Try to obtain more reliable estimates of the
eigenvalues by correcting the eigenvalue distortion
in the sample covariance matrix. Stein et al.
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(1972), Olkin and Selliah (1975), Dey and Srinivasan
(1985), Hong and Yang (1991) as well as Bensmail
and Celeux (1996) have studied this approach.
Unfortunately, they nearly all require that Σ̂
(estimate of the covariance matrix) be nonsingular.

• Use sparse covariance selection methods (Dempster,
1972; d’Aspremont et al., 2008).

• Use gradient LDA (Sharma and Paliwal, 2008).

• Subspace method. Project the original samples to
a lower dimensional space to make the resulting
within-class scatter matrix full-rank. The most
widely used subspace method performs PCA firstly
to reduce the dimension of the samples (Swets and
Weng, 1996). Another commonly known method of
this type is called direct LDA (Yu and Yang, 2001).

• Null space method (Chen et al., 2000). All the
samples are firstly projected onto the null space of the
within-class scatter matrix, where the within-class
scatter is zero, and then the optimal discriminant
vectors of LDA are those that can maximize the
between-class scatter. PCA is used to yield them.
Like the regularization method, the computational
complexity is also very high.

• Use a pseudoinverse instead of the usual matrix
inverse (Tian et al., 1988; Duda et al., 2001).

Problems concerning the small sample size and
pseudoinverse appear in the most recent works (Piegat
and Landowski, 2012; Röbenack and Reinschke, 2011).

We propose an extension of the last approach.
Classically, the Moore–Penrose (MP) inverse is used to
find the inverse of a sample covariance matrix; we try
to find a specific generalization of the Moore–Penrose
inverse. We construct a parametrical family of generalized
MP inverses and use it in the linear discrimination
method. Then we choose the models with the
lowest cross-validation (leave-one-out) error rates and we
combine them by a mean rule. With this approach we
obtain, in addition to opportunities to work with any data
(size), a substantial decrease in the classification error rate
compared to LDA.

In our paper we first present the main ideas of LDA
in Section 2. In the same section we describe generalized
inverses of matrices. At the end of this section we explain
our idea of extended LDA. In our paper the performances
of the described methods are compared and the error of
classification is analyzed. Many real (32) and artificial
(6) data sets are used. The methods and data sets used
are described in Section 3. The results of the research
are explained with charts, where differences between the
classifiers are shown. Section 4 contains the results of
our experiments on the described data sets, as well as

statistical analysis of the results. We conclude with a
discussion in Section 5.

2. Methods

Suppose that a training sample has been collected by
sampling from a population P consisting of K unordered
subpopulations, classes or groups, which we denote by
G1, . . . , GK . Each item in P is assumed to be a member
of one (and only one) of those classes and an error is
incurred if it is assigned to a different one. Measurements
on a sample of items are to be used to help assign future
unclassified items to one of the designated classes. The
i-th observation is a pair denoted by (xi, yi), where xi

is a d-dimensional feature vector and yi is the label for
recording class membership. The corresponding pair for
an unclassified observation is denoted by (x, y). In this
case x is observed but the class label y is unobserved.
The goal of classification is to construct a classification
rule for predicting the membership of an unclassified
feature vector x ∈ P . An automated classifier can be
viewed as a method of estimating the posterior probability
of membership in Gk. For a given x, a reasonable
classification strategy is to assign x to that class with the
highest posterior probability. This strategy is called the
Bayes rule classifier. We denote the posterior probability
of membership in Gk by

pk(x) = P (y = k|x). (1)

Let πk be the prior probabilities that a randomly
selected observation belongs to class Gk. Suppose also
that the conditional multivariate probability density for the
k-th class is fk(x). We note that there is no requirement
that the densities be continuous; they could be discrete
or be finite mixture distributions or even have singular
covariance matrices. Now Bayes’ theorem yields the
posterior probability

pk(x) =
fk(x)πk

∑K
i=1 fi(x)πi

(2)

that the observed x belongs to the class Gk. If the
maximum does not uniquely define a class assignment for
a given x, then use a random assignment to break the tie
between the appropriate classes.

2.1. Linear discriminant analysis. In practice it is
unwise to use Bayes’ rule directly, because to obtain
fk(x) we need so much data to get the relative frequencies
of all groups for each measurement. It is more practical
to assume the distribution and obtain the probability
theoretically. So we now make the Bayes rule classifier
more specific by the assumption that all multivariate
probability densities are multivariate Gaussian (normal),
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having arbitrary mean vectors and a common covariance
matrix. That is, we take fk to be an Np(µk,Σ) density,

fk(x) =
1

(2π)d/2|Σ|1/2

× exp
{

−1
2
(x − µk)′Σ−1(x − µk)

}

. (3)

Under the above assumptions we can write a linear
Bayesian classifier as (assign an object x to a group Gk

that yields maximum δk(x))

dB(x) = arg max
k

δk(x), (4)

where

δk(x) = x′Σ−1µk − 1
2
µ′

kΣ
−1µk + lnπk (5)

is a linear discriminant function. Careful inspection
shows that the second term (µ′

kΣ
−1µk) is actually the

Mahalanobis distance, which is used to measure the
dissimilarity between several groups.

In practice, the class means and covariances are
not known. They can, however, be estimated from the
training set. Usually the maximum likelihood (plug-in)
estimate may be used in place of the exact value in
the above equations. Although the estimates of the
covariance may be considered optimal in some sense, this
does not mean that the resulting discriminant obtained by
substituting these values is optimal in any sense, even if
the assumption of normally distributed classes is correct
(Anderson, 1984). Also, any sensible Bayesian rule will
not lead to this approach, except either asymptotically or
under very restrictive conditions (Enis and Geisser, 1986).
Additionally, we have to estimate a priori probabilities.
These are usually estimated simply by the empirical
frequencies of observations in the training set.

2.2. Algorithm. In linear discriminant analysis, the
inverse A−1 or the Moore–Penrose inverse A+ is used
to compute an inverse of the covariance matrix (see
Eqn. (3)). The main idea of this paper is to adopt another
generalized inverse.

We consider a general (real) m × n matrix A rank
whose may be less than min(m, n). If M, N are positive

definite matrices, and there exist factorizations N̂
′
N̂ =

N , M̂
′
M̂ = M , then

A+
MN = N̂

−1
(M̂AN̂

−1
)+M̂ (6)

satisfies the condition

‖A+
MNy‖n ≤ ‖x‖n,

∀x ∈ {x : ‖Ax − y‖m ≤ ‖Az − y‖m, ∀ z ∈ R
n},

where ‖x‖n =
√

x′Nx and ‖y‖m =
√

y′My are
norms in R

n and R
m, respectively. A+

MN is referred
to as the minimum N -norm M -least-squares g-inverse
of A. When M, N are identity matrices, we use
the notation A+ and call it the Moore–Penrose inverse
(pseudoinverse). For a deeper survey and more details,
we refer the readers to Rao and Mitra (1971).

If M is positive semi-definite, then ‖y‖m is a
seminorm and the right-hand side of Eqn. (6) does not
need to be a g-inverse. We denote this by A∗

MN and A∗
M

if N = I .
We use A∗

M with a special form of matrix M .
Precisely, we use Eqn. (6) with the assumptions

N̂ = N = I, M̂ = M =

⎡

⎢
⎢
⎣

a1 0 . . . 0
0 a2 . . . 0

. . . . . . . . . . . .
0 0 . . . am

⎤

⎥
⎥
⎦ ,

(7)

where ai = 0 or 1 for i = 1, . . . , m. This leads to the
seminorm

‖x‖ =
√

x′Mx =
√

x2
j1

+ x2
j2

+ · · · + x2
jk

,

1 ≤ k ≤ m,

for x = (x1, x2, . . . , xm) ∈ R
m (aix

2
i = 0 for ai = 0,

js = i for ai = 1). Then Eqn. (6) assumes the form

A∗
M = (MA)+M . (8)

Thus we can use Σ∗
M instead of Σ−1 to compute the

inverse of the covariance matrix Σ (see Eqn. (3)). Note
that we do not have to compute the determinant of the
covariance matrix Σ to obtain posterior probabilities (see
Eqn. (2)).

We only take ones and zeros on the diagonal of the
matrix M because it can be proved (see Appendix) that
A∗

M depends only on whether or not the coefficients ai

are zeros.
We try two algorithms for choosing ones and zeros

on the diagonal of the matrix M . In the first one (ALG1)
we pass through all the combinations of ones and zeros
on the diagonal of matrix M . In the second (ALG2),
we take only diagonals with at most one zero. Then, in
both the cases, we choose the linear discriminant models
with the lowest (different) κ = 1, 2, 3 cross-validation
(leave-one-out) error rates. There can be many different
models with the same cross-validation error value. The
models are combined by the mean combiner, i.e., posterior
probabilities are computed by

pk =
1
n

(p1k + p2k + · · · + pnk),

where pik is the posterior probability of the i-th model.
Thus we consider six subalgorithms: ALG1-1, ALG1-2,
ALG1-3, ALG2-1, ALG2-2, ALG2-3, where the second
number is from κ = 1, 2, 3 (see above).
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3. Computational experiments

3.1. Real data sets. We performed experiments on
20 data sets with less than 15 features and 12 data sets
with more than 15 features. The data sets were chosen
in such a way that they had different numbers of features
of particular types and different numbers of examples,
and there were some data sets with two-class distribution
and some with more than two classes. In Table 1 the
characteristics of the data sets are given, showing the
variety of training set sizes, the number of classes and
dimensionality.

The data sets chemistry and irradiation come from
the work of Morrison (1990), fish from that of Hawkins
and Rasmussen (1978), football from Gleim’s (1984),
risk from Dillon and Goldstein’s (1984) and turtles from
StatSoft (2007). The remaining data sets come from the
UCI Machine Learning Repository (Frank and Asuncion,
2010). When necessary, we removed observations for
which there were missing values.

For real data sets the classification errors were
estimated by the leave-one-out and bootstrap methods.
The former method was used to find “the best” (with the
smallest error rates) diagonals of matrix M . In the next
step, we construct our models (with the mean combiner).
For each of these models, we calculated the bootstrap
classification error rate (1000 repetitions). We finally took
as the error rate of our method the mean of these bootstrap
error rates.

3.2. Artificial data sets. We also performed
experiments with artificial data. We used data described
by Friedman (1989). Each experiment consisted of one
hundred replications of the following procedure. First
N = 40 class identity labels were randomly drawn.
Then, conditioned on each label, measurement vectors
were drawn from the appropriate class distribution. The
prior probability of each of the three classes was taken
to be equal, so that the expected number of observations
in each class was 13.3. However, the actual number in
any particular replication was itself a random variable.
Each such training data set was used to construct the
classifier. An additional (test) data set of size N = 100
was then randomly generated from the same population
and classified with the rule derived from the training set.
The absolute test error is the average test misclassification
risk over the one hundred replications for each of the
classification rule. Friedman created six different data
sets: F1, F2, F3, F4, F5, F6. For each data set we used
d = 50 features, so LDA is ill-posed.

In the computational process we used the PRTools
4.1.4 program (http://www.prtools.org). This
is a Matlab (version R2009b) based toolbox for pattern
recognition (van der Heijden et al., 2004). In each
procedure we used default parameters.

Table 1. Information on the data sets.

Name Number Number Number
of the data set of features of classes of instances

breastW 9 2 683
car 6 4 1728
chemistry 3 4 45
echo 6 2 108
fish 4 3 36
football 6 3 90
glass 9 6 214
golf 4 2 14
hayes 5 3 132
heart 13 2 270
heartC 13 5 297
heartH 10 5 261
heartS 10 5 105
iris 4 3 150
irradiation 3 4 45
liver 6 2 345
risk 2 3 87
thyroid 5 3 215
turtles 6 2 48
wine 13 3 178
hepatitis 16 2 137
ionosphere 33 2 351
kr-vs-kp 36 2 3196
libras 90 15 360
musk 166 2 476
parkinsons 22 2 195
sonar 60 2 208
spam 57 2 4601
spectf 44 2 267
statlog 19 7 2310
vote 16 2 300
wave 21 3 125

4. Results

4.1. Classification error rates. In ALG1 we take all
possible models, i.e., for all combinations of ones and
zeros in the diagonal of matrix M , while in ALG2 we
take diagonals with at most one zero. It is possible to take
other numbers of ones on the diagonal: at least n ones,
where 0 ≤ n ≤ d (d being the number of features). Then
for n = d it is an LDA method, for n = d − 1 it becomes
ALG2, and for n = 0 it is ALG1. For other values of n we
have different algorithms. If n2 < n1, then an algorithm
for n2 includes all models from an algorithm with n1.
Thus, the smaller n, the smaller the CV error rate of the
algorithm. But this is not necessarily true of the bootstrap
error rate. In Fig. 1 the two error rates depending on the
value of n are shown. We can see that bootstrap error does
not follow the CV error—for some values of n it does not
increase. Because of this we consider only the cases n = 0
(ALG1) and n = d − 1 (ALG2) in the paper. Another

http://www.prtools.org
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reason is that ALG2 has to employ far fewer models (d+1)
than ALG1 (2d). For example, an algorithm with n = d/2
has only the number of models of an algorithm with n = 0
(ALG1). Thus it seems sensible to take into consideration
only two boundary algorithms: ALG1 and ALG2. ALG1
is limited to data sets with smaller number of features
because of an exponential computational complexity (2d

models, d—the number of features). However, ALG2
has to construct only d + 1 models, so it can be used to
larger data sets. In practice, the main algorithm is ALG2,
and with ALG1 we can only check how close the two
algorithms are.

Fig. 1. Error rates depending on the value of n for the heartH
data set (d = 10, κ = 1), where n means at least n
ones on the diagonal of matrix M (— CV error rate,
· · · bootstrap error rate).

In Fig. 2 we can observe the behavior of our
algorithm. We see how three simple linear models (found
by the algorithm, with a minimal CV error rate) are
combined into a more sophisticated nonlinear model.
The circled point is classified correctly by our algorithm.
In this simple example we see that our method might
improve the standard LDA one.

Fig. 2. Decision boundaries for the risk data set (— ALG1-3,
· · · linear method for M = [ 1 0

0 0 ], − · − linear method
for M = [ 0 0

0 1 ], −− LDA).

The main result is shown in Table 3. For data sets
with more than 15 features we used only ALG2, because
of the computational complexity of ALG1. All the
algorithms improve the standard LDA method on almost

all data sets. Generally, we can order the algorithms (in
terms of mean error rate) as follows:

ALG*-1 < ALG*-2, ALG*-1 < ALG*-3.

Combining more models improves classification. For
example, ALG1-3 is practically always better than LDA.
The only exception is for the risk data set. This data
set has only two features, so there are only four possible
models and ALG1-3 combines almost all (three) of them.
But sometimes ALG1-3 is the only algorithm better than
the LDA method—this holds for the heart and thyroid
data sets. ALG2 is worse than ALG1 but much faster;
it has far fewer models to combine, especially for the
subalgorithm ALG*-3. For data sets with a large number
of features, the subalgorithms of ALG2 are more similar,
and practically all improve on the LDA method.

In Table 2, results for artificial data sets with 50
features and 40 observations are shown. The covariance
matrix is not invertible for these datasets, and the
Moore–Penrose inverse is used in the standard LDA
method. We can see that combining more models also
improves classification. The subalgorithm ALG2-3 is
better than LDA for all datasets.

Table 2. Test error rates on Friedman’s data sets. In the
columns: absolute test error rate for the LDA method
(computed according the procedure described in Sec-
tion 3.2) and relative test error rates for subalgo-
rithms ALG2-1 to ALG2-3, computed by the for-
mula (alg*-* − LDA)/LDA, where alg*-* is the ab-
solute test error rate of ALG*-*. All the subalgo-
rithms columns are followed by columns with the av-
erage number of linear models combined in the subal-
gorithms.

Data set LDA ALG2-1 ALG2-2 ALG2-3

F1 42.98 -0.07 3.1 0.23 10.2 -0.88 21.3
F2 46.09 -1.35 2.8 -1.45 10.7 -1.48 22.6
F3 50.22 1.47 2.2 -0.44 7.2 -0.28 17.4
F4 39.86 0.30 2.2 -0.25 8.7 -0.28 19.6
F5 60.41 -0.55 2.0 -0.41 9.4 -0.78 21.5
F6 41.70 0.50 3.3 -0.62 12.1 -0.58 26.2
MEAN 0.05 2.6 -0.49 9.7 -0.71 21.4

4.2. Statistical comparison of classifiers. For
statistical comparison, we take algorithms ALG2-* and
LDA on all real data sets. We test the null hypothesis
that all classifiers perform the same and the observed
differences are merely random. We used the (Iman
and Davenport, 1980) test, which is a nonparametric
equivalent of ANOVA.

Let Rij be the rank of the j-th of K classifiers on
the i-th of N data sets and Rj = 1

N

∑N
i=1 Rij . The test
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Table 3. Bootstrap error rates. In the LDA column we have (absolute) bootstrap error rates for the standard LDA method. In the
columns ALG1 and ALG2 we have relative bootstrap error rates for all subalgorithms ALG1-1 to ALG2-3, computed by the
formula alg*-* − LDA/LDA, where alg*-* is the absolute bootstrap error rate of ALG*-*. All subalgorithm columns are
followed by columns with the numbers of linear models combined in the subalgorithms.

Name LDA ALG1 ALG2
of data set ALG1-1 ALG1-2 ALG1-3 ALG2-1 ALG2-2 ALG2-3

breastW 4.00 −13.67 2 −13.14 9 −10.64 14 −0.67 1 −0.74 6 −0.98 8
car 18.62 0.00 1 −0.27 2 −0.61 3 0.00 1 −0.27 2 −0.61 3
chemistry 64.92 −6.88 1 −2.75 5 −2.55 6 −6.88 1 −2.75 5 -2.55 6
echo 27.85 −4.17 3 −6.34 4 −5.22 8 −2.05 1 −5.45 2 −4.72 3
fish 35.79 18.88 2 −4.98 5 −3.88 6 18.88 2 −4.98 4 −0.99 5
football 34.57 −7.16 1 −9.29 2 −13.46 5 −5.07 2 −5.48 3 −4.07 4
glass 38.55 −0.99 4 −2.42 6 −2.08 10 −2.63 1 −1.54 2 2.36 3
golf 50.00 −22.69 1 −29.18 3 −27.68 5 v15.12 1 −16.01 4 −11.75 5
hayes 41.85 −1.20 1 0.00 2 0.28 3 −1.20 1 0.00 2 −0.43 3
heart 16.68 5.12 3 2.32 9 −0.63 26 4.62 2 −1.61 3 −2.10 9
heartC 42.02 −0.70 1 −3.79 2 −2.68 17 −0.77 1 −0.68 7 −1.03 5
heartH 40.10 −7.94 1 −11.55 16 −11.67 43 −0.94 2 −2.39 4 −3.22 6
heartS 62.50 −4.43 2 −4.43 8 −3.85 30 −1.38 2 −2.35 5 −1.68 6
iris 2.45 0.00 1 7.64 3 −0.15 6 0.00 1 7.64 3 −0.15 4
irradiation 67.45 −8.66 4 −5.91 7 −3.80 8 −3.50 3 −1.48 4 −1.48 4
liver 33.01 0.00 1 −2.84 2 −1.97 4 0.00 1 −1.48 2 −2.65 3
risk 1.55 0.00 1 −7.45 2 13.63 3 0.00 1 −7.45 2 13.63 3
thyroid 8.65 17.57 1 20.82 2 −1.54 6 −1.96 3 −5.00 4 −2.87 5
turtles 10.49 −1.31 2 −1.17 23 −10.39 29 13.11 6 6.72 7 6.72 7
wine 2.00 −8.17 1 −19.79 8 −16.79 57 −8.17 1 0.66 6 −6.50 7
MEAN −2.32 2 −4.73 6 −5.28 14 −0.69 2 −2.23 4 −1.25 5
hepatitis 15.44 −1.89 3 −3.94 8 −3.56 12
ionosphere 14.22 −3.89 1 −4.38 2 −3.74 5
kr-vs-kp 6.25 −2.67 1 −2.53 2 −3.10 3
libras 41.01 −0.45 1 −1.02 2 −0.65 5
musk 24.18 0.11 1 −0.51 2 −0.96 9
parkinsons 13.56 -0.49 7 −0.37 10 −0.32 12
sonar 28.44 0.07 2 −2.00 7 −2.15 10
spam 11.18 -0.84 1 −0.71 4 −0.55 5
spectf 27.07 -1.74 2 −0.88 9 −1.49 18
statlog 8.58 0.00 9 0.00 10 0.00 11
vote 6.02 -5.53 1 −2.14 4 −3.14 9
wave 32.36 -4.05 3 −4.50 5 −4.33 11
MEAN −1.78 3 −1.91 5 −2.00 9

compares the mean ranks of classifiers and is based on the
statistic

S′ =
(N − 1)S

N(K − 1) − S
, (9)

where

S =
12N

K(K + 1)

K∑

i=1

R2
i − 3N(K + 1) (10)

is the Friedman statistic which is distributed according to
the F distribution with K−1 and (K−1)(N−1) degrees
of freedom.

If we take into consideration classification errors
on all data sets, then in our case N = 32 and

K = 4. The value of statistic S′ is equal to 14.23 and the
corresponding critical value is equal to F (0.95, 3, 93) =
2.70. Due to the fact that the critical value is lower than
the respective statistic (p-value is equal to 1.043× 10−7),
we can proceed with the post-hoc tests in order to detect
significant pairwise differences among all the classifiers.
A set of pairwise comparisons can be associated with a
set of hypotheses. Any of the post hoc tests which can
be applied to non-parametric tests work over a family of
hypotheses. The test statistics for comparing the i-th and
the j-th classifier is

Z =
Ri − Rj√

K(K+1)
6N

.
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This statistic is asymptotically normally distributed with
zero mean and unit variance.

When comparing multiple algorithms, to retain an
overall significance level α, one has to adjust the value
of α for each post hoc comparison.There are various
methods for this. The simple method is to use the
Bonferroni correction. There are m = K(K − 1)/2
comparisons, therefore Bonferroni correction sets the
significance level of each comparison to α/m. Demšar
(2006) recommend the Nemenyi procedure (Nemenyi,
1963) which is based on this correction. Garcia and
Herrera (2008) explain and compare the use of various
correction algorithms. They showed that although it
requires intensive computation, Bergmann and Hommel’s
dynamic procedure (Bergmann and Hommel, 1988) has
the highest power. This procedure is based on the idea
of finding all elementary hypotheses which cannot be
rejected. To formulate, we need the following definition:

An index set I ⊆ {1, 2, . . . , m} is called exhaustive
if exactly all Hj , j ∈ I , could be true.

Under this definition, the Bergmann–Hommel
procedure works as follows: Reject all Hj with j /∈ A,
where the acceptance set

A =
⋃

{I : I exhaustive, min{Pi : i ∈ I} > α/|I|}

is the index set of null hypotheses which are retained.
For this procedure, one has to check for each subset I of
{1, 2 . . . , m} if I is exhaustive, which leads to intensive
computations. A fast algorithm (Hommel and Bernhard,
1994) allows a substantial reduction in computing time.

The smallest level of significance that results in the
rejection of the null hypothesis, the p-value, is a useful
and interesting datum for many consumers of statistical
analysis. When a p-value is within a multiple comparison
it reflects the probability error of a certain comparison, but
it does not take into account the remaining comparisons
belonging to the family. One way to solve this problem
is to report the Adjusted p-Value (APV) which takes into
account that multiple tests are conducted. An APV can
be compared directly with any chosen significance level
α. Details about computing the APV can be found in the
work of Garcia and Herrera (2008).

The results of multiple comparisons are given in
Tables 4 and 5. Those classifiers connected by a sequence
of stars have average ranks that are not significantly
different from each other. We have two homogeneous
disjoint groups of classifiers. Classifiers ALG2-1,
ALG2-3 and ALG2-2 are significantly better than LDA.

5. Conclusions and future work

Our research has shown that the use of a generalization of
the Moore–Penrose pseudoinverse of matrices in the LDA
method gives good results. In the general case our method

Table 4. Results of the Bergmann–Hommel post hoc test.

Procedure Ranks mean

LDA 3.547 *
ALG2-1 2.422 *
ALG2-3 2.047 *
ALG2-2 1.984 *

Table 5. p-values and adjusted p-values in the Bergmann–
Hommel post hoc test.

Hypothesis p-value adjusted p-value

LDA vs. ALG2-2 1.290E−6 7.742E−6
LDA vs. ALG2-3 3.358E−6 1.007E−5
LDA vs. ALG2-1 4.909E−4 9.818E−4

ALG2-1 vs. ALG2-2 0.175 0.526
ALG2-1 vs. ALG2-3 0.245 0.526
ALG2-2 vs. ALG2-3 0.846 0.846

seems to outperform LDA. The proposed method, thanks
to its parametrical approach, makes it possible to choose
an appropriate model for any data set. In many cases
there are no statistical differences between the proposed
algorithms, but in spite of this the trends are clearly
visible.

Of course, the classification performance of the new
algorithm needs to be further evaluated on additional
real and artificial data. In our technique we can use
methods other than the mean one for combining classifier
ensembles. This is the direction of our future research.

Estimation of covariance matrices is important in
a number of areas of statistical analysis, including
dimension reduction by PCA, classification by QDA,
establishing independence and conditional independence
relations in the context of graphical models, and setting
confidence intervals on linear functions of the means of
the components. Many application areas where these
tools are used have been dealing with high dimensional
data sets, and sample sizes can be very small relative to
dimension. Examples include genetic data, brain imaging,
climate data and many others. In these areas we should
look for further applications of our method.
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Appendix

Lemma A1. If A is an m × m invertible matrix and

M =

⎡

⎢
⎢
⎣

a1 0 . . . 0
0 a2 . . . 0

. . . . . . . . . . . .
0 0 . . . am

⎤

⎥
⎥
⎦ ,

N =

⎡

⎢
⎢
⎣

b1 0 . . . 0
0 b2 . . . 0

. . . . . . . . . . . .
0 0 . . . bm

⎤

⎥
⎥
⎦ ,

where

ai, bi ∈ R,

ai = 0 ⇐⇒ bi = 0,

then

(MA)+M = (NA)+N .

Proof. Let B be an m × n matrix of rank r. If B can be
partitioned in the form

B =
[
B1 B2

B3 B4

]

(A1)

by a permutation of rows and columns, if necessary, such
that B1 is an r × r matrix of rank r, B2, B3, B4 are
matrices of suitable orders, then

B+ =

[
B′

1P B′
1 B′

1PB′
3

B′
2P B′

1 B′
2PB′

3

]

, (A2)

where

P = (B1B
′
1 + B2B

′
2)

−1B1(B′
1B1 + B′

3B3)−1.

The expression (A2) for B+ is due to Penrose (1956).
Since A is invertible, MA can be partitioned in the

form (A1) by a permutation of rows and columns, i.e.,

M =
[
M 1 0
0 0

]

, MA =
[
M 1A1 M 1A2

0 0

]

,

where M1, A1 are invertible and M1 is diagonal. Then

P =
(
M1A1(M 1A1)′

+ M1A2(M1A2)′
)−1

M1A1

(
(M1A1)′M1A1

)−1

=
(
M1A1A

′
1M 1 + M 1A2A

′
2M1

)−1

× M1A1

(
A′

1M1M1A1

)−1

=
(
M1(A1A

′
1 + A2A

′
2)M 1

)−1(
A′

1M 1

)−1

= M−1
1

(
A1A

′
1 + A2A

′
2

)−1
M−1

1

(
A′

1M1

)−1

and

(MA)+M =

[
(M1A1)′P (M1A1)′M1 0

(M1A2)′P (M1A1)′M1 0

]

=

[
A′

1(A1A
′
1 + A2A

′
2)

−1 0

A′
2(A1A

′
1 + A2A

′
2)

−1 0

]

.

Thus, the above expression does not depend on the
submatrix M1. �
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