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The paper investigates the sensitivity of safe ship control to inaccurate data from the ARPA anti-collision radar system and
to changes in the process control parameters. The system structure of safe ship control in collision situations and computer
support programmes exploring information from the ARPA anti-collision radar are presented. Sensitivity characteristics
of the multistage positional non-cooperative and cooperative game and kinematics optimization control algorithms are
determined through examples of navigational situations with restricted visibility at sea.
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1. Introduction

The process of handling a ship as a multidimensional
dynamic object depends on both the accuracy of
details concerning the current navigational situation
obtained from a Automatic Radar Plotting Aids (ARPAs)
anti-collision system and on the form of the process model
used for the control synthesis. There are various methods
for the avoidance of ship collision. The simplest method
is determination of the manoeuvre of a change in the
course or speed of an own ship in relation to the most
dangerous ship encountered. A more effective method
is to determine a safe trajectory (Pietrzykowski, 2011;
Szlapczynski and Smierzchalski, 2009; Szynkiewicz and
Błaszczyk, 2011). Most adequate to the real character of
control process is determination of the game trajectory of
a ship (Lisowski, 2007).

1.1. Information about the state process. The
ARPA system allows tracking automatically at least 20
encountered j objects as shown in Fig. 1, as well
as determining their movement parameters (speed Vj ,
course ψj) and elements of approach to the own ship
(Dj

min = DCPAj , Distance of the Closest Point of
Approach, T jmin = TCPAj , Time to the Closest
Point of Approach) and also assessing the collision risk
rj (Bist, 2000; Bole et al., 2006). The risk value is
defined by referring the current situation of approach,
described by some parameters, to the assumed evaluation

Fig. 1. Navigational situation of the passing of the own ship
with j ship encountered moving at Vj speed and ψj

course.

of the situation as safe, determined by a safe distance of
approach Ds and a safe time Ts, which are necessary
to execute a collision avoiding manoeuvre taking into
consideration the distanceDj to the j-th ship encountered
(Cahill, 2002; Zio, 2009; Fadali and Visioli, 2009). The
functional scope of a standard ARPA system ends with
the trial manoeuvre to alter the ship course or the ship’s
speed selected by the navigator (Cockcroft and Lameijer,
2006; Gluver and Olsen, 1998).

1.2. Processes of game ship control. Assuming that
the dynamic movement of ships in time occurs under the
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influence of the appropriate sets of control,

[Uo(η), Uj(η)], (1)

where Uo
(η) is a set of the own ship’s strategies, Uj

(η) is
a set of the j-th ship’s strategies, η = 0 denotes the course
and trajectory stabilisation, η = 1 is denotes the execution
of the anti-collision manoeuvre in order to minimize
the risk of collision, which in practice is achieved by
satisfying the following inequality:

Dj
min = minDj(t) ≥ Ds, (2)

Dj
min being the smallest distance of approach of the

own ship and the j-th encountered object, Ds is the
safe approach whose distance in the prevailing conditions
depends on the visibility conditions at sea, the COLREG
rules and the ship’s dynamics,Dj is the current distance to
the j-th object taken from the ARPA anti-collision system,
η = −1 refers to the manoeuvring of the ship in order to
achieve the closest point of approach, for example, during
the approach of a rescue ship, transfer of cargo from ship
to ship, destruction of an enemy’s ship, etc.

In the adopted notation we can distinguish the
following types ship of steering in order to achieve a
specific goal:

• basic type of steering, stabilization of the course or
trajectory: [Uo(0), Uj(0)],

• avoidance of a collision by executing

(a) own ship’s manoeuvres: [Uo(1), Uj(0)],

(b) manoeuvres of the j-th ship: [Uo(0), Uj(1)],

(c) co-operative manoeuvres: [Uo(1), Uj(1)],

• encounter of ships: [Uo(−1), Uj
(−1)],

• situations of a unilateral dynamic game:
[Uo(−1), Uj

(0)] and [Uo(0), Uj(−1)].

Dangerous situations resulting from a faulty
assessment of the approaching process by one party with
the other party’s failure to conduct observations include
the following:

• one ship is equipped with a radar or an anti-collision
system, the other with a damaged radar or without
this device,

• chasing situations which refer to a typical conflicting
dynamic game: [Uo(−1), Uj

(1)] and [Uo(1), Uj(−1)].

The first case usually represents regular optimal
control, the second and third are unilateral games, while
the fourth and fifth cases represent conflicting games
(Basar and Olsder, 1982; Galuszka and Swierniak, 2005).

1.3. Computer support for the navigator. The
problem of selecting such a manoeuvre is very difficult
as the process of control is very complex since it is
dynamic, non-linear, multi-dimensional, non-stationary
and game making in its nature. In practice, methods
of selecting a manoeuvre take the form of appropriate
steering algorithms supporting the navigators decision
in a collision situation for realization by an autopilot
(Fang and Luo, 2005; Landau et al., 2011; Tomera, 2010;
Witkowska et al., 2007).

2. Basic model of game control

The model of the process consists of both the kinematics
and dynamics of the ship movement, the strategies of
the encountered ships and the performance control index
of the own ship (Mesterton-Gibbons, 2001; Perez, 2005;
Clarke, 2003; Tomera and Smierzchalski, 2006).

2.1. State equations. The most general description
of the own ship passing j other encountered ships is
the model of a differential game of j moving control
ships (Fig. 2). The properties of the control process are

Fig. 2. Block diagram of the basic differential game model of
the safe ship control process.

described by the state equation

ẋi = fi [(xo,θo , . . . , xm,θm) , (uo,νo , . . . , um,νm) , t] ,
(3)

where �xo,θo(t) is a θo dimensional vector of the process
state of the own ship, �xj,θj (t) is a θj dimensional vector
of the process state for the j-th ship, �uj,νj (t) is a νj
dimensional control vector of the own ship, �xj,νj (t) is a νj
dimensional control vector of the j-th ship (Isaacs, 1965;
Lisowski, 2010; Engwerda, 2005).

Taking into consideration the equations reflecting the
own ship’s hydromechanics and equations of the own
ship’s movement relative to the j-th encountered ship, the
equations of the general state of the process (3) take the
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form (4) (Fossen, 2011; Keesman, 2011):

ẋo,1 = xo,2,
ẋo,2 = a1xo,2xo,3 + a2xo,3

∣
∣xo,3

∣
∣ + b1xo,3

∣
∣xo,3

∣
∣ uo,1,
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∣
∣xo,3

∣
∣
∣
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(
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∣
∣xo,4

∣
∣ + a5xo,2xo,2

+ a9xo,2 + b2xo,3uo,1,
ẋo,5 = a10xo,5 + b3uo,2,
ẋo,6 = a11xo,6 + b4uo,3,
ẋj,1 = −xo,3 + xj,2xo,2 + xj,3 cosxj,3,
ẋj,2 = −xo,2xj,1 + xj,3 sinxj,3,
ẋj,3 = −xo,2 + b4+jxj,3uj,1
ẋj,4 = a11+jxj,4

∣
∣xj,4

∣
∣ + b5+juj,2.

(4)
The state variables are represented by the following

values:
xo,1 = ψ: course of the own ship,

xo,2 = ψ̇: angular turning speed of the own ship,
xo,3 = V : speed of the own ship,
xo,4 = β: drift angle of the own ship,
xo,5 = n: rotational speed of the screw propeller of the
own ship,
xo,6 = H : pitch of the adjustable propeller of the own
ship,
xj,1 = Dj : distance to the j-th object, or xj—its
coordinate,
xj,2 = Nj : bearing of the j-th object, or yj—its
coordinate,
xj,3 = ψj : course of the j-th object, or βj—relative
meeting angle,
xj,4 = Vj : speed of the j-th object,
where θo = 6, θj = 4.

The control values are represented as follows:
uo,1 = θr: reference rudder angle of the own ship, or
angular turning speed of the own ship, or course of the
own ship, depending on the kind of approximated model
of the process,
uo,2 = nr: reference rotational speed of the own ship’s
screw propeller, or force of the propeller thrust of the own
ship, or speed of the own ship,
uo,3 = Hr: reference pitch of the adjustable propeller of
the own ship,
uj,1 = ψj : course of the j-th object, or ψ̇j angular turning
speed of the j-th object,
uj,2 = Vj : speed of the j-th object, or force of the
propeller thrust of the j-th object,
where νo = 3, νj = 2. For j = 20 objects, the basic
game model is represented by i = 86 state variables of
the process control.

2.2. State and control constraints. The constraints
of the control and the state of the process are connected
with the basic condition for the safe passing of ships at
a safe distance Ds in compliance with the International
Regulations for Preventing Collisions at Sea (COLREGS
Rules), generally in the following form:

gj
(

xj,θj , uj,νj

)

= Ds −Dj
min ≤ 0. (5)

2.3. Performance index for control. For the class of
non-coalition games, often used in the control techniques,
the most beneficial conduct of the own ship as a player
with the j-th ship is the minimization of the objective
function in the form of an integral cost and the final one:

I0,j =

tk∫

t0

[x0,θ0(t)]
2dt+ rj(tk) + d(tk) → min . (6)

The integral cost represents the ship’s losing her way
while passing the encountered ships and the final cost
determines the final risk of collision rj(tk) relative to the
j-th ship and the final deflection of the ship d(tk) from
the reference trajectory (Fig. 3) (Modarres, 2006; Nisan
et al., 2007).

3. Game control algorithms

For practical synthesis of safe control algorithms, various
simplified models are formulated:

• dual linear programming model of the
non-cooperative multi-stage positional game,

• dual linear programming model of the cooperative
multi-stage positional game,

• dual linear programming model of the
non-cooperative multi-step matrix game,

• dynamic programming model with neural state
constraints,

• linear programming model of the kinematic control
process.

The degree of model simplification depends on
an optimal control method applied and the level of
cooperation between ships (Table 1) (Findeisen et al.,
1980; Fletcher, 1987).

3.1. Multi-stage non-cooperative positional game al-
gorithm PGnc. The optimal steering of the own ship
u∗0(t), for the current position p(t) is equivalent to the
optimal positional steering u∗0(p). The sets of acceptable
strategies U0

j [p (tk)] are determined for the encountered

ships relative to the own ship and initial sets U jw0 [p (tk)]
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Table 1. Algorithms for determining ship strategies.
Approximate model Support algorithm Method of optimization Form of decision

multi-stage non-cooperative positional game PGnc triple linear programming game trajectory
multi-stage cooperative positional game PGc triple linear programming game trajectory

kinematic KO linear programming optimal trajectory

of acceptable strategies of the own ship relative to each
of the encountered ships. The pair of vectors umj and

uj0 relative to the j-th ship is determined and then the
optimal positional strategy for the own ship u∗0(p) from
the condition

Fig. 3. Final risk of collision rj(tk) relative and the final deflec-
tion d(tk) from the reference trajectory in a situation of
passing the j-th ship encountered: nm—nautical mile.

I∗0 = min
u0∈

m⋂

j=1
Uj

0

max
um

j ∈Uj

min
uj
0∈Uj

0

tLk∫

t0

u0(t) dt

= S∗
0 (x0, Lk) (7)

is established.
The function S0 refers to the continuous function

of the manoeuvring goal of the own ship, characterising
the distance of the ship at the initial moment t0 to the
nearest turning point Lk on the reference pr(tk) voyage
route (Isil-Bozma and Koditschek, 2001; Millington and
Funge, 2009; Osborne, 2004). The optimal control of
the own ship is calculated at each discrete stage of the
ship’s movement by applying the Simplex method to
solve the problem of triple linear programming, assuming
the relationship (7) to be the goal function along with
the control constraints (5) (Błaszczyk et al., 2007; Luus,
2000; Mehrotra, 1992; Pantoja, 1998).

3.2. Multi-stage cooperative positional game algo-
rithm PGc. The performance index of control for a

cooperative game has the form

I∗0 = min
u0∈

m⋂

j=1
Uj

0

min
um

j ∈Uj

min
uj
0∈Uj

0

tLk∫

t0

u0(t) dt

= S∗
0 (x0, Lk). (8)

3.3. Multi-stage non-game kinematic optimiza-
tion algorithm KO. The goal function for kinematics
optimization has the form

I∗0 = min
u0∈

m⋂

j=1
Uj

0

tLk∫

t0

u0(t) dt = S∗
0 (x0, Lk). (9)

Using the function lp from the Matlab Optimization
Toolbox, the positional multi-stage game non-cooperative
manoeuvring PGnc, the positional multi-stage game
cooperative manoeuvring PGc and the multi-stage
non-game kinematic optimization KO programs have
been designed for the determination of the own ship’s safe
trajectory in a collision situation (Lisowski, 2009).

4. Sensitivity of safe ship control

4.1. Definition of safe control sensitivity. The
sensitivity analysis of game control makes, for sensitivity
analysis of the game, the final cost (6) measured as the
final deviation of d(tk) = dk of the safe game trajectory
from the reference trajectory. Taking into consideration
the practical application of the game control algorithm for
the own ship in a collision situation, it is recommended
to perform the sensitivity analysis of safe control with
regard to the accuracy degree of the information received
from the anti-collision ARPA radar system in the current
approach situation, on the one hand, and also with regard
to the changes in kinematic and dynamic parameters of
the control process on the other (Lisowski, 2011; Straffin,
2001; Wierzbicki, 1984).

Admissible average errors that can be contributed
by sensors of the anti-collision system can have the
following values:

– for radar,

• bearing: ±0.22◦,

• form of cluster: ±0.05◦,
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• form of impulse: ±20 m,

• margin of antenna drive: ±0.5◦,

• sampling of bearing: ±0.01◦,

• sampling of distance: ±0.01 nm,

– gyrocompass: ±0.5◦,
– log: ±0.5 knots,
– GPS: ±15 m.

The algebraic sum of all errors, influencing the picturing
of a navigational situation, cannot exceed ±6% or ±3◦.

4.2. Sensitivity of safe ship control to the inac-
curacy of information from the ARPA system. Let
X0,j represent state process control information on the
navigational situation such that

X0,j = {V, ψ, Vj , ψj , Dj, Nj}. (10)

Let then X
′
0,j represent information from the ARPA

system containing errors of measurement and processing
parameters:

X
′
0,j = {V ± δV, ψ ± δψ, Vj ± δVj , ψj ± δψj ,

Dj ± δDj , Nj ± δNj}.
(11)

The relative measure of the sensitivity of the final
cost in the game s1 as a final deviation of the ship’s safe
trajectory dk from the reference trajectory will be

s1 = (X
′
0,j, X0,j) =

d
′
k(X

′
o,j)

dk(X0,j)
, (12)

s1 = {sV , sψ, sVj , sψj , sDj , sNj}. (13)

4.3. Sensitivity of safe ship control to process param-
eter alterations. LetXp represent a set of parameters of
state process control:

Xp = {tm, Ds,Δtk,ΔV }. (14)

Let then X
′
p represent information containing errors of

measurement and processing parameters:

X
′
p = {tm±δtm, Ds±δDs, tk±δtk,ΔV ±δΔV }. (15)

The relative measure of sensitivity of the final cost in the
game s2 as a final deviation of the ship’s safe trajectory dk
from the assumed trajectory will be

s2 = (X
′
p, Xp) =

d
′
k(X

′
p)

dk(Xp)
. (16)

The relative measure of sensitivity of the final cost in
the game s2 as a final deviation of the ship’s safe trajectory
dk from the assumed trajectory will be

s2 = {stm , sDs , sΔtk , sΔV }, (17)

where tm is the predicted time of the manoeuvre with
respect to the dynamic properties of the own ship, tk the
duration of one stage of the ship’s trajectory, Ds the safe
distance, ΔV the reduction of the own ship’s speed for
a deviation from the course greater than 30◦ (Baba and
Jain, 2001).

5. Sensitivity characteristics of safe ship
control in restricted visibility at sea

Computer simulations of PGnc, PGc and KO
programs, as computer software supporting the navigator
manoeuvring decision, were carried out on an example of
real navigational situations of passing j = 12 and j = 20
encountered ships. The situations were registered in the
Skagerrak Strait on board r/v HORYZONT II, a research
and training vessel of Gdynia Maritime University, on the
radar screen of the ARPA anti-collision system Raytheon
(Fig. 4).

Fig. 4. Place for identification of navigational situations in the
Skagerrak Strait.

5.1. Sensitivity characteristics for 12 ships encoun-
tered. Computer simulation of PGnc, PGc and KO
programs was carried out in the Matlab/Simulink software
on an example of the real navigational situation of passing
j = 12 encountered ships in the Skagerrak Strait in
restricted visibility when Ds = 2 nm. In addition,
sensitivity characteristics (Figs. 5–11) are

ΔX0,j =
δX0,j

X0,j
, (18)

ΔXp =
δXp

Xp
. (19)

6. Conclusions

Application of simplified models of the dynamic game
of the process to the synthesis of optimal control allows
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Fig. 5. Twelve minute speed vectors of the own ship and twelve
encountered ships in a situation occurring in the Skager-
rak Strait.

Fig. 6. Safe trajectory of the own ship for the PGnc algorithm
in restricted visibility Ds = 2 nm in a situation of pass-
ing j = 12 encountered ships, r(tk) = 0, d(tk) = 3.20
nm.

determination of the own ship safe trajectory in situations
of passing a greater number of encountered ships as a
certain sequence of the course and speed manoeuvres.
The developed algorithms take also into consideration
the COLREGS rules and the predicted time of the
manoeuvre approximating the ship’s dynamic properties
and evaluates the final deviation of the real trajectory from
the reference value.

The sensitivity of the final game cost: is the least
for changes of the duration of one stage trajectory and for
changes in the predicted time manoeuvre, the greatest for
changes in the own and met ships’ speeds and courses,
grows with the degree of the ships cooperation for the
purpose of avoiding collision, grows with the number
of meeting ships and with the quantity of admissible
strategies for the own ship and passing ships. The
control algorithms considered are, in some sense, formal
models of the thinking process of a navigator steering the

Fig. 7. Sensitivity characteristics of safe ship control according
to the PGnc programme on an example of the naviga-
tional situation j = 12 occurring in the Skagerrak Strait.

Fig. 8. Safe trajectory of the own ship for the PGc algorithm in
restricted visibility Ds = 2 nm in a situation of passing
j = 12 encountered ships, r(tk) = 0, d(tk) = 1.40 nm.

ship’s movement and making up manoeuvring decisions.
Therefore, they may be applied in the construction of a
new model of the ARPA system containing a computer
supporting the navigator’s decision making.



Sensitivity of computer support game algorithmsof safe ship control 445

Fig. 9. Sensitivity characteristics of safe ship control according
to the PGc programme on an example of a navigational
situation j = 12 occurring in the Skagerrak Strait.

Fig. 10. Safe trajectory of the own ship for the KO algorithm in
restricted visibilityDs = 2 nm in a situation of passing
(j = 12) encountered ships, r(tk) = 0, d(tk) = 1.23
nm.
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