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Safety in dynamic processes is a concern of rising importance, especially if people would be endangered by serious system
failure. Moreover, as the control devices which are now exploited to improve the overall performance of processes include
both sophisticated control strategies and complex hardware (input-output sensors, actuators, components and processing
units), there is an increased probability of faults. As a direct consequence of this, automatic supervision systems should
be taken into account to diagnose malfunctions as early as possible. One of the most promising methods for solving this
problem relies on the analytical redundancy approach, in which residual signals are generated. If a fault occurs, these
residual signals are used to diagnose the malfunction. This paper is focused on fuzzy identification oriented to the design
of a bank of fuzzy estimators for fault detection and isolation. The problem is treated in its different aspects covering the
model structure, the parameter identification method, the residual generation technique, and the fault diagnosis strategy.
The case study of a real diesel engine is considered in order to demonstrate the effectiveness the proposed methodology.

Keywords: fault detection and isolation, analytical redundancy, Takagi–Sugeno fuzzy prototypes, residual generator fuzzy
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1. Introduction

The control devices currently in use to improve the
overall performance of industrial processes involve both
sophisticated digital control techniques and complex
hardware (sensors, actuators and processing units). The
complexity means that the probability of fault occurrence
can be significant and an automatic supervisory control
system should be used to detect and isolate anomalous
working conditions as early as possible. These
motivations pushed great attention on Fault Detection and
Isolation (FDI) in dynamic processes and a wide variety of
approaches have been proposed (Chen and Patton, 1999;
Isermann, 2005; Simani et al., 2003; Ding, 2008). They
are based, e.g., on the parity space, state estimation,
Unknown Input Observers (UIOs), Kalman Filters (KFs),
Unknown Input Kalman Filters (UIKFs), and parameter
identification. On the other hand, artificial intelligence
techniques can be also exploited (Korbicz et al., 2004).
Although many linear and nonlinear approaches have
been developed, robust and reliable FDI for dynamic
processes is still a problem open to further research.

In order to guarantee that faults can be detected
and isolated (and distinguishable), accurate mathematical

models of the process under investigation are required, in
either the state space or input-output forms. Residuals
should then be processed to detect an actual fault
condition, rejecting any false alarms caused by noise
or spurious signals. However, in practical situations,
the straightforward application of model-based FDI
techniques can be difficult, due to dynamic model
complexity. In fact, the plant analytical description is
usually designed to carefully capture all kinds of details
relevant to the analysis and deployment of the real system.
On the other hand, this intrinsic complexity makes the
use of many cited linear FDI methods, almost infeasible
and a viable procedure for practical application of FDI
techniques is really necessary in practical cases (Chen and
Patton, 1999; Simani et al., 2003).

In particular, many papers on model-based FDI
were published over the last decade, using both signal-
and process model-based methods (Svard-Nyberg, 2010a;
2010b; Jain et al., 2012; Marusak and Tatjewski, 2008).
Unsurprisingly, these show that the more accurate the
model is at describing the engine behaviour, the better its
performance will be in detecting anomalous conditions.
Unfortunately, an accurate and complete mathematical
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model of such a complex thermodynamic system is
usually unavailable, typically because of the assumptions
introduced to reduce mathematical complexity. Hence,
FDI schemes that relate to first principle engine models
are costly to develop, while current alternatives tend to be
mathematically complex or require considerable a priori
knowledge to be incorporated into the monitoring scheme.

In this paper, the use of fuzzy identification is
proposed through a real process for finding a viable
solution to the FDI problem. To this end, two practical
aspects of the presented work are stressed. Firstly, the
system complexity may not indicate a requirement for a
sophisticated physical or thermodynamic model. In fact,
as shown in this work, a fuzzy identification method can
be successfully used, thus obviating the requirement for
physical models. In particular, the Errors-In-Variables
(EIV) framework (Van Huffel and Lemmerling, 2002) and
a proper identification algorithm are used in connection
with fuzzy logic descriptions. Secondly, fuzzy prototypes
for residual generation are considered instead of using
purely nonlinear observers or filters. Moreover, as the
purpose of system supervision is to monitor the conditions
of the system at different working points, piecewise affine
prototypes are successfully proposed. Real data from a
diesel engine are considered.

This paper suggests to use fuzzy system theory, since
it seems to be a natural tool to handle complicated and
uncertain processes, such as diesel engines. Thus, it
is suggested to exploit residual generators in the form
of Takagi–Sugeno (TS) fuzzy prototypes (Takagi and
Sugeno, 1985), whose parameters are easily obtained by
identification procedures. It should finally be pointed
out how the fuzzy approach can solve the problem at
two levels. First, fuzzy TS models are used to generate
residual signals for fault detection. Second, fault isolation
is achieved using again the identified fuzzy TS prototypes
organised into a bank structure.

Finally, the effectiveness of the proposed
identification and fault diagnosis strategies is assessed
on real data sequences acquired from full European
driving cycle tests. Realistic fault conditions and
different working situations have been considered, in
order to provide an accurate validation of the proposed
methodology. The main features of the diagnosis
approach suggested in this paper are compared with
different schemes based, e.g., on a UIO/KF bank.

The paper has the following structure. Section 2
briefly recalls the structure of the diesel engine. Section 4
addresses the fuzzy identification strategy exploited for
obtaining the residual generators which will be used
for the design of the fault diagnosis strategy. This
diagnosis methodology is presented in Section 5. The
achieved results summarised in Section 6 show the
performances of the diagnosis schemes, validated on
real data directly acquired from the diesel engine, and

compared also with a different fault diagnosis strategy.
Finally, Section 7 concludes the paper by highlighting the
main achievements of the work.

2. Diesel engine system

Section 3 provides brief details regarding the diesel
engine considered in this work, which was designed
by the company VM Motors S.p.A. in connection with
the embedded controller developed by BOSCH (Bosch,
2006). Section 3.1 illustrates the faults of interest for VM
Motors S.p.A., which will be diagnosed by the suggested
FDI scheme.

3. Controlled turbocharged engine

In this work, a diesel engine “Panther” RA428 equipped
with a fixed geometry turbine, an external Exhaust
Gas Recirculation (EGR) system, and a Throttle Valve
Actuator (TVA) is considered, as shown in Fig. 1.

Diesel EngineEGR Valve

TVA Valve

TurbineCompressor

Intercooler

Exhaust

Manifold
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Fig. 1. Diesel engine air system.

This in-line 4 cylinder (2.8 l.) diesel motor is
produced by VM Motors S.p.A. (Cento, Ferrara, Italy),
but its engine is used in JK Jeep Wrangler outside of the
US market. This engine main features are

• 2776 cc of displacement,

• 4 valve/per cylinder,

• Double Over Head Camshaft (DOHC),

• BOSCH common rail direct injection with electric
piezo injectors operating at 30,000 psi,

• weight of 451 pounds / 205 kg, power rating of 174
horsepower, 340 foot pounds.

In the following, the basics of the diesel engine physical
model are briefly discussed, since its equations can be
easily found in the literature (Pulkrabek, 2003).

For the 4 cylinder turbocharged diesel engine
under investigation, it is assumed that the working
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fluid is a mixture of ideal gases always in equilibrium
for all chemical compositions and pressure-temperature
conditions. In order to simplify the fluid dynamics
description, a dynamic model relying on the filling
and emptying principle is set up (Pulkrabek, 2003).
Assuming sufficiently small pipe dimensions, a lumped
capacity representation is adopted, in which the fluid
thermodynamic properties are spatially constant but time
varying. In particular, this work considers an engine
that is described by means of five elements: the turbine
and the compressor, the intake and exhaust manifolds,
and the cylinders. Each component is characterised by
a different set of thermodynamic state variables and may
be described by the ideal gas law, conservation of the
mass, conservation of energy, and dynamic equilibrium
equations.

In this paper, the real system described above is
considered for the development and validation of the FDI
scheme. To this aim, suitable residual generators have
to be derived for the process under diagnosis, in their
input-output forms. It is worth noting that sometimes the
straightforward application of linear model-based fault
diagnosis techniques can be difficult, due to dynamic
model complexity. Thus, a viable procedure for practical
application of FDI design techniques is truly necessary
in real cases. Therefore, this work suggests to use
fuzzy model identification for finding a solution of the
fault diagnosis problem. In this way, complex physical
or thermodynamic models are avoided. Moreover, the
proposed TS fuzzy prototypes are used for the design of
the fault diagnosis strategy. This is considered important
to avoid the complexity that would otherwise be inevitable
if purely nonlinear models were used.

Note that, in general, model-based fault diagnosis
strategies require an accurate dynamic model of the
diesel engine. This model can be derived via a
“grey-box” modelling approach, which is based on the
description of the input-output behaviour of the diesel
engine from the first principle, i.e., starting directly
at the level of established laws of physics. Also the
parameters of the physical laws have to be empirically
estimated. Both steps are complex and time consuming
(for example, several months on a test bed). The high
value variability of engine parameters makes, in the
ideal case, an individual modelling for each produced
engine necessary. Sometimes such parameter estimation
cannot be applied to standard engines. Moreover, these
estimation algorithms cannot be nowadays supported by
the standard ECU (Electronic Control Unit) in terms of
calculation power. Therefore, in order to improve diesel
engine fault diagnosis, a strategy taking into account the
engine characteristics, without an internal model, and with
the calculation need should be provided. To meet these
requirements, an off-line methodology relying on fuzzy
identification of residual generators for fault diagnosis

scheme design is thus proposed in this paper, as shown
in Section 4.

Finally, it is worth observing that the proposed
approach, shown in Section 4 and relying on identified
fuzzy generators, is not time consuming. Moreover,
the optimisation stages required by both the estimation
methods and the optimal threshold selection procedure
described in Section 5 are performed off-line, using
common computers with standard computation
capabilities. However, the identified fuzzy prototypes for
residual generation can be easily simulated on-line, once
the optimisation stages have been performed off-line,
since they are equivalent to look-up tables, as highlighted,
e.g, by Rovatti et al. (2000), and thus easily supported by
the standard ECU developed by BOSCH.

3.1. Fault mode and effect analysis. Various fault
conditions have been simulated using the real diesel
engine described here, which was developed by VM
Motors S.p.A. In particular, VM Motors were interested in
analysing three possible fault cases, which are considered
in the following. They have been generated for testing
the proposed FDI strategy and implemented via real-time
rapid prototyping tools described in Section 6.2.

In particular, the fault case 1 affects the
turbocompressor behaviour, which is represented by
the fouling of the surfaces of the compressor blades.
It causes reduction in the air flow, changing the blade
aerodynamics, and consequently varying the surface
roughness. The fault causes a gradual decrease in the
mass flow rate for a given pressure ratio.

In general, fouling is caused by the adherence of
particles to airfoils and annulus surfaces. Compressor
fouling is due to the size, amount, and chemical nature
of the aerosols in the inlet air flow, dust, insects,
organic matter such as seeds from trees, rust or scale
from the inlet ductwork, carryover from coolers, or oil
from leaky compressor bearing seals. Fouling must
be distinguished from erosion, the abrasive removal of
material from the flow path by hard particles impinging
on flow surfaces. Erosion is probably more a problem for
aero engine applications, because filtration systems used
for automotive applications typically eliminates the bulk
of the larger particles.

On the other hand, the fault case 2 describes the
malfunctioning of the engine temperature thermocouple.
This situation describes a temperature sensor fault, whose
development rate is set to a certain percent error in the
measured actual temperature, with respect to the time unit
considered.

In general, this malfunction is due to a thermocouple
decalibration process, which consists in unintentional
alteration of the makeup of thermocouple wire. The usual
cause is the diffusion of atmospheric particles into the
metal at the extremes of operating temperature. Another
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cause is impurities and chemicals from the insulation
diffusing into the thermocouple wire.

Finally, the fault case 3 affects the actuator of the
TVA valve. This fault represents the loss of performance
due to the wear of the TVA actuator. Under the
assumption that there are no actuator dynamics, this fault
causes a slower response of the TVA system. The actuator
response time constant increases linearly with the time in
order to represent a progressive damage to the actuator.

In general, many high-performance engines have
throttle valves that are operated by an electric positioning
motor. The throttle valve actuator can be sluggish since
the electric motor may slowly wear out over time, causing
it to operate more slowly than normal. This problem could
be caused by electrical faults, since, for example, internal
windings may have begun to fail, or the motor may be
binding internally. On the other hand, mechanical ageing
can mean bearing rust or a swelled rotor.

Note that, in realistic automotive applications, it is
commonplace for each of the above faults to develop
slowly over a period of months or years. For the
purpose of this work, in order to avoid excessively long
duration simulations, the fault development rate has been
increased, so that significant effects are present after
seconds. This factor must be taken into account in
FDI algorithm design. On the other hand, the rate of
development and magnitude of faults have been set to
typical values. In fact, VM Motor S.p.A. were interested
to know how small the fault parameters can be made
while still maintaining good FDI performance. It is
finally assumed that only a single fault may occur in the
actuators, or the output sensor of the diesel engine.

The discussed fault modes that are of interest for VM
Motors S.p.A. are modelled by means of ramp functions
depicted in Figs. 2–4. As remarked above, these signals
represent the case of incipient faults, i.e., hard to detect
faults, thus modelled by means of ramp functions. As
will be shown in Section 6, their development rates (sizes
versus lengths of time) have been suitably settled with
respect to the corresponding measurement that these faults
are affecting.
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Fig. 2. Fault affecting the turbo-compressor.
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Fig. 3. Fault affecting the thermocouple sensor.
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Fig. 4. Fault affecting the TVA control signal.

Moreover, Figs. 2–4 show that the fault development
rates have been fixed in order to produce an error of about
5% per hour on the affected faulty engine measurements.
As an example, the described faults commence at 850 s.

The remainder of this section describes the relations
among the fault cases considered above, and the
monitored measurements acquired from the diesel engine.
In this way, it will be shown that the fault isolation
task can be easily solved. In particular, Table 1
shows fault effect distribution in the case of single fault
occurrence, with respect to the acquired inputs u(k) =
[u1(k), · · · , u6(k)], and the output y(k) (with k =
1, 2, · · · , N ) of the diesel engine.

Table 1. FMEA results for the diesel engine.

Fault
Variable, measurement Case 1 Case 2 Case 3

u1, engine fuelling 0 0 0
u2, engine speed 0 0 0
u3, intake air flow temperature 0 0 0
u4, engine temperature 0 1 0
u5, EGR command 0 0 0
u6, TVA command 0 0 1
y, intake air flow 1 0 0

Table 1 was obtained by performing the so-called
fault sensitivity analysis, i.e., the Failure Mode & Effect
Analysis (FMEA) (Stamatis, 2003). In practice, Table 1 is
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thus obtained by selecting the most sensitive measurement
(ui or y) with respect to the simulated fault conditions
(Case 1, Case 2, and Case 3). Obviously, when different
fault conditions are considered with respect to the ones
studied in this work, different measurements will probably
have to be taken into account.

In particular, realistic fault signals, as depicted in
Figs. 2–4, have been injected in the real diesel engine
through the real-time tool described in Section 6.2, which
represents also the well-known Hardware-In-Loop (HIL)
simulation strategy.

More precisely, as described by (Stamatis, 2003),
the process for conducting the FMEA can be based on a
selection algorithm that is achieved here by introducing
the normalised sensitivity function Nx:

Nx =
Sx

S∗
x

, (1)

with

Sx =
‖x(k)|f − x(k)|h‖2

‖x(k)|h‖2

(2)

and

S∗
x = max

x

‖x(k)|f − x(k)|h‖2

‖x(k)|h‖2

. (3)

It represents the effect of the fault case considered with
respect to most sensitive input ui(k) or output y(k),
denoted in Eqn. (1) with the subscript x, i.e., x(k).
Thus, the function Sx is defined by the ratio between the
2-norm of the difference x(k)|f − x(k)|h and the 2-norm
of x(k)|h. The sequences x(k)|h and x(k)|f indicate
the fault-free and faulty measurements (ui(k) or y(t)),
respectively.

Therefore, Table 1 reports the measurements ui(k) or
y(k) that are mainly affected by the fault cases considered,
which are denoted by ‘1’ in the corresponding table entry.
This situation corresponds to the case

max
x

Nx = 1. (4)

On the other hand, an entry ‘0’ means that the fault has
smaller effects on the correspondent variable x (ui(k) or
y(k)), i.e.,

max
x

Nx < 1. (5)

Table 1 is hence obtained with the evaluation of Eqn. (1).
Thus, for each fault case, a different index x satisfying
Eqn. (1) determines the most sensitive signals ui(k) or
y(k).

Under these considerations, the entries ‘1’ in Table
1 represent the variables ui(k) or y(k) that are mainly
sensitive to the fault case considered. It means that the
sensitivity of the x-th measurement with respect to the
fault signal considered is greater than any other different
fault cases. On the other hand, the ‘0’ entry means that
the effect of the fault on the i-th output measurement can

be neglected and therefore the fault considered does not
affect the x-th output variable. The settlement of suitable
thresholds for the evaluation of the relations of Eqns. (4)
and (5) is not necessary, because of the normalisation with
respect to the most sensitive fault effect S∗

x in Eqn. (1).
Of course, it is worth noticing that the faults

considered have barely detectable effects on any
measurements, which represents the most challenging
situation. On the other hand, these faults can be diagnosed
using the strategy described in Sections 4 and 5. As an
example, Fig. 5 depicts the engine measured temperature
signal affected by a fault commencing at 850 s, whose rate
is fixed in order to produce an error of about 5% per hour
on the corresponding temperature measurement u4(k).
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Fig. 5. Fault-free (continuous black) and faulty (dashed grey)
engine temperature measurement x = u4(k).

From Fig. 5 it should be clear that any fault effect
is not evident, but a fault diagnosis strategy must be
exploited for detecting this fault effect. On the other hand,
Fig. 6 depicts the fault case 1 regarding the intake air flow
measurement x = y(k), whilst Fig. 7 reports the TVA
actuator signal x = u6(k) for the fault case 2.

Time (s.)

y

0 500 1000 1500 2000 2500 3000 3500
-500

0

500

1000

1500

2000

Fig. 6. Fault-free (continuous black) and faulty (dashed grey)
intake air flow measurement x = y(k).

Finally, it was assumed that only a single fault may
occur in the actuators, components, or output sensors of
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Fig. 7. Fault-free (continuous black) and faulty (dashed grey)
TVA actuator signal x = u6(k).

the plant considered. However, on the basis of fault
effect analysis, faults occurring at the same time can be
distinguished by analysing their effects on the monitored
measurements via fault sensitivity analysis. This analysis
also simplifies the identification procedure, as it reduces
the number of input and output measurements that have to
be monitored by the proposed FDI scheme.

4. Fuzzy modelling and identification

This section addresses the approach exploited for
obtaining the mathematical description of the residual
generators applied to the diesel engine. In particular, the
fuzzy identification scheme, which is recalled in Section
4.1, allows the design of the proposed fault diagnosis
scheme shown in Section 5.

4.1. Fuzzy identification from data. The approach
suggested in this work relies on the identification of
transparent rule-based fuzzy prototypes, which are used
as residual generators for the the system under diagnosis.
From the system identification point of view, a fuzzy
model is regarded as a composition of local affine
submodels, whilst fuzzy sets naturally provide smooth
transitions between these submodels.

In order to generate fuzzy models automatically
from measurements, a comprehensive methodology is
used. This employs fuzzy clustering techniques to
partition the available data into subsets characterised
by a linear behaviour. The relationships between the
presented identification method and linear regression are
exploited, allowing for the combination of fuzzy logic
techniques with system identification tools. In addition,
an implementation in the Matlab R© Toolbox of the Fuzzy
Modelling and IDentification (FMID) technique presented
in the following is available (Babuška, 2000). Fuzzy
identification usually refers to techniques and algorithms
for constructing fuzzy models from data.

In this section, fuzzy descriptions are viewed as a
class of local modelling approaches, which attempt to
solve a complex modelling problem by decomposing it
into a number of simpler subproblems. In particular, fuzzy
logic is exploited to define a TS fuzzy model (Takagi
and Sugeno, 1985). The TS fuzzy model for nonlinear
dynamic systems is described by a collection of local
linear or affine submodels, each one approximating the
system behaviour around a single working point. The TS
fuzzy model is thus able to describe the global behaviour
of the nonlinear system. The scheduling of the submodels
is achieved through a smooth function of the system state,
the behaviour of which is defined using fuzzy set theory
(Babuška, 1998).

A large part of fuzzy modelling and identification
algorithms (see, e.g., Simani et al., 1999) share a common
two-step procedure, in which at first the operating
regions are determined using heuristics or data clusterings
techniques. Then, in the second stage, the identification
of the parameters of each submodel is achieved using
a suitable estimation algorithm. From this perspective,
fuzzy identification can be regarded as a search for a
decomposition of a nonlinear behaviour, which gives a
desired balance between the complexity and the accuracy
of the model, effectively exploring the fact that the
complexity of systems is usually non-uniform. Since
it cannot be expected that sufficient prior knowledge
is available concerning this decomposition, methods for
automated generation of the decomposition, primarily
from system data, are developed. A suitable class of fuzzy
clustering algorithms is used for this purpose.

4.1.1. Takagi–Sugeno multiple-model paradigm.
The fuzzy rule-based model suitable for the
approximation of a large class of nonlinear systems
was introduced by Takagi and Sugeno (Takagi and
Sugeno, 1985). In the TS fuzzy model, the rule
consequents are crisp functions of the model inputs:

Ri : IF x is Ai THEN yi = fi

(
x
)
, (6)

where i = 1, 2, . . . , M , x ∈ R
p is the input (antecedent)

variable and yi ∈ R is the output (consequent) variable.
Ri denotes the i-th rule, and M is the number of rules in
the rule base. Ai is the antecedent fuzzy set of the i-th
rule, defined by a (multivariate) membership function.

The consequent functions fi are typically chosen
as instances of a suitably parameterised function, whose
structure remains equal in all the rules and only the
parameters vary. A simple and practically useful
parameterisation of the function fi is the affine form,

yi = ai x + bi, (7)

where ai is the parameter vector (regressand) and bi is the
scalar offset. x = x(k) represents the regressor vector,
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which can contain delayed samples of u(k) and y(k). This
model is referred to as the affine TS model, and can be
written as (Takagi and Sugeno, 1985)

y =
∑M

i=1 μi(x) yi
∑M

i=1 μi(x)
. (8)

The antecedent fuzzy sets μi are extracted from the
fuzzy partition matrix (Babuška, 1998). The consequent
parameters ai and bi are estimated from the data using
the method developed by the author (Simani et al., 1999)
and recalled below. This identification scheme exploited
for the estimation of TS model parameters has been
integrated into the FMID toolbox for Matlab R© by the
author. This approach developed by the author is usually
preferred when the TS model should serve as a predictor,
as it computes the consequent parameters via the Frisch
scheme, developed for errors-in-variables descriptions
(Van Huffel and Lemmerling, 2002). Therefore, after
the clustering of the data has been obtained via the
GK algorithm (Babuška, 1998), the data subsets are
processed according to the Frisch scheme identification
procedure (Simani et al., 1999), in order to estimate the
TS parameters for each affine submodel.

4.1.2. Fuzzy identification from clusters. As stated
above, the GK fuzzy clustering algorithm is used to
approximate a data set by local affine models. In order
to obtain a description useful for prediction purposes,
an additional step must be applied to generate models
independent of the identification data. This section recalls
the algorithm for constructing fuzzy TS prototypes from
fuzzy partitions.

The antecedent fuzzy sets Ai can be computed
analytically in the antecedent product space or extracted
from the fuzzy partition matrix. The consequent
parameters ai and bi are estimated from the data using
the method sketched in the following. The antecedent
membership functions can be obtained by projecting
the fuzzy partition onto the antecedent variables or
computing the membership degrees directly in the product
space of the antecedent variables. These methods are
available from the FMID toolbox for Matlab R© (Babuška,
2000) developed by Robert Babuška (Babuška, 1998).
The method exploited in this study is the second one,
which considers multi-dimensional antecedent member-
ship functions, represented analytically by computing
an inverse of the distance from the cluster prototype.
The membership degree is computed directly for the
entire input vector (without the decomposition). The
antecedents of the TS rules are simple propositions with
multi-dimensional fuzzy sets μ(x) of Eqn. (8).

Regarding the estimation of the consequent
parameters, they are derived using the procedure recalled
in the following and developed by the author and

his co-workers (Simani et al., 1999). This approach
is preferred when TS descriptions should serve as
predictors.

Thus, after the clustering of the data has been
obtained, in order to identify the structure of the TS
prototype of Eqn. (8) in the i-th cluster, with i =
1, . . . , K , and K clusters, the following matrices are
defined:

X(i)
n =

⎡

⎢
⎢
⎢
⎣

y(k) xT
n (0) 1

y(k + 1) xT
n (1) 1

...
...

...
y(k + Ni − 1) xT

n (Ni − 1) 1

⎤

⎥
⎥
⎥
⎦

, (9)

where the subscript n represents the order of the dynamic
model considered (number of regressors), i.e., xn(h) =
[y(h − 1), . . . , y(h − n), u(h − 1), . . . , u(h − n)]T .
Therefore

Σ(i)
n =

(
X(i)

n

)T

X(i)
n . (10)

In order to solve the so-called noise-rejection problem
(Simani et al., 1999) in a mathematical framework, it is
necessary to follow the assumptions that the noises ũ(k)
and ỹ(k) are additive on the input-output data u∗(k) and
y∗(k), and region independent (k = 1, 2, . . . , N ).

Under these assumptions, a positive-definite matrix
Σ(i)

n associated to the sequences belonging to the i-th
cluster can be expressed as the sum of two terms Σ(i)

n =
Σ∗(i)

n + ¯̃Σn, where

¯̃Σn = diag[¯̃σyIn+1, ¯̃σuIn, 0] ≥ 0. (11)

The solution of the above identification problem requires
the computation of the unknown noise covariances ¯̃σu and
¯̃σy , which can be achieved by solving the relation

Σ∗(i)
n = Σ(i)

n − Σ̃n ≥ 0 (12)

in the variables σ̃u, σ̃y , where

Σ̃n = diag[σ̃yIn+1, σ̃uIn, 0].

It is worth noting that all the surfaces defined by Eqn. (12)
have necessarily at least one common point, i.e., the point
(¯̃σu, ¯̃σy) corresponding to the true variances of the noise
affecting the input and the output data.

The search for a solution to the identification
problem can therefore start from the determination of this
point in the noise space, if the noise characteristics are
common to all the clusters and all assumptions regarding
the Frisch scheme are satisfied (independence between
input-output sequences, additive noise, noise whiteness)
(Van Huffel and Lemmerling, 2002).

However, in real cases, these assumptions have to
be relaxed. Thus no common point can be determined
among surfaces Γ(i)

n = 0 (i.e., the locus of the points
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satisfying Eqn. (12) in the noise plane, and a unique
solution to the identification problem cannot be obtained.
In this situation, local fuzzy model identification can be
performed by finding a point (σ̃u, σ̃y) ∈ Γ(i)

n+1 = 0 that

makes Σ∗(i)
n+1 closer to the double singular condition. It

leads to determining the common point of the surfaces
even when the assumptions of the Frisch scheme are
slightly violated. Moreover, for each i-th cluster, different
noises (¯̃σ(i)

u , ¯̃σ(i)
y ) and the following relation should be

rewritten as

Σ∗(i)
n = Σ(i)

n − Σ̃(i)
n ≥ 0, (13)

where Σ̃(i)
n = diag[¯̃σ(i)

u In+1, ¯̃σ
(i)
y In, 0] whilst (¯̃σ(i)

u , ¯̃σ(i)
y )

represent the variances of input and output additive noises
in the i-th cluster. The identification scheme considered
normally assumes that (Van Huffel and Lemmerling,
2002) {

u(k) = u∗(k) + ũ(k),
y(k) = y∗(k) + ỹ(k), (14)

where u∗(k) and y∗(k) are the noise-free data noise terms
ũ(k) and ỹ(k) are independent of every other term, and
only u(k) and y(k) are known.

Finally, the matrices Σ̃(i)
n can therefore be built

and the parameter of the model in each cluster can be
determined by means of the relation:

(Σ(i)
n − Σ̃(i)

n )a(i) = 0, i = 1, . . . , K, (15)

for K clusters. This completes the fuzzy identification
procedure in the fuzzy environment.

Finally, on the basis of the results achieved here,
Section 5 will describe the design of residual generators
in the form of fuzzy TS prototypes of Eqn. (8) for the FDI
of the diesel engine considered.

5. Fault diagnosis scheme design

This section addresses the problem of the detection and
isolation of faults affecting the process under diagnosis. In
the following, it is assumed that the monitored system in
terms of input-output signals has the structure depicted in
Fig. 8. The term y(k) is the system output measurement,
and u(k) the control input.

According to the expressions of Eqn. (14), in
realistic situations the variables u∗(k) and y∗(k) are
measured by means of sensors, whose outputs are affected
by noise.

Neglecting sensor dynamics, faults affecting the
measured input and output signals u(k) and y(k) are
modelled as

{
u(k) = u∗(k) + fu(k),
y(k) = y∗(k) + fy(k), (16)

Output Measurements

+
+

+

+

Monitored
System

Input Measurements

Actuator Faults Output Faults

u∗(k) y∗(k) y(k)u(k)

fu(k) fy(k)

Fig. 8. Structure of the monitored system.

where fu(k) and fy(k) represent additive signals, which
assume values different from zero only in the presence of
faults.

There are different approaches to generate diagnostic
signals, i.e., residuals (or symptoms), from which it will
be possible to diagnose the fault cases considered. In this
work, TS fuzzy prototypes are used as residual generators.
As depicted in Fig. 9, the residual signals are generated by
the comparison of the measured y(k) and the estimated
ŷ(k) output.

+

+

+

_ �

Residuals

+

+

Fuzzy

Estimator

Monitored
System

Input Measurements
Output Measurements

u∗(k) y∗(k)

y(k)

y(k)u(k)

fu(k)

fy(k)

ŷ(k)

r(k)

Fig. 9. Residual generation scheme exploiting TS prototypes.

Residual evaluation refers to a logic device which
processes the redundant signals generated by the first
block in order to detect when a fault occurs, and to
univocally identify the unreliable actuator or sensor.

The fault detection task is performed by using a
simple thresholding logic of Eqn. (17),

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r̄ − δ σr ≤ r(k) ≤ r̄ + δ σr

if fault-free

r(k) < r̄ − δ σr or r(k) > r̄ + δ σr

if faulty.

(17)

It is worth noting that the incipient faults considered
in this paper, and described in Section 3.1, which are
modelled by ramp functions, may not be immediately
detected, since the delay in the corresponding alarm
normally depends on the fault mode. This situation is



Residual generator fuzzy identification for automotive diesel engine fault diagnosis 427

shown in Fig. 10, where the fault detection thresholds are
computed according to the expression of Eqn. (17).

-1

1

3

5

7

0 450 1300 2250 3150 4000

Time (s)

FDI delay

Upper threshold

Lower threshold

r(k)

Fig. 10. Detection thresholds and delay for incipient faults.

In practice, the residual signal is represented by the
stochastic variable r(k), whose sample mean and variance
values are estimated as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r̄ =
1
N

N∑

k=1

r(k),

σ2
r =

1
N

N∑

k=1

[r(k) − r̄]2 ,

(18)

where r̄ and σ2
r are the values for the sample mean and

variance of the fault-free residual, respectively. N is the
number of samples of the signal r(k). The values of r̄ and
σ2

r depend on the signal r(k) statistics, which are usually
unknown.

In order to separate the normal behaviour from
a faulty, a tolerance parameter δ (normally δ ≥ 2)
is selected and properly tuned. Hence, by a proper
choice of this parameter δ, a good trade-off can be
achieved between the maximisation of the fault detection
probability and the minimisation of the false alarm rate.
This parameter δ could be fixed with empirical rules or,
once the values of r̄ and σ2

r have been estimated from the
r(k) signal, using the three-sigma rule. On the other hand,
less conservative results could be obtained exploiting
a procedure borrowed from the aerospace framework,
which leads to determining via extensive simulations the
optimal δ minimising the false alarm rate and maximising
the detection/isolation probability. This issue will be
addressed, along with the achieved results, in Section 6.

Therefore, the minimal detectable fault can be
found by fixing a proper parameter δ, as shown in
Fig. 10. If a detection delay is tolerable, which
depends on fault severity, the amplitude of the minimal

detectable fault can be lower. In this case, the minimal
detectable faults on various sensors depend on industrial
and automotive applications, by considering also that the
minimal detectable faults can be reduced if a delay in
detection promptness is tolerable.

Finally, regarding the fault isolation problem, a
“generalised estimator scheme” has to be exploited. In
particular, as shown in Section 3.1, since only one fault
fy(k) affects the output measurement y(k), whilst two
faults fu(k) regard the input measurements u4(k) and
u6(k), to uniquely isolate the fault fu(k) concerning one
of the inputs ui(k), under the assumption that the output
y(k) is fault-free, a bank of fuzzy estimators in the form
of Eqn. (8) is used, as shown in Fig. 11.
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.
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.
.
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u(k)u∗(k)
y∗(k)

y(k)

Process

r1

r2

rr

u1

u2

u3

ur

Estimator1

Estimator2

Estimatorr

Fig. 11. Fuzzy estimator scheme for fault isolation.

The number of these fuzzy estimators is equal to
that of fault fu(k) that has to be diagnosed. The i-th
fuzzy estimator is driven by all but the i-th input ui(k)
(or even more inputs, if necessary) and the system output,
and generates a residual function which is sensitive to
all but the i-th input fault fu(k) (or even more inputs, if
necessary). The identification procedure for these output
fuzzy estimators follows that described in Section 4. In
particular, when the fuzzy estimator insensitive to the
i-th input (or even more inputs, if necessary) has to be
designed, the output y(k) and all but the i-th inputs ui(k)
are exploited for the identification process. In this way,
fault isolation is possible, since a fault on the i-th input
affects all the residual functions except that of the device
which is insensitive to the i-th input, i.e., ri, or even more
inputs, if required.

The effectiveness of the identifiability of fuzzy
residual generators as well as the capabilities of fuzzy
fuzzy prototypes from all inputs except one (or more)
are assessed in Section 6. Moreover, the properties
of fuzzy prototypes as universal approximators, and the



428 S. Simani

identification capabilities of fuzzy output predictors have
been investigated, e.g., by Simani et al. (2003), Rovatti
(1996), or Fantuzzi and Rovatti (1996).

In order to summarise the isolation capabilities of the
presented schemes, Table 2 shows the so-called fault sig-
nature for the case of a single fault in each input signal.

Table 2. Fault signatures.
u1 u2 . . . ur

r1 0 1 . . . 1
r2 1 0 . . . 1
...

...
...

...
...

rr 1 1 . . . 0

The residuals which are affected by input faults are
described by an entry ‘1’ in the corresponding table entry,
while an entry ‘0’ means that the fault considered does
not affect the corresponding residual. Note that, with
reference to the present study, it is not necessary to isolate
faults in the system output y(k) since it is assumed that
only one single fault can occur on the process output,
which is a scalar signal y(k).

This work does not consider the fault estimation
problem, which was addressed in other works by the same
author ((Bonfè et al., 2011) but using a different approach.
However, fuzzy TS models, which are used here as
residual generators, could be exploited for fault signal
reconstruction, as shown, e.g., by Xu et al. (2012), in the
same way as for neural networks (Korbicz et al., 2004).

Finally, it is worth noticing that the identified fuzzy
prototypes for residual generation can be easily simulated
on-line, once the optimisation stages have been performed
off-line, since they are equivalent to look-up tables and
thus easily implementable by standard ECUs.

6. Experimental results

This section describes experimentations with the method
proposed for the fuzzy identification technique oriented
to the design of fuzzy residual generators used for diesel
engine fault diagnosis.

6.1. Diesel engine modelling validation. The fuzzy
identification procedure recalled in Section 4 exploits
the design of fault diagnosis residual generators based
on identified TS fuzzy prototypes. In particular, once
the input-output data have been acquired from the real
diesel engine process, both residual generator parameter
identification and fuzzy clustering tasks have been
performed off-line.

It is assumed that the monitored diesel engine,
depicted in Fig. 1, normally works in nominal
fault-free conditions. In general, the process operates in

different working conditions, and the seven input-output
measurements u(k) and y(k), including temperatures,
flows, control signals, and speed, can be acquired with
a sampling rate Ts = 0.1 s.

More precisely, the acquired inputs u(k) =
[u1(k), . . . , u6(k)] and the output y(k) (with k =
1, 2, . . . , N ) of the diesel engine are explained in Table 3.

Table 3. Process inputs and output.
Signals Measurements

u1 engine fuelling
u2 engine speed
u3 intake air flow temperature
u4 engine oil temperature
u5 EGR command
u6 TVA command
y intake air flow

On the other hand, Table 4 reports the measurement
errors of the input-output signals acquired from the
real diesel engine test-rig, and expressed as a percent
of normalised standard deviations of the corresponding
measurements. They were empirically estimated
taking into account the sensing devices performing
the measurements, as well as the nominal accuracy
guaranteed by the ECU developed by BOSCH.

Table 4. Input and output signal accuracy.
Measurement Accuracy

engine fuelling 7 %
engine speed 4 %
intake air flow temperature 2 %
engine oil temperature 2 %
EGR command signal 6 %
TVA command signal 4 %
intake air flow 4 %

On the other hand, the clustering algorithm recalled
in Section 4.1.1 was implemented off-line and provided
the optimal number of clusters (operating conditions), as
well as the number of sample delays of the inputs and
outputs for models of Eqn. (8). After clustering, the
parameters ai and bi, with i = 1, . . . , K and j =
1, . . . , n, were estimated off-line using the proposed
identification scheme. Moreover, as suggested at the
end of Section 5, in order to achieve the fault isolation
task, three fuzzy estimators in the form of Eqn. (8) are
considered.

It is worth noticing that the measurement noise
error variance values (¯̃σu, ¯̃σy) estimated according to the
procedure recalled in Section 4.1.2 and reported in Table
5 seem to be consistent with the actual measurement
accuracy values summarised in Table 4.
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Table 5. Estimated measurement noise variance values
(¯̃σu, ¯̃σy).

Measurement Accuracy

engine fuelling 7.06 %
engine speed 3.99 %
intake air flow temperature 1.81 %
engine oil temperature 1.93 %
EGR command signal 5.78 %
TVA command signal 3.82 %
intake air flow 3.96 %

According to Figs. 9 and 11, the required fault
diagnosis residuals are generated by three TS fuzzy
Multiple-Input Single-Output (MISO) prototypes of
Eqn. (8). Thus, by following the scheme of Fig. 11,
one fuzzy predictor used for the computation of
the residual r1(k) is fed by the output y(k) and
four inputs [u1(k), u2(k), u3(k), u5(k)] with K =
7 and n = 3. The second fuzzy estimator
generating r3(k) is fed by y(k) and five inputs, e.g.,
[u1(k), u2(k), u3(k), u5(k), u6(k)] with K = 7 and
n = 3. Finally, the third fuzzy estimator for r2(k)
is fed by y(k) and [u1(k), u2(k), u3(k), u4(k), u5(k)]
with K = 7 and n = 3. The membership degrees μi

required by the fuzzy estimators of Eqn. (8) have been
approximated with Gaussian functions, whose parameters
have been estimated by the fuzzy clustering algorithm
(Babuška, 2000).

Therefore, the complete fuzzy estimator strategy
is obtained by following Table 1, as these estimators,
organised into a bank structure, after fault detection
allow performing also the required fault isolation task, as
described in Section 5.

It is worth noticing that the identified fuzzy
prototypes for residual generation have been easily
simulated on-line, once the optimisation stages have been
performed off-line. The computation time required for
the simulation of fuzzy TS models is quite low, thus
allowing, if necessary, real-time generation of the residual
signals r(k). However, the computation time required for
both model estimation and optimisation is not crucial here
since these tasks are performed off-line at the FDI scheme
design stage.

As an example, Figs. 12–17 depict one of the data
sets containing the inputs signals u(k) generated from the
process under diagnosis.

Note that the range limitations of the u5(k) and
u6(k) signals depicted in Figs. 16 and 17 are due to
the control strategies implemented by the ECU BOSCH
controller used by VM Motors S.p.A.

On the other hand, the actual output measurement,
y(k), compared with the signal reconstructed by the fuzzy
estimator, is reported in Fig. 18.
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Fig. 12. Actual input u1(k) from the monitored process.
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Fig. 13. Actual input u2(k) from the monitored process.
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Fig. 14. Actual input u3(k) from the monitored process.

In order to highlight the performance of TS fuzzy
models, Fig. 19 represent the zoom of the actual
output measurement, y(k), compared with the signal
reconstructed by the fuzzy estimator for r1(k) residual
generation.

In the following, the structure of fuzzy residual
generators is reported. In particular, regarding the
generation of the residual r1(k) on the basis of the signals
u1(k), u2(k), u3(k), u5(k), and y(k), the identified
consequents are reported in the following expressions for
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Fig. 15. Actual input u4(k) from the monitored process.
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Fig. 16. Actual input u5(k) from the monitored process.
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Fig. 17. Actual input u6(k) from the monitored process.

each rule:

Rule 1:
r1(k)
= 0.97 y(k − 1) − 8.93 · 10−4 y(k − 2)

+ 4.01 · 10−2 y(k − 3) + 9.12u1(k − 1)
− 11.6 u1(k − 2) + 2.46u1(k − 3)
− 0.121 u2(k − 1) + 0.34 u2(k − 2)
− 0.21 u2(k − 3) + 4.28 u3(k − 1)
− 0.423 u3(k − 2) − 3.77 u3(k − 3)
− 0.61u5(k − 1) + 0.47 u5(k − 2)
+ 0.13 u5(k − 3) − 16 − y(k),
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Fig. 18. Simulated (dashed grey) and real (continuous black)
process output (intake air flow).
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Fig. 19. Zoom of the simulated (dashed grey) and real (contin-
uous black) process output.

Rule 2:
r1(k)
= 1.04 y(k − 1) − 3.41 · 10−2 y(k − 2)
− 1.21 · 10−4 y(k − 3) − 0.23 u1(k − 1)
+ 0.32 u1(k − 2) − 0.17 u1(k − 3)
− 1.17 · 10−2 u2(k − 1)
− 2.28 · 10−3 u2(k − 2) + 1.24 · 10−2 u2(k − 3)
− 0.62 u3(k − 1) + 0.12 u3(k − 2)
+ 0.54 u3(k − 3) − 1.60 · 10−2 u5(k − 1)
+ 7.64 · 10−2 u5(k − 2)
− 7.20 · 10−2 u5(k − 3) + 1 − y(k),

Rule 3:
r1(k)
= 0.94 y(k − 1) + 3.17 · 10−2 y(k − 2)

+ 1.8 · 10−2 y(k − 3) − 10.1u1(k − 1)
+ 4.08 u1(k − 2)
+ 6 u1(k − 3) + 8.74 · 10−2 u2(k − 1)
− 0.26u2(k − 2) + 0.18 u2(k − 3)
− 3.23 u3(k − 1) + 2.37 u3(k − 2)
+ 0.85 u3(k − 3) − 3.84 · 10−2 u5(k − 1)
+ 9.10 · 10−2 u5(k − 2) + 1.72 · 10−2 u5(k − 3)
− 6.99 − y(k),
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Rule 4:
r1(k)
= 0.97 y(k − 1) + 3.01 · 10−2 y(k − 2)

+ 1.14 · 10−2 y(k − 3) + 2.97 u1(k − 1)
− 5.10 u1(k − 2) + 1.99 u1(k − 3)
+ 1.38 · 10−2 u2(k − 1)
− 1.56 · 10−2 u2(k − 2) − 2.12 · 10−3 u2(k − 3)
+ 1.75 u3(k − 1) + 0.35 u3(k − 2)
− 2.03 u3(k − 3) − 0.27 u5(k − 1)
− 0.34u5(k − 2)
+ 0.62 u5(k − 3) − 1.23 − y(k),

Rule 5:
r1(k)
= 0.92 y(k − 1) + 7.75 · 10−2 y(k − 2)

+ 5.99 · 10−3 y(k − 3) + 6.54 u1(k − 1)
− 2.84 u2(k − 2) − 3.82 u1(k − 3)
− 4.95 · 10−2 u2(k − 1)
+ 6.97 · 10−2 u2(k − 2) − 2.66 · 10−2 u2(k − 3)
+ 4.44 u3(k − 1) − 0.89 u3(k − 2)
− 3.28 u3(k − 3) + 0.41 u5(k − 1) − 1.15 u5(k − 2)
+ 0.75 u5(k − 3) − 1.65 − y(k),

Rule 6:
r1(k)
= 0.93 y(k − 1) + 4.43 · 10−2 y(k − 2)

+ 1.46 · 10−2 y(k − 3) + 1.87 · 10−2 u1(k − 1)
+ 9.39 · 10−2 u1(k − 2) − 7.07 · 10−2 u1(k − 3)
+ 6.48 · 10−2 u2(k − 1) − 7.11 · 10−2, u2(k − 2)
+ 1.09 · 10−2 u2(k − 3) + 2.62 u3(k − 1)
− 1.61 u3(k − 2) − 0.92 u3(k − 3)
+ 0.18 u5(k − 1) − 0.65 u5(k − 2)
+ 0.51 u5(k − 3) − 12.4 − y(k),

Rule 7:
r1(k)
= 1.07 y(k − 1) − 9.76 · 10−2 y(k − 2)

+ 2.79 · 10−2 y(k − 3) − 0.38 u1(k − 1)
+ 0.46 u1(k − 2) − 0.14 u1(k − 3)
+ 3.27 · 10−3 u2(k − 1)
+ 9.10 · 10−2 u2(k − 2)
− 9.84 · 10−2 u2(k − 3)
− 1.31 u3(k − 1) + 1.23 u3(k − 2)
+ 0.25 u3(k − 3) − 3.29 u5(k − 1)
+ 2.16 u5(k − 2) + 1.15 u5(k − 3)
− 2.38 − y(k).

(19)
On the other hand, the structure of the fuzzy TS

prototype for the generation of the residual r2(k), which
depends on y(k), u1(k), u2(k), u3(k), u4(k), and u5(k),
is reported in the following expressions for each rule, with
K = 7 and n = 3:

Rule 1:
r2(k)
= 1.01 y(k − 1) + 6.55 · 10−2y(k − 2)

− 7.19 · 10−2y(k − 3) − 5.06 u1(k − 1)
+ 3.01 u1(k − 2) + 2.03 u1(k − 3)
+ 0.21 u2(k − 1) − 0.17 u2(k − 2)
+ 1.67 · 10−2 u2(k − 3) − 2.16 u3(k − 1)
+ 0.19 u3(k − 2) + 1.95 u3(k − 3)
+ 0.93 u4(k − 1) + 1.84 u4(k − 2)
− 2.86 u4(k − 3) + 5.29 · 10−2 u5(k − 1)
0.39 u5(k − 2) − 0.5 u5(k − 3) − 139 − y(k),

Rule 2:
r2(k)
= 1.07 y(k − 1) − 1.79 · 10−2 y(k − 2)
− 5.11 · 10−2 y(k − 3) − 0.14 u1(k − 1)
− 0.74 u1(k − 2) + 0.89 u1(k − 3)
+ 4.07 · 10−3 u2(k − 1)
+ 3.68 · 10−3 u2(k − 2) − 1.07 · 10−2 u2(k − 3)
+ 0.49 u3(k − 1) + 0.74 u3(k − 2)
− 1.22 u3(k − 3) + 0.94 u4(k − 1)
− 1.13 u4(k − 2) + 9.46 · 10−2 u4(k − 3)
− 0.96 · u5(k − 1) + 1.02 u5(k − 2)
− 7.86 · 10−2 u5(k − 3) + 11.2 − y(k),

Rule 3:
r2(k)
= 0.87 y(k − 1) + 4.42 · 10−2 y(k − 2)

+ 8.66 · 10−2 y(k − 3) + 0.84 u1(k − 1)
+ 7.18 · 10−1 u1(k − 2) − 1.81 u1(k − 3)
− 8.45 · 10−2 u2(k − 1) − 1.16 · 10−2 u2(k − 2)
+ 9.07 · 10−2 u2(k − 3) + 1.35 u3(k − 1)
− 0.59 u3(k − 2) − 0.45 u3(k − 3) − 1.88 u4(k − 1)
+ 1.29 u4(k − 2) + 0.7 u4(k − 3) + 0.68 u5(k − 1)
− 1.47 u5(k − 2) + 0.88 u5(k − 3) − 9.04 − y(k),

Rule 4:
r2(k)
= 0.95 y(k − 1) − 5.55 · 10−2 y(k − 2)

+ 7.72 · 10−2 y(k − 3)
+ 1.67 u1(k − 1) − 0.71 u1(k − 2)
− 0.89 u1(k − 3) + 3.24 · 10−2 u2(k − 1)
− 3.62 · 10−2 u2(k − 2) − 7.09 · 10−4 u2(k − 3)
− 2.16 u3(k − 1) − 2.40 u3(k − 2) + 4.35 u3(k − 3)
+ 0.46 u4(k − 1) − 1.42 u4(k − 2) + 1.12 u4(k − 3)
+ 2.14 u5(k − 1) − 0.88 u5(k − 2) − 1.18 u5(k − 3)
+ 25.5 − y(k),

Rule 5:
r2(k)
= 0.8 y(k − 1) + 0.16 y(k − 2)

+ 8.05 · 10−2 y(k − 3) + 6.32 u1(k − 1)
− 31 u1(k − 2) + 24.4 u1(k − 3)
+ 1.72 · 10−2 u2(k − 1) + 0.14 u2(k − 2)
− 0.14 u2(k − 3) + 12.2 u3(k − 1)
+ 3.87 u3(k − 2) − 15.3 u3(k − 3)
− 1.22 u4(k − 1) + 2.74 u4(k − 2) − 2.26 u4(k − 3)
− 2.87 u5(k − 1) − 0.4 u5(k − 2) + 3.23 u5(k − 3)
− 46.4 − y(k),
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Rule 6:
r2(k)
= y(k − 1) − 1.80 · 10−2 y(k − 2)

+ 1.51 · 10−2 y(k − 3) + 0.18 u1(k − 1)
+ 5.57 · 10−2 u1(k − 2) − 0.25 u1(k − 3)
+ 8.68 · 10−3 u2(k − 1) + 4.53 · 10−3 u2(k − 2)
+ 4.99 · 10−3 u2(k − 3) + 6.74 · 10−2 u3(k − 1)
− 2.77 · 10−2 u3(k − 2) − 2.78 · 10−2 u3(k − 3)
− 2.55 · 10−3 u4(k − 1) − 7.63 · 10−2 u4(k − 2)
− 2.67 · 10−2 u4(k − 3) − 0.51 u5(k − 1)
+ 0.19 u5(k − 2) + 0.31 u5(k − 3) + 6.53 − y(k),

Rule 7:
r2(k)
= 0.93 y(k − 1) − 5.66 · 10−2 y(k − 2)

+ 0.14 y(k − 3) + 2.87 u1(k − 1) + 0.33 u1(k − 2)
− 3.5 u1(k − 3) − 0.19 u2(k − 1) + 0.27 u2(k − 2)
− 0.13 u2(k − 3) + 3.28 u3(k − 1) − 0.45 u3(k − 2)
− 2.14 u3(k − 3) − 1.48 u4(k − 1) − 2.17 u4(k − 2)
+ 4.81 u4(k − 3) − 4.37 u5(k − 1) − 0.13 u5(k − 2)
+ 4.64 u5(k − 3) − 22.9 − y(k).

(20)
Finally, the structure of the fuzzy TS prototype for

the generation of the residual r3(k), which uses the signals
y(k), u1(k), u2(k), u3(k), u5(k), and u6(k), is reported
in the expressions for each rule, with K = 7 and n = 3:

Rule 1:
r3(k)
= 0.94 y(k − 1)

+ 6.36 · 10−2 y(k − 2) + 6.19 · 10−3 y(k − 3)
+ 6.18 u1(k − 1) − 5.44 u1(k − 2)
− 0.89 u1(k − 3) + 3.32 · 10−2 u2(k − 1)
− 8.79 · 10−2 u2(k − 2) + 5.08 · 10−2 u2(k − 3)
+ 2.67 u3(k − 1) − 0.24 u3(k − 2)
− 2.28 u3(k − 3) + 0.48 u5(k − 1)
− 1.26 u5(k − 2) + 0.79 u5(k − 3)
− 0.35 u6(k − 1) + 1.27 u6(k − 2)
− 0.93 u6(k − 3) − 1.98 − y(k),

Rule 2:
r3(k)
= 0.88 y(k − 1) + 0.16 y(k − 2)
− 4.36 · 10−2 y(k − 3) + 1.13 u1(k − 1)
− 2.21 u1(k − 2) + 1.11 u1(k − 3)
− 1.81 · 10−2 u2(k − 1) − 0.28 u2(k − 2)
+ 0.32 u2(k − 3) + 1.91 u3(k − 1)
− 2.34 u3(k − 2) + 0.63 u3(k − 3)
+ 1.87 u5(k − 1) − 1.51 u5(k − 2)
− 0.34 u5(k − 3) + 0.35 u6(k − 1)
− 0.48 u6(k − 2) + 0.13 u6(k − 3)
− 70.9 − y(k),

Rule 3:
r3(k)
= 0.96 y(k − 1)

− 2.40 · 10−2 y(k − 2) + 6.28 · 10−2 y(k − 3)
+ 0.77 u1(k − 1) − 8.32 u1(k − 2)
+ 7.5 u1(k − 3) − 8.94 · 10−2 u2(k − 1)
+ 0.18 u2(k − 2) − 9.69 · 10−2 u2(k − 3)
+ 7.22 u3(k − 1) − 2.35 u3(k − 2)
− 4.51 u3(k − 3) − 1.17 u5(k − 1)
+ 0.35 u5(k − 2) + 0.85 u5(k − 3)
+ 0.46 u6(k − 1) + 2.17 u6(k − 2)
− 2.56 u6(k − 3) − 5.17 − y(k),

Rule 4:
r3(k)
= y(k − 1) − 4.86 · 10−2 y(k − 2)

4.44 · 10−2 y(k − 3) − 1.7 u1(k − 1)
+ 3.31 u1(k − 2) − 1.51 u1(k − 3)
− 9.95 · 10−3 u2(k − 1) + 0.25 u2(k − 2)
− 0.25 u2(k − 3) − 0.95 u3(k − 1)
+ 1.87 u3(k − 2) − 0.97 u3(k − 3)
− 0.67 u5(k − 1) + 0.25 u5(k − 2)
+ 0.38 u5(k − 3) − 0.53 u6(k − 1)
+ 1.02 u6(k − 2) − 0.48 u6(k − 3) + 11.1 − y(k),

Rule 5:
r3(k)
= 0.99 y(k − 1)

+ 2.93 · 10−3 y(k − 2) + 6.6 · 10−3 y(k − 3)
+ 3.06 u1(k − 1) − 3.11 u1(k − 2)
+ 7.23 · 10−2 u1(k − 3) + 9.51 · 10−3 u2(k − 1)
− 9.02 · 10−3 u2(k − 2) − 2.82 · 10−3 u2(k − 3)
− 0.71 u3(k − 1) + 0.4 u3(k − 2)
+ 0.41 u3(k − 3) − 0.98 u5(k − 1)
+ 0.26 u5(k − 2) + 0.76 u5(k − 3)
+ 0.23 u6(k − 1) − 0.21 u6(k − 2)
− 5.73 · 10−3 u6(k − 3) − 2.06 − y(k),

Rule 6:
r3(k)
= 0.97 y(k − 1)
− 2.10 · 10−2 y(k − 2) + 3.56 · 10−2 y(k − 3)
− 25.1 u1(k − 1) + 24 u1(k − 2)
+ 1.22 u1(k − 3) + 7.21 · 10−2 u2(k − 1)
+ 6.72 · 10−2 u2(k − 2) − 0.14 u2(k − 3)
− 7.18 u3(k − 1) + 9.71 u3(k − 2)
− 2.49 u3(k − 3) − 2.25 u5(k − 1)
+ 2.36 u5(k − 2) − 5.16 · 10−2 u5(k − 3)
+ 0.11 u6(k − 1) − 1.86 u6(k − 2)
+ 1.37 u6(k − 3) + 36.6 − y(k),

Rule 7:
r3(k)
= 1.18 y(k − 1)
− 0.19 y(k − 2) + 2.16 · 10−2 y(k − 3)
+ 0.41 u1(k − 1) − 0.75 u1(k − 2)
+ 0.27 u1(k − 3) + 2.9 · 10−2 u2(k − 1)
+ 5.69 · 10−4 u2(k − 2) − 3.61 · 10−2u2(k − 3)
− 0.27 u3(k − 1) − 0.23 u3(k − 2)
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+ 0.85 u3(k − 3) − 4.5 u5(k − 1) + 4.43 u5(k − 2)
+ 0.13 u5(k − 3) + 0.32 u6(k − 1)
− 0.85 u6(k − 2) + 0.53u6(k − 3) − 13 − y(k).

(21)
The FDI scheme capabilities were then validated

by testing it on various real data sets, acquired from
a Jeep Wrangler under an emission test, according the
European Union Driving Cycle (EUDC). It is assumed,
in general, that faulty data can be “logically” separable
from fault-free sequences generated by the process under
diagnosis.

By considering different test data sequences, Table 6
reports the Predicted Per Cent Reconstruction Error
(PPCRE), where the reconstruction error ri(k) in
fault-free conditions is computed as the difference
between the actual diesel engine output y(k) and the
output from the i-th residual generator. Since this error is
normalised with respect to the output standard deviation,
it can be seen as the percentage of data that are not
correctly explained by the identified TS models. The
results summarised in Table 6 indicate that the fuzzy
prototypes are able to generate reliable residual signals for
real diesel engine fault diagnosis.

Table 6. TS fuzzy model errors for different data sets.
Data set PPCRE

r1(k) r2(k) r3(k)

estimation data 0.90% 0.87% 0.92%
validation data 2.80% 1.80% 2.10%
test data 4.20% 3.50% 4.00%

Using these identified TS fuzzy prototypes, the
diesel engine FDI scheme design has been applied to the
actual process, as shown in Section 6.2, whilst further
experiments are summarised in Section 6.3.

6.2. Real-time diagnostic implementation. Clearly,
the presented fuzzy identification would require a
considerable calculation effort if it were implemented
on-line. State-of-the-art Engine Control Units (ECUs)
would not be able to perform these algorithms in
an appropriate time. Assuming that the growth in
calculation power has been proceeding at high speed of
the last few years, future ECUs should make sufficient
calculation time available within some years, where very
simple adaptation or identification algorithms could be
implemented. However, it is worth noticing that the
complete fuzzy modelling oriented to the design of
the FDI strategy suggested in this work was computed
off-line.

On the other hand, special real-time computer
systems based on digital signal processors already allow
implementation and testing of the model-based designs

in vehicles or an engine test stand. In order to operate
the designed fuzzy predictors for an FDI purpose under
realistic fault and working conditions, a real-time system
was implemented at a dynamic engine test stand where
it could be run parallel to the production car’s ECU.
This system uses the production car sensors, and the
input-output messages of the ECU.

The actuated signals, which are calculated in
real-time, are then sent to the actual actuators by means of
a suitable electronic interface. On the other hand, output
measurements can be easily acquired from the ECU
system. Thus, the complete system, whose logic diagram
is reported in Fig. 20, allows testing the capabilities of the
suggested fuzzy FDI scheme, when working in connection
with a real process.

In this application, the test system is used as a rapid
prototyping environment. The goal of this structure is
to enable very fast and easy implementation and testing
of the new FDI concepts on real-time hardware. The
user is enabled to code newly developed FDI algorithms
from block diagrams via the Matlab R© and Simulink R©
environments, and download the code by means of an
automatic code generation software to real-time hardware
(e.g., the well-known Real-Time Workshop of Matlab R©).
In particular, the developed TS fuzzy prototypes were
implemented as simple look-up tables, which can be
easily stored on the car’s ECU.

Engine Speed
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Charge Pressure

Air Flow

Sensor

Charge Air

Temperature

Water

Temperature

Oil Temperature

Brake Pedal

Clutch Pedal

Matlab

Simulink
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Electric Valve

PWM

EGR

Electro-Pneumatic

Converter

ECU

module

(Control Desk

Host PC)

FDI strategy development

FDI strategy

implementation

Measurements from car Control signals to car

Fig. 20. Real-time validation of the FDI strategy with the test
vehicle.

Therefore, the described real-time hardware system
represented in Fig. 20 has enabled viable implementation,
validation, and testing of the proposed FDI strategy,
whose results have been shown in Section 6.3. Further
experiments used for assessing the effectiveness of the
FDI approach are shown in Sections 6.4 and 6.5.

6.3. FDI results. The following experimental results
have been obtained by considering the faults described in
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Section 3.1, and implemented in real-time, as described
in Section 6.2. They cause alteration of the signals ui(k)
and y(k), and therefore of the residuals ri(k) given by
the predictive models in the form of Eqn. (8). Residuals
indicate fault occurrence according to the logic of Eqn.
(17), whether their values are lower or higher than the
thresholds fixed in fault-free conditions.

As an example, Figs. 21, 23 and 25 show the results
from the application of the fuzzy prototypes for residual
generation.

In particular, Fig. 21 shows the fault-free and the
faulty residuals r1(k) concerning the fault case 1, which
commences at t = 850 s, with a rate of 1% per hour.
The fault detection thresholds highlighted in Fig. 21 with
dotted lines, have been settled according to Eqns. (17)
with a δ = 4.8. This choice allows achieving fault
detection of 750 s.

Time (s.)

0 500 1000 1500 2000 2500 3000 3500
-0.5

0

0.5

1

r1(k)

Fig. 21. Fault-free (continuous black) and faulty (dashed grey)
residuals for the fault case 1.

In the same situation, Fig. 22 depicts the residual
signals r2(k) and r3(k) that are generated by the fuzzy
generators insensitive to the fault case 1.

Time (s.)

0 500 1000 1500 2000 2500 3000 3500
-0.6

0

0.6

0.9

0 500 1000 1500 2000 2500 3000 3500
-0.2

0

0.2

Time (s.)

Faulty residual Faulty residual

r2(k) r3(k)

Fig. 22. Residuals r2(k) and r3(k) from the generators insensi-
tive to the fault case 1.

On the other hand, Fig. 23 shows the fault-free and
faulty residual signals regarding the temperature sensor of
the diesel engine, i.e., the fault case 2. This temperature
sensor fault described in Section 3.1 is linked to the signal
fu(t), which models the fault affecting the engine variable

u4. The fault commences at t = 840 s., and influences the
u4 signal, with a rate of 5% per hour.
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0

0.2

0.4

0.6

Time (s.)
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Fig. 23. Fault-free (black continuous) and faulty (grey dashed)
residuals for the fault case 2.

In the same condition, Fig. 24 depicts the residual
signals r1(k) and r2(k) that are generated by the fuzzy
generators insensitive to the fault case 2.
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Fig. 24. Residuals r1(k) and r2(k) from the generators insensi-
tive to the fault case 2.

The non-zero values of the residuals in fault-free
conditions shown in Figs. 21 and 23 are due to modelling
and measurement errors. A value of δ = 4.5 has
been selected, according to the procedure described in
Sections 5 and 6.5, thus guaranteeing a fault detection
delay of about 950 s. Figure 23 reports also fault detection
thresholds depicted using dotted lines.

Finally, Fig. 25 depicts the residuals corresponding
to the fault case 3, which commences at t = 850 s. The
residuals are computed by means of the fuzzy predictor
monitoring the TVA control signal u6(k). A choice of
δ = 4.6 allows detecting a fault with a rate of 7% per hour
after 1000 s.

In the same situation, Fig. 26 depicts the residual
signals r2(k) and r3(k) generated by the fuzzy generators
of the bank that are insensitive to the fault case 3.

Note that the fault detection thresholds reported in
the relation of Eqn. (17) are represented as constant dotted
lines in Figs. 21–26. Their values were properly settled
by selecting a proper δ, which leads to minimising the
false alarm and missed fault rates while maximising the
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Fig. 25. Fault-free (continuous black) and faulty (dashed grey)
residuals for the fault case 3.
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Fig. 26. Residuals r1(k) and r3(k) from the generators insensi-
tive to the fault case 3.

correct detection and isolation rates. The optimisation
procedure for the selection of the parameter δ is further
discussed in Section 6.5. These parameters depend on the
automotive application considered. In these conditions,
the fault is correctly detected when the corresponding
residual signals exceed the thresholds by a fixed number
of consecutive samples.

Finally, it is worth observing that the developed
strategy based on fuzzy prototypes allows detecting and
isolating realistic faults using uncertain measurements
acquired from the real diesel engine test-rig. Moreover,
the real-time hardware system described in Section 6.2
enabled the implementation, validation, and assessment
of the proposed FDI strategy, thus proving its reliability
and robustness when applied also to real data. However,
further investigations are shown in Sections 6.4 and 6.5.

6.4. Comparative studies. This section provides some
comparative results with respect to another FDI scheme,
in particular, the one relying on a bank of Unknown
Input Kalman Filters (UIKFs) (Chen and Patton, 1999).
The UIKF bank was designed on the basis of a linear
state-space 15-th order model of the diesel engine, derived
on the basis of the identification method presented, e.g.,
by Simani et al. (2000) and Simani (2007), but without
exploiting the fuzzy multiple-model identification.

It is worth noticing that the state-space linear
model of 15-th order was computed using a black-box
identification procedure exploiting the subspace N4SID
algorithm (Ljung, 1999). It is clear that, with reference
to this identified black-box state-space model, the state
variables do not have any physical meaning. In fact, the
model order was selected for achieving good estimation
properties. Moreover, this model was not derived from
any linearisation procedure, which motivates again the
lack of any physical meaning of the state vector. The
model structure was validated using the tools available
from the System Identification Toolbox (Ljung, 1997)
developed in the Matlab R© environment. The validation
is based on the auto- and cross-correlation analysis of
the model estimation error, as described again by Ljung
(1999). The suggested comparison between the UIKF
approach and fuzzy residual generators seems appropriate
indeed. In fact, even if UIKFs are designed on the basis of
the linear state-space model, they allow decoupling both
the model-reality mismatch and the measurement errors.
In this way, UIKFs organised into a bank scheme for
residual generation are compared with TS fuzzy models.

Once the linear state-space 15-th order model for
the diesel engine has been computed, the UIKFs of
the bank have been obtained by the design technique
described, e.g., by Chen and Patton (1999, Section 3.5.1,
pp. 99–108), while the noise covariance matrices have
been estimated as described by Simani et al. (2001,
Chapter 4, pp. 117–131). In particular, the design of
the UIKFs of the bank is enhanced by the estimation of
the noise covariance constant matrices directly achieved
from the Frisch scheme, already exploited here, and
recalled in Section 4.1.2. Using the notation of Chen
and Patton (1999, Section 3.5.1, p. 100), with the
knowledge of the (constant) noise covariance matrices
Qk and Rk, which are computed from the identified
(¯̃σu, ¯̃σy) (Simani, 2007), the time-varying gain Kk and
error covariance Pk matrices of the Kalman filter bank are
computed. Therefore, the motivation for using the bank of
non-stationary Kalman filter with unknown inputs here is
twofold. First, the time-varying (non-stationary) Kalman
filters designed on the basis of the linear state-space model
of the diesel engine are able to generate suitable residuals
for the nonlinear system. In practice, in this situation the
identified variance noise values (¯̃σu, ¯̃σy) take into account
the uncertainty due to both modelling and measurement
errors, i.e., the disturbance term of the UIKFs (Simani
et al., 1999; Fantuzzi et al., 2002). Secondly, the bank
of UIKFs allows us to achieve also the required fault
isolation task, in the same way exploited for the design
of the bank of fuzzy estimators, as described in Section 5.

As an example, the FDI residuals generated via the
UIKF bank are shown in Fig. 27. In particular, the UIKF
bank residuals relative to 2150 s. simulation time are
depicted in Fig. 27, when the fault cases 1, 2, and 3
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commence at 850 s.
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Fig. 27. UIKF fault-free (continuous black) and faulty (dashed
grey) residuals: case 1 fault residuals (a), case 2 fault
residuals (b), case 3 fault residuals (c).

The residual signals of Fig. 27 are different from
those shown in the previous section. In this case in fact,
the residual signals generated via the UIKF bank do not
allow achieving the detection of the fault cases 1 and 3.
Moreover, the detection of the fault case 2 is achievable
only if its rate is increased. Table 7 summarises the results
obtained by comparing the FDI technique recalled in this
subsection.

A few comments can be drawn here. When
the modelling of the dynamic system can be perfectly
obtained, model-based schemes are preferred. In some
situations, the UIKF can take advantage of its noise
and disturbance rejection capabilities, but with quite

Table 7. Minimal detectable faults.
Fault case UIKF Fuzzy approach

Case 1 Not detectable 1%

Case 2 15% 5%

Case 3 Not detectable 7%

complicated and not straightforward design procedures.
However, in this case, the fault sensitivity of the linear
UIKF is lower with respect to nonlinear fuzzy predictors.
On the other hand, regarding the developed FDI fuzzy
method, it seems rather simple when developed in
connection with fuzzy identification, even if optimisation
stages are required, for example, for optimal FDI
threshold selection. This further issue has been described
in Section 6.5

6.5. FDI scheme robustness evaluation. In this
section, further experimental results have been reported
regarding the performance optimisation and evaluation
of the developed FDI scheme with respect to modelling
errors and measurement uncertainty. In particular, the
simulation of different fault-free and faulty data sequences
has been performed by exploiting the test-rig setup of
Section 6.2 and a Matlab R© Monte-Carlo analysis. In
fact, the Monte-Carlo tool is useful at this stage as FDI
performances depend the residual error magnitude as well
as on the measured signal u(k) and y(k) errors. As
remarked in Section 6.2, the experimental test-rig is able
to generate the required real-time signals and the injection
of realistic fault cases.

Moreover, as described in Section 5, it is assumed
that the input-output data u(k) and y(k) were affected by
measurement errors. Thus, for performance evaluation
and reliability analysis of the FDI scheme, some indices
have been used. The performances of the FDI method
are thus empirically evaluated on 500 Monte-Carlo runs,
corresponding to the same number of driving cycle tests.
These indices are defined as follows:

False Alarm Rate (rfa): the number of wrongly
detected faults divided by total fault cases;

Missed Fault Rate (rmf ): for each fault, the total
number of undetected faults, divided by the total
number of times that the fault case occurs;

True Detection/Isolation Rate (rtd, rti): for a particular
fault case, the number of times it is correctly
detected/isolated, divided by total number of times
that the fault case occurs;

Mean Detection/Isolation Delay (τmd, τmi): for a
particular fault case, the average detection/isolation
delay time.
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These criteria are computed off-line for each fault case.
Table 8 summarises the results obtained by considering
the fuzzy residual generators, and with a choice of the
threshold parameter δ in Eqns. (17) leading to achieve
optimal results.

Table 8. Monte-Carlo analysis by monitoring residuals via
Eqns. (17) with optimal δ.

Fault rfa rmf rtd, rti τmd, τmi δ

Case 1 0.002 0.003 0.997 750s 4.8

Case 2 0.001 0.001 0.999 950s 4.5

Case 3 0.002 0.003 0.997 1000s 4.6

Table 8 shows that with the proper selection of the
threshold levels depending on δ it is possible to achieve
false alarm and missed fault rates of less than 0.3%
and detection and isolation rates larger than 99.7%, with
minimal detection and isolation delay times. The results
demonstrate also that Monte-Carlo analysis is an effective
tool for experimentally testing the design robustness of
the proposed FDI method with respect to error and
uncertainty. This last simulation technique example hence
facilitates an assessment of the reliability of the developed
FDI method applied to real test cases.

7. Conclusion

The paper provided practical results in the diagnosis
of faults on a real diesel engine process by using a
model-based approach. The reported results show that
faults having barely detectable effects on measurements,
can be detected using residual generators in the form of
dynamic fuzzy Takagi–Sugeno prototypes. The outlined
method focused to some extent on identified input-output
models, thus the final fault diagnosis algorithm is based
only on input-output processing of all measurable signals.

The paper suggested to exploit identified
piecewise-affine models, although the system considered
is strongly nonlinear. This is regarded as important
to avoid the complexities otherwise inevitable when
purely nonlinear models are used. The algorithmic
simplicity can be seen as a very important aspect when
considering the need for verification and validation of a
demonstrable scheme for industrial certification, mainly
important in automotive fields. This aspect of the work,
together with the fact that the modelling uncertainty
and the measurement noise seem to be well tackled,
confirms the straightforward application of the proposed
fault diagnosis schemes to real automotive applications.
Finally, the robustness and reliability properties were
investigated via extensive Monte–Carlo experiments.
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Babuška, R. (1998). Fuzzy Modeling for Control, Kluwer

Academic Publishers, Boston, MA.
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