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This paper develops a new approach to double fault isolation in linear systems with the aid of directional residuals. The
method of residual generation for computational as well as internal forms is applied. Isolation of double faults is based
on the investigation of the coplanarity of the residual vector with the planes defined by the individual pairs of directional
fault vectors. Additionally, the method of designing secondary residuals, which are structured and directional, is proposed.
These transformations allow achieving various isolation properties. It is shown that double fault distinguishability can be
improved by decomposing the observed residual vector along the response directions. The described methods are illustrated
with a simple computational example.
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1. Introduction

Fault distinguishability is one of the most important
issues defining the quality of diagnostics of technical
systems. Higher fault distinguishability results in a more
accurate diagnosis. Therefore, an improvement of fault
distinguishability leads to an increase in the overall
diagnosing accuracy. More accurate diagnostics means
lower power subsets of faults.

The paper deals with the problem of double fault
isolation. On-line diagnostics of industrial processes is
mostly performed with the assumption of single faults
(Gertler, 1998; Chen and Patton, 1999; Patton et al.,
2000; Isermann, 2006; Korbicz et al., 2004). Such
an assumption causes a considerable simplification of
the algorithm of fault isolation. However, the problem
of admissibility of such assumption seems to be
disputable. In large-scale technological installations, due
to the plant scale and reliability factors, faults have
to be considered unavoidable. They may appear with
differentiated frequency as a single or multiple faults.
A multiple fault means simultaneous occurrences of
any possible combination of single faults. The most
difficult for isolation are particularly the faults that appear
simultaneously. If n is the number of possible faults,
then there are 2n possible system states with multiple
faults. This shows the scale of the problem. Therefore it is

necessary to take into consideration not only single faults,
but also multiple ones. First of all, we should analyze the
possibility of double fault occurrence.

One can distinguish two main groups of model-based
approaches to multiple faults diagnosis. The first one is
based on the knowledge of nonlinear or linear models of
the system, but without including the influence of faults
on the system output. Well-known examples are state and
output equations which can generally be written as

ẋ(t) = φ[x(t), u(t)],

y(t) = ψ[x(t), u(t)],
(1)

where x, u and y are the state, input, and output
vectors, respectively, while φ and ψ are nonlinear
continuous functions with certain smoothness properties.
The relationship that exists between faults and residual
values generated by the models of the system usually takes
the form of a binary relation and is determined by expert
knowledge or learning methods.

In this group of works it is necessary to mention
the approaches coming from the automatic control area
and the FDI community compared with the ones based
on Artificial Intelligence (AI) techniques and developed
by the DX community (a series of conferences devoted
to automated diagnosis methods emerging from AI).
Artificial intelligence-based methods called model-based
diagnosis as well as methods based on the theory of
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Reiter (1987) allow isolating single and multiple faults
(de Kleer and Williams, 1987; Górny, 2001; Hamscher
et al., 1992; Hwee, 1991; de Kleer and Kurien, 2003;
Daigle et al., 2006; Ligęza and Kościelny, 2008). The
diagnoses are generated as minimal hitting sets of all the
minimal conflict sets. These approaches take advantage by
allowing for fault compensation effects. But they found
applications only for diagnostics of relatively simple
systems.

This group of methods may also include an approach
to qualitative isolation of multiple faults described by
Daigle et al. (2006). It is based on the TRANSCEND
framework (Mosterman and Biswas, 1999; Manders et al.,
2000), which employs a qualitative approach for analysis
of fault transient behavior. The diagnosis model is used to
generate fault signatures, which represent the magnitude
and higher order effects of faults on the measurements.

In the FDI area, one of the first approaches applied
to isolation of multiple faults of instruments and actuators
was carried out with the application of a bank of observers
for residual generation and classic logic for decision
making procedures about faults (Frank, 1987; Clark,
1989). The common FDI approach is fault detection
and fault isolation based on elementary component
models (analytical, fuzzy or neural) of physical systems
and a binary diagnostic matrix, which presents the
relation existing between bi-state diagnostic signals and
faults (Kościelny, 1995; 2001; Kościelny et al., 2012;
Staroswiecki et al., 2000). Signatures for states with
multiple faults are created based on the binary diagnostics
matrix (Gertler, 1998; Staroswiecki et al., 2000; Korbicz
et al., 2004). A different approach exploits the assumed
availability of data from process faulty states. Sorsa and
Koivo (1993), Watanabe and Hirota (1991) as well as
Watanabe and Hou (1992) applied neural networks to
model relations between faults and fault symptoms in the
diagnostics of industrial processes. But it is clear that
acquisition of such data is practically impossible.

Models of the second group include the influence of
faults f, and sometimes noise. Faults are treated as peculiar
inputs of an object. The description of a dynamic system
with respect to faults can be represented by the following
equations:

ẋ(t) = φ[x(t), u(t), f(t)],

y(t) = ψ[x(t), u(t), f(t)].
(2)

In this case, residual values explicitly depend on faults.
Basically, there are two fundamental frameworks to create
a residual set to enable fault isolation. One approach
is to design a set of structured residual signals. Each
residual is designed to be sensitive to a certain group of
faults, while being insensitive to others. Another way of
isolation is to design a directional residual vector, which
means forcing the residual vector to lie in a fixed and

fault-specific direction in the residual space with respect
to each fault (Gertler, 1998; Korbicz et al., 2004). If
the diagnosis is carried out with linear input-output type
models, not only the calculation form of residuals must
be determined, but also the inner form, which defines the
dependence of residuals on faults (Gertler, 1998; Chen
and Patton, 1999; Patton et al., 2000; Korbicz et al., 2004).

Methods in this group create potentially more
possibilities of multiple faults isolation. This is due
to a much higher level of knowledge about relation
between residual values and faults. However, in the
case of structured residuals (Gertler, 1998), the fault
isolation rule consists in concluding based on the binary
diagnostics matrix mentioned previously. This means that
distinguishability of faults does not improve.

Knowledge about the internal form of residuals
enables fault sensitivity evaluation with the use of fault
decoupling along with disturbances (Gertler, 1998; Frank,
1991). The objective is to achieve a unitary matrix,
which contains ones on its diagonal. Then the number of
residuals equals that of faults. A characteristics feature of
the matrix is that each diagnostic signal detects one fault
only, different from those detected by the other diagnostic
signals. Such a diagnostic matrix is the optimal solution.
It ensures a strongly isolating distinguishability of faults.
Then, the problem of multiple faults can be solved.

Khémiri et al. (2011) presented a new recursive
optimal filter structure. The fault affects both the state
and output equations, whereas unknown disturbances
only affect the state system equation, without any
prior information about their dynamical evolution. The
resulting filter was applied to solve simultaneous actuator
and sensor fault estimation. Hashtrudi and Massoumnia
(1999) also analyzed simultaneous actuator and sensor
faults. A result of the theorem is that when actuator
and sensor failure modes are scalar, the EFPRG
(Extended Fundamental Problem in Residual Generation)
is generically solvable if and only if the number of
actuator failure modes is less than or equal to the
dimension of the state space of the system and the total
number of actuator and sensor failure modes is less than
or equal to the number of system outputs.

However, a diagonal diagnostic matrix can be
achieved only if the number of faults is less than or
equal to the number of system outputs (Gertler, 1998).
In fact, the number of system outputs is equal to that of
instrument faults. If we take into consideration all the
faults, i.e., instrument, actuator and component faults,
then the number of faults is always greater than that
of system outputs. Thus, this approach is not useful in
industrial practice.

Other techniques were also proposed for multiple
fault isolation. The method of detection filters (Chen
and Speyer, 1999) and application of decoupled Kalman
filters (Adam-Medina et al., 2003) as well as decoupled



Double fault distinguishability in linear systems 397

unknown input observers (Ding, 2008) potentially give
substantial possibilities of isolation of multiple faults.
De-Persis and Isidori (2001) studied the problem of
fault detection and isolation for nonlinear systems.
The extension to the case of multiple concurrent
faults was briefly discussed. Mattone and de Luca
(2006) described a geometric approach to nonlinear
robotic systems. The proposed approach uses the hybrid
structure of the diagnostic system, cascading nonlinear
residual generators with combinatorial isolation logics
for detection and isolation multiple fault. However, this
method differs from the one presented in this paper.
Verde et al. (2001) show how fuzzy directional residual
evaluation can be used to isolate multileaks in pipelines in
a fuzzy framework.

In this paper we present the possibilities of
double fault isolation for a linear system of equations
or linearized in a neighbourhood of an operating
point, assuming that parity equations are known in
computational forms as well as internal forms (Gertler,
1998; Kościelny, 2001; Korbicz et al., 2004), i.e.,
relationships are known not only between input and output
signals of the diagnosed object but also between faults and
output signals.

The contribution in the present paper is an extension
of the residual vector generation method (Gertler,
1998) to increase double fault distinguishability. The
presented approach is based on directional residuals and
investigation of the coplanarity of the residual vector with
the planes defined by individual pairs of directional fault
vectors. This method allows distinguishing many types of
double faults, which are not distinguished on the basis
of binary signatures in the structured approach and AI
methods. This paper is a continuation of our previous
work (Kościelny and Łabęda, 2007).

This paper is organized as follows. In Section 2,
we list out the assumptions under which the analysis
of the problems of double faults distinguishability is
carried out. The dynamic consistence equations calculated
from transfer function models, which take the effect
of faults into account, are also presented in Section 2.
For the design of directional residuals, the calculation
and the internal form of primary residuals are derived.
In Section 3, we introduce definitions and notation
required to describe the graphical interpretation of double
faults in the parity space. Section 4 describes the
principles of formulating the hypotheses about occurrence
of double faults. In Section 5, we derive double fault
distinguishability conditions. Section 6 deals with the
design of structured residuals. The technique of residual
enhancement by design of a secondary residual, which
improves double fault isolability, is developed. The
approach is then illustrated on a simple, computational
example in Section 7. The paper concludes with Section 8.

2. Description of linear diagnosed objects
taking into consideration the influence of
faults

The analysis of problems of distinguishability of multiple
faults is carried out under following assumptions:

1. All single faults in the system are distinguished on
the basis of any fault isolation method, such as
structured or directional residuals. If the condition
is not satisfied, then the reasonableness of multiple
faults distinguishability, in particular double faults, is
very limited. Only if the distinguishability of single
faults is achieved it is purposeful to analyze the
distinguishability of double faults.

2. The residual response to double faults can be derived
from a single fault response. This assumption should
hold in most real applications.

3. The system is linear or can be made, with a sufficient
accuracy approximate linear description, valid in the
surroundings of a working point.

4. The influence of faults on outputs of the system as
well as residuals can be described, with sufficient
accuracy, by the linear equations (4). Note that this is
a strong assumption, limiting the applicability of the
proposed method since the nature of faults is strongly
nonlinear.

5. No transfer functions describing the system have an
integral term. This restriction applies mainly to the
method of directional residuals. It usually holds in
practice.

6. The fault set F size is greater than sets of inputs U
and outputs Y of the system, i.e., |F | > |U |, |Y |.

7. The influence of disturbances and noise is omitted.

In order to isolate faults, it is necessary to have
knowledge of the relationships between faults and values
of diagnostic signals. This relationship can be defined
as a result of object modeling taking into consideration
influence of faults (2). Real systems are usually nonlinear,
but for simplification of the mathematical description their
linearization is conducted. It allows us to formulate an
approximate linear description, valid in the surroundings
of an operating point on the static characteristic (this
point, most often, corresponds to nominal or average
working conditions). At every operating point the function
φ is linearized. A similar Taylor expansion can be made
for the function ψ. An approximation of (2) with local
linear models is

ẋ(t) = Ax(t) +Bu(t) + Ef(t),

y(t) = Cx(t) +Du(t) + F f(t),
(3)
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where x is a state vector, which characterizes the internal
state of the system at any instant t, y is an output vector, u
is an input vector, f is a fault vector, matricesA, B, C,D,
E and F are the parameters of the state space realization.

A commonly used form of the description of a linear
process is a transfer function model containing the set
of equations defining the relationship between process
outputs, inputs and faults (Geltler and Singer, 1990;
Gertler, 1998):

y(s) = G(s)u(s) +GF (s)f(s). (4)

The transfer functions G(s) and GF (s) are all assumed to
be proper and of suitable dimensions. Particular equations
have the following form:

yj(s) = Gj1(s)u1(s) + · · ·+GjP uP (s)
+ GFj1(s)f1(s) + · · ·+GFjKfK(s), (5)

where Gjp(s) for j = 1, . . . , J and p = 1, . . . , P is
the transfer function between the j-th output and the p-th
input:

Gjp(s) =
yj(s)
up(s)

, (6)

while GFjk(s) for j = 1, . . . , J and k = 1, . . . ,K is
the transfer function between the j-th output and the k-th
fault:

GFjk(s) =
yj(s)
fk(s)

. (7)

In the case of a fault free state, the dependence
y(s)−G(s)u(s) = GF (s)f(s) = 0 is fulfilled. Therefore,
symptoms of faults are non-zero residuals, calculated
from the following primary residual form:

r(s) = y(s)−G(s)u(s), (8)

called the computational residual form. The general
relation between residual and faults defines the so-called
internal residual form:

r(s) = GF (s)f(s). (9)

The internal form of the j-th residual is then

rj(s) = GFj1(s)f1(s) + · · ·+GFjK (s)fK(s). (10)

This relation can be represented, for all the residuals,
in the form shown in Table 1. The dynamics of the
j-th residual under the influence of the k-th fault are
described by the transfer function GFjk(s). Thus, having
the description of fault influence on the residuals in the
internal form (10), it is possible to define the sensitivity
of residuals to individual faults, not only qualitatively, but
also quantitatively. The set of transfer functions from the
column of Table 1 corresponding to particular fault defines
its signature.

Table 1. Internal form of residuals.
f1 . . . fk . . . fK

r1 GF11 GF1k GF1K
. . .

rj GFj1 GFjk GFjK
. . .

rJ GFJ1 GFJk GFJK

According to Assumption 5 the individual transfer
function GFjk in Eqn. (10) has no integral term. In this
case, the values of the transfer function in the column
corresponding to a particular fault define the gain and
dynamics of residuals, which are sensitive to this fault. In
steady state, i.e., when transient processes have already
decayed (theoretically, the time of the proceeding of
system to steady state is infinitely long, therefore for
t → ∞), it is possible to calculate, on the basis of the
theorem about the final value, the gain cjk for individual
pairs of the k-th fault and the j-th residual. Therefore,
for fk(t) = 1(t) with the transfer function fk(s) = 1/s,
k = 1, . . . ,K , we get

lim
t→∞ rj(t) = lims→0

srj(s) = lim
s→0
sGFjk
1
s
= cjk. (11)

The set of linear equations is given in Table 2.
Since J < K (Assumption 6), the system is unsolvable

Table 2. Directional signatures.
f1 . . . fk . . . fK

r1 c11 c1k c1K
. . .

rj cj1 cjk cjK
. . .

rJ cJ1 cJk cJK

in a general case. If f(t) is of binary nature fk(1) =
1(t), then the solution is in {0, 1}K space. We can
solve this algebraic equation by integer programming.
The solution will not be unique, each corresponding to
a single diagnostic hypothesis. However, there is no need
to assume fk(1) = 1(t). We therefore propose the use of
directional residuals.

The vector of steady state residual gains, in response
to a particular fault fk, defines some direction wk =
[c1k, . . . , cjk, . . . , cJk] in the residual space (called the
parity space) and lies in a fixed and that fault-specific
space at all times, including transients. A fault is then
isolated by determining the fault signature direction that
is the closest to the generated residual vector. It is the base
of the directional residual method (Gertler, 1998; Patton
et al., 2000; Chen and Patton, 1999).

So far, directional residuals have been analysed
mainly in the context of single fault isolation. In this paper
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an attempt to improve the performance of double fault
distinguishability is made.

3. Graphical interpretation of double faults
in the parity space

Let us assume that the residual vector is confined to a
fault specific direction wk = [c1k, . . . , cJk]. The isolation
approach presented in this paper uses a three-dimensional
parity space for a system of residuals r = [r1, r2, r3]
and a set of binary detection (Boolean) tests to compose
the observed fault signature. However, the use of binary
codification of the residual produces a lack of information
that can lead to wrong diagnosis. This happens in some
double faults that are indistinguishable because they
present the same theoretical binary fault signature. Our
approach is based on the analysis of such cases of
double faults. The three-dimensional space of residuals is
sufficient for our purposes. The residuals must be properly
selected from the whole set of residuals. We mainly
choose the residuals which are sensitive to the largest
number of faults form the analyzed pairs of faults.

The directional vectors wk = [c1k, c2k, c3k] and
wm = [c1m, c2m, c3m] for optional pairs of faults fk
and fm determine the plane Hkm in the parity space.
It is possible to calculate the equation of the plane by
defining a perpendicular vector to this plane and taking
into consideration that it includes the initial point of the
coordinate system.

Assume that wk and wm are linear independent.
Then wkm = wk×wm is a non-zero vector perpendicular
to both vectors, wk and wm, and perpendicular to the
plane Hkm that contains them. The definition of the vector
product can be represented by the determinant of a formal
matrix:

wkm = wk × wm =

∣
∣
∣
∣
∣
∣

i j k
c1k c2k c3k
c1m c2m c3m

∣
∣
∣
∣
∣
∣

= a1kmi+ a2kmj+ a3kmk,

(12)

where the unit vectors i, j, k are the versors of the
coordinate system r1, r2, r3, and the vectors of the
standard basis in three dimensions. The three scalar
components of the resulting vector wkm are

a1km = c2kc3m − c3kc2m,
a2km = c3kc1m − c1kc3m,
a3km = c1kc2m − c2kc1m.

(13)

The equation of the plane Hkm passing through the
coordinate origin and perpendicular to wkm is in the
following form:

a1kmr1 + a2kmr2 + a3kmr3 = 0. (14)

The sample plane Hkm in the parity space is represented
by the grey colour on the diagram of Fig. 1.

Fig. 1. Diagram of the plane Hkm in three-dimensional coordi-
nate systems r1, r2, r3.

4. Principles of formulating hypotheses
about occurrence of double faults

In a steady state, assuming the appearance of double fault
fk, fm and no other faults, the vector of residuals r should
be confined to the fault specific plain Hkm. For steady
state conditions, if the current vector is coplanar with the
plane Hkm of proper pairs of faults, i.e., if the scalar triple
product is equal to zero,

(wk×wm) · r = a1kmr1+ a2kmr2+ a3kmr3 = 0, (15)

then the occurrence of the pair of faults fk and fm can
be hypothesized. Obviously, other combinations of a pair
of faults can define the same plane (e.g., it is enough
to have Table 2 with identical columns). Then, these
faults are indistinguishable. Therefore, the hypothesis
statement about occurrence of double faults amounts to
determining to which pre-defined double fault specific
plane the observed residual vector lies the closest. This
directly implies the double fault isolation method.

In fact, the actual residual vector may not coincide
precisely with the planes of proper pairs of faults. This
may be due to the presence of noise, disturbances and
modeling errors. Thus, the coplanarity condition (15) is
not satisfied. The measure of the consistency of actual
residual vector and the plane of double fault fk, fm was
determined using the angle between the vector r and the
plane Hkm.

Let ϕ be the angle between r and the normal wkm
to the plane Hkm. Then the cosine of this angle can be
calculated as follows:

cosϕ =
r · wkm
||r|| ||wkm|| . (16)

This formula involves the dot product and the magnitudes
of two vectors. Therefore, the size of the angle αkm
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between residual vector r and plane Hkm of double fault
fk, fm is given by

αkm = 90o − arc cosϕ. (17)

As the value of αkm gets closer to zero, the hypothesis
about the occurrence of a double fault fk, fm is more
certain. The isolability of double faults can be achieved
by comparison of the size of the angles αkm in response to
the different pairs of faults fk and fm. It should be stressed
that various combinations of double faults may lead to the
same plane, so any other pair of faults may lead to the
plane with a similar or the same αkm.

5. Double fault distinguishability

The possibility of fault distinguishability is vital in
the design of a diagnostics system. In the case of
directional residuals, fault distinguishability depends on
the existing faults-specific directions. The diagnostic
system is required to decide whether it is possible to
achieve the distinguishability for a given pair of faults
from other faults and other pairs of faults. Assuming the
steady state, the following can be hypothesized:

• A fault fn will be distinguishable from a double fault
fk, fm, where n �= k,m and k,m, n ∈ {1 . . . ,K},
on the basis of optional three residuals, when the
directional vector of this fault does not lie on the
plane determined by fault specific directions of fk
and fm, i.e., these three vectors are not coplanar:
(wk × wm) · wn �= 0.
• Two pairs of faults fk and fm, and fl and fn

for k, l,m, n ∈ {1 . . . ,K} are distinguishable
on the basis of three optional residuals, when the
corresponding planes Hkm and Hln do not coincide
and the current vector of residuals r does not coincide
with the intersection of these two planes.

• If three or more fault specific directions are coplanar
(scalar triple product of the given three vectors
is equal to zero), then there is no possibility to
distinguish double faults in the set of faults under
consideration.

6. Design for structured residuals

Designing the residual set with a certain structure is one
of the ways of enhancing its fault isolation capabilities.
Structured residuals are designed in such a way that
each residual responds to a different subset of faults
and is insensitive to others (Geltler and Singer, 1990).
The sensitivity is written down in the binary diagnostic
matrix which is defined on the Cartesian product of
the binary set of residuals and faults. If the residual is
sensitive to a fault, an appropriate element of the matrix

becomes equal to one, otherwise it is equal to zero. In
order to improve the distinguishability of double faults
and achieve robustness issues, it is possible to design
additional secondary residuals, which are structured
and directional (Gertler, 1998). They should ensure the
possibility of the distinguishability of double faults that
are indistinguishable on the basis of primary residuals.
The aim is to decompose the observed residual vector
along the response directions.

The secondary residuals r∗ can be obtained by
multiplying primary residuals r by a linear transformation,

r∗(s) = V(s)r(s) = V(s)GF (s)f(s), (18)

where V is a transfer function matrix. It should be
noted that in fact this is a post-filtering primary residual
method, where V is a filter transfer matrix. Designing
the secondary residual r∗ set amounts to selecting the
transforming matrix V so that the residuals r∗ possess
certain desired properties. The residuals transformation
should be selected in such a way that the planes Hkm, in
response to double faults fk, fm, have different location
in the parity space.

If we consider a three-dimensional parity space, it
is advantageous to choose the transforming matrix V(s)
so that the response directions w̃k, w̃m, w̃n of single
faults fk, fm and fn constitute an orthogonal set. Thus,
the observed residual vectors will occur in double faults
fk, fm, and fm, fn and fk, fn specific planes Hkm, Hmn
and Hkn, which are perpendicular to each other. With
orthogonal directions, double faults can be isolated, at
least in principle. As will be seen, the number of faults
for which such properties can be achieved is limited to
that of plant outputs. Perpendicular response directions
for K faults require a residual space of dimension K
(Gertler, 1998).

Figure 2 presents sample response directions and
orthogonal set of surfaces in a three-dimensional parity
space.

The two vectors w̃k = [b1k, b2k, b3k] and w̃m =
[b1m, b2m, b3m] are perpendicular if their dot-product
equals zero,

w̃k · w̃m = b1kb1m + b2kb2m + b3kb3m = 0. (19)

With the above dependence, we can generate a set
of residual vectors in which all vectors are perpendicular
to one another. The task is to define a transfer function
matrix V so that the secondary residuals r∗ are such that
the appearance of the k-th fault causes the residual vector
r∗ to change in the direction w̃k.

It is essential that the dynamics of the directional
response remain the same for each element of the residual
vector, otherwise the directional property would not
be maintained during fault transients. Thus, a way of
enhancing the diagnostics utility of residuals is to make
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Fig. 2. Graph of sample surfaces H̃kn⊥H̃mn in three-
dimensional coordinate systems r∗1 , r

∗
2 , r
∗
3 .

them lie in a fixed and fault specific direction in the
residual space. The response of the residual r∗(s) to the
faults fk(s) is as follows:

r∗(s/fk) = w̃kDk(s)fk(s), (20)

where the vector w̃k is the direction of the k-th
fault response and the scalar transfer function Dk(s)
(polynomial or rational function) is its dynamic. For a set
of K faults we should determine K directions of the K
fault responses,

W = [w̃1, w̃2, . . . , w̃K ] (21)

and the diagonal matrix D(s),

D(s) =

⎡

⎢
⎢
⎢
⎣

D1(s) 0 . . . 0
0 D2(s) . . . 0
...

...
. . .

...
0 0 . . . DK(s)

⎤

⎥
⎥
⎥
⎦
. (22)

Therefore, the fault response specifications (20) can be
combined, for k = 1, . . . ,K , as

r∗ =WD(s)f(s). (23)

Equations (18) and (23) imply that

WD(s) = V(s)GF (s). (24)

The size of matrices are GFJ×K , WN×K , DK×K and
VN×J . We wish to design the transformation so that
all fault responses have independent directions. For such
directions, the fault transfer matrix GF must have full
column rank. This implies that the matrix GF has an
inverse [GF ]−1. It should be noted that the number of
faults for which independent directional responses can

be designed is limited to that of outputs, and also the
number of transformed residuals may not be less than that
of faults. The transformation V(s) can be obtained from
Eqn. (24) as

V(s) =WD(s)[GF (s)]−1. (25)

An important special case, which will be referred to
as the basic set of residuals (Gertler, 1998), arises when

J = K,
W = I,
D1(s) = D2(s) = . . . = DK(s) = D̃(s),

(26)

where I is the identity matrix. The basis set is very
convenient for double fault isolation, because all possible
double faults have distinct signatures. Then the matrix
D̃(s) becomes

D̃(s) =

⎡

⎢
⎢
⎢
⎣

D̃(s) 0 . . . 0
0 D̃(s) . . . 0
...

...
. . .

...
0 0 . . . D̃(s)

⎤

⎥
⎥
⎥
⎦
. (27)

In this case Eqn. (24) can be rephrased as

D̃(s) = V(s)GF (s). (28)

The above expressions finally yield the following
specification of V(s):

V(s) = D̃(s)[GF (s)]−1. (29)

With a general form of matrix V(s) (25), the internal form
of residuals r∗ is obtained as

r∗(s) = V(s)GF (s)f(s)

=WD(s)[GF (s)]−1GF (s)f(s)
=WD(s)If(s) =WD(s)f(s).

(30)

7. Example

Consider the following system with three outputs yj , j =
1, 2, 3, depending on input signals up, p = 1, . . . , 4, and
from appearing faults fk, k = 1, . . . , 4,

y1(s) = u1(s) + 3
2s+1u3(s) +

5
2s+ 1

u4(s)

+f1(s) +
3
2s+ 1

f3(s) +
5
2s+ 1

f4(s),

y2(s) =
2
s+ 1

u1(s) + u2(s)

+
2
s+ 1

f1(s) + f2(s),

y3(s) =
3
5s+ 1

u2(s) + u3(s)

+
3
5s+ 1

f2(s) + f3(s).

(31)
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The set of residuals in the computational form is the
following:

r1(s) = y1(s)− u1(s)− 3
2s+ 1

u3(s)

− 5
2s+ 1

u4(s),

r2(s) = y2(s)− 2
s+ 1

u1(s)− u2(s),

r3(s) = y3(s)− 3
5s+ 1

u2(s)− u3(s).

(32)

The internal form of residuals follows from Eqn. (9),
which defines their dependence on faults:

r1(s) = f1(s) +
3
2s+ 1

f3(s) +
5
2s+ 1

f4(s),

r2(s) =
2
s+ 1

f1(s) + f2(s),

r3(s) =
3
5s+ 1

f2(s) + f3(s).

(33)

Thus

GF (s) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0
3
2s+ 1

5
2s+ 1

2
s+ 1

1 0 0

0
3
5s+ 1

1 0

⎤

⎥
⎥
⎥
⎥
⎦

. (34)

Assume that changes in output signals do not appear,
i.e., a system is in a steady state. Then residuals are in the
form

r1(s) = f1(s) + 3f3(s) + 5f4(s),

r2(s) = 2f1(s) + f2(s),

r3(s) = 3f2(s) + f3(s).

(35)

The column of Table 3 corresponding to a particular fault
defines its signature. Directional vectors are as follows:

w1 = [1, 2, 0], w2 = [0, 1, 3],
w3 = [3, 0, 1], w4 = [5, 0, 0].

(36)

The sensitivity of residuals (35) on individual faults

Table 3. Directional signatures.
f1 f2 f3 f4

r1 1 0 3 5
r2 2 1 0 0
r3 0 3 1 0

fk can be considered qualitatively and represented
by a binary diagnostic matrix. A pair of faults is
distinguishable from all other single faults and other
double faults when all columns of the binary diagnostic
matrix are different. The binary diagnostic matrices for

Table 4. Binary diagnostic matrix for single faults.
f1 f2 f3 f4

r1 1 0 1 1
r2 1 1 0 0
r3 0 1 1 0

Table 5. Binary diagnostic matrix for double faults.
f1f2 f1f3 f1f4 f2f3 f2f4 f3f4

r1 1 1 1 1 1 1
r2 1 1 1 1 1 0
r3 1 1 0 1 1 1

single and double faults are presented in Tables 4 and 5,
respectively.

Here “1” signifies that a single or a double fault
of the column affects the residual of the row, while “0”
means that it does not affect it. The elements in a double
fault column are chosen as the "union" of the elements
in the corresponding single fault columns. Each column
is obtained in response to the single or double fault on
top of the column. Since all the columns for single faults
are different, the three residuals allow the distinction
of all single faults. However, on the basis of structured
residuals, we can clearly see that the double faults f1, f2
and f1, f3 and f2, f3 and f2, f4 are indistinguishable.
Thus the residuals, in their row form, are not suitable for
double fault isolation.

To facilitate double fault isolation, let us consider
directional residuals. A set of perpendicular vectors for
chosen pairs of faults is calculated as follows:

w12 = [1, 2, 0]× [0, 1, 3] = [6,−3, 1],
w13 = [1, 2, 0]× [3, 0, 1] = [2,−1,−6],
w23 = [0, 1, 3]× [3, 0, 1] = [1, 9,−3],
w24 = [0, 1, 3]× [5, 0, 0] = [0, 15,−5].

(37)

Hence, the standard equations of planes in a
three-dimensional parity space for the pairs of faults
f1 and f2, f1 and f3, f2 and f3, and f2 and f4 are

H12 : 6r1 − 3r2 + r3 = 0,
H13 : 2r1 − r2 − 6r3 = 0,
H23 : r1 + 9r2 − 3r3 = 0,
H24 : 15r2 − 5r3 = 0.

(38)

On the basis of the analysis of the current direction
of the residuals vector we can isolate the appearing pairs
of faults. For instance, let r = [1, 1,−3]. Then we can
conclude the occurrence of double faults f1, f2, because
the following coplanar condition is satisfied:

(w1 × w2) · r = 6r1 − 3r2 + r3 = 6− 3− 3 = 0. (39)

The triple scalar product (w2 × w4) · w2 = 6 for the
pair of faults f2 and f4, and for fault f2 is not equal zero.
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Therefore the fault f2 is distinguishable from double faults
f2, f4.

Two planes intersect on a line. Therefore, the pair of
equations of planes taken together represents a line. For
the distinguishable pair of faults f1 and f3 from the pair
of faults f2 and f3 we take equations of H13 and H23.

Solving these equations, we get
{

2r1 − r2 − 6r3 = 0
r1 + 9r2 − 3r3 = 0 ⇒

{

r2 = 0
r1 = 3r3.

(40)

Hence, for a current residual vector in a steady state,
which does not cover with [3r3, 0, r3], where r3 ∈ R\{0},
it can be concluded that double faults f1, f3 and f2, f3 are
distinguishable. Moreover, the angles between the sample
vector r = [0, 1,−1] and the planes H13 and H23 are
α13 ≈ 33o and α23 ≈ 63o, respectively. Thus, the first
plane is the closest to the actual residual vector r and the
diagnosis about the occurrence of the double fault f1, f3 is
more certain than that about the occurrence of the double
fault f2, f3.

The robustness of double fault distinguishability
can be achieved by designing secondary residuals. For
determining the matrix V(s), we reduce the fault set to
three elements f1, f2, f3. With three primary residuals and
three faults, the matrix

GF (s) =

⎡

⎢
⎢
⎢
⎢
⎣

1 0
3
2s+ 1

2
s+ 1

1 0

0
3
5s+ 1

1

⎤

⎥
⎥
⎥
⎥
⎦

(41)

is square and nonsingular, and so it has an inverse

[GF (s)]−1 =
1
Γ

⎡

⎣

1 A(s) B(s)
C(s) 1 D(s)
E(s) F (s) 1

⎤

⎦ , (42)

where

A(s) =
9

(2s+ 1)(5s+ 1)
, B(s) =

−3
2s+ 1

,

C(s) =
−2
s+ 1

,

D(s) =
6

(s+ 1)(2s+ 1)
,

E(s) =
6

(s+ 1)(5s+ 1)
, F (s) =

−3
5s+ 1

,

(43)

and

Γ = det[GF (s)] = 1 +
18

(s+ 1)(2s+ 1)(5s+ 1)
. (44)

According to the requirement of the directions w̃k of
faults f1, f2, f3, the secondary residuals must be designed
in such a way that all of the residual directions are

perpendicular to each other. We can choose any two
vectors w̃1 and w̃2, such that w̃1⊥w̃2, for example,

w̃1 = [1,−2, 0], w̃2 = [6, 3, 1]. (45)

Then we find the third and last vector as follows:

w̃3 =

∣
∣
∣
∣
∣
∣

i j k
1 −2 0
6 3 1

∣
∣
∣
∣
∣
∣

= [−2,−1, 15]. (46)

One can easily check that these three vectors create an
orthogonal basis. Thus, the matrix W has the following
form:

W =

⎡

⎣

1 6 −2
−2 3 −1
0 1 15

⎤

⎦ . (47)

The next step in structured residual generation is the
design of an appropriate matrix D(s) (22), which
describes the dynamics of the response. It is important to
underline the fact that the residual design property needs
to be valid during fault transients as well, i.e., Dk, for
k = 1, . . . , 4 has to be the same for each element of the
residual vector.

Let D(s) be the identity matrix I. Hence, the
dynamics of all the secondary residuals are the same. The
transformation matrix V becomes

V(s) =W[GF (s)]−1. (48)

Therefore, in order to enhance fault isolation, it is required
to transform the primary residuals r by matrix V(s),
according to (20). In a steady state, for the sample vector
r = [0, 1, 3], which is the directional vector w2 of fault f2,
the form of secondary residuals is as follows:

r∗(s)
=W[GF (s)]−1r(s)

=
1
19

⎡

⎣

1 6 −2
−2 3 −1
0 1 15

⎤

⎦

⎡

⎣

1 9 −3
−2 1 6
6 −3 1

⎤

⎦

⎡

⎣

0
1
3

⎤

⎦

=
1
19

⎡

⎣

114
57
19

⎤

⎦ =

⎡

⎣

6
3
1

⎤

⎦ = w̃2. (49)

Therefore, the occurrence of fault f2 implies conversion
of the residual vector r∗(s) = [6, 3, 1] to a pre-defined
fault direction vector w̃2. An analogical approach can be
applied for designing secondary residuals for faults f1 and
f3.

The pairs of double faults f1, f2 and f1, f3, and
f2, f3 will occur on the three planes that are perpendicular
to each other:

H̃12⊥H̃13⊥H̃23, (50)
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and this allows achieving the double fault
distinguishability.

An analogical approach to designing secondary
residuals can be applied to the distinguishability of other
double faults, for instance, f2, f3 and f2, f4.

8. Conclusions

The assumption of the appearance of single faults allows
a significant simplification of the algorithms of fault
isolation, but is not always justified. The diagnosis of
double faults turns out to be more complex than singular
fault diagnosis. This is because the number of possible
diagnoses increases in a significant way since double fault
diagnoses are elements of the power set of single faults. In
the case of realistic industrial installations the possibility
of simultaneous occurrence of double faults must be taken
into account.

The proposed method of double fault isolation is
based on the investigation of the coplanarity of the current
residual vector with the planes defined by the individual
pairs of directional fault vectors. For steady state
conditions, the hypothesis statement about the occurrence
of double faults fk, fm amounts to determining to which
pre-defined double fault specific plane Hkm the observed
residual vector is the closest. It should be noted that the
directional residuals utilise the static dependence between
a fault and a residual (i.e., a gain). Thus, this method does
not include complete information about the binary relation
fault–residuals (like knowledge about the dynamics of
symptom forming).

When designing diagnostics systems, a crucial
step is fault distinguishability. We proposed some
hypotheses of double fault distinguishability conditions.
The distinguishability for a given pair of faults from other
faults and other pairs of faults is based on the use of
knowledge about the existing fault specific directions.
To facilitate double fault distinguishability, the residual
set needs to have distinctive properties and unique
characteristics of double faults. Thus, the residuals should
be enhanced, that is, generated with specific isolation
properties. The technique of the residual enhancement
by the design of a secondary residual, which enables
designers to improve double fault distinguishability
with respect to diagnose conducted with the use of
only primary residuals, was developed. An example of
reasoning with the use of the proposed diagnostic methods
was presented.

If diagnostic inference could be carried out taking
into account double faults, knowledge of the dynamics
of an effect of particular faults on the system outputs
is necessary. In addition, it is assumed that this effect
is linear and not integral in nature. Such data can
be easily obtained for faults of measurement lines.
Obtaining adequate transfer functions for faults of system

elements and actuators requires the modelling of the
system taking into account these faults, which is very
difficult and sometimes outright impossible for many
industrial systems. In the case where the system includes
multiplicative faults, the validity of this approach is
limited to a small neighbourhood of a linearization point.
The method fails in the case of faults that change the
object structure.

These assumptions are quite strong and limit the
method applicability. However, if they are met, it is
possible to achieve the distinguishability of double faults,
which are not distinguished on the basis of binary
signatures in a structured FDI approach and AI methods.
There is no reason to use this method for pairs of double
faults which are distinguished on the basis of binary
signatures.

The cost of development of models with fault
influence is much higher than in the case of input-output
type models. Thus, the proposed method can be used for
safety-critical systems, where design costs are negligible
compared with losses in emergency situations.

Acknowledgment

This work was supported in part by the National Science
Center under the project no. DEC-2011/01/B/ST7/06183.

References
Adam-Medina, M., Theilliol, D. and Sauter, D. (2003).

Simultaneous fault diagnosis and robust model selection in
multiple linear models framework, Proceedings of the 5th
IFAC Symposium on Fault Detection, Supervision and Sa-
fety of Technical Processes, SAFEPROCESS, Washington,
DC, USA, pp. 513–518.

Chen, J. and Patton, R.J. (1999). Robust Model Based Fault Dia-
gnosis for Dynamic Systems, Kluwer Academic Publishers,
Boston, MA.

Chen, R.H. and Speyer, J.L. (1999). Optimal stochastic multiple
faults detection filter, Proceedings of the 38th IEEE Confe-
rence on Decision and Control, Phoenix, AL, USA, Vol. 5,
pp. 4965–4970.

Clark, R.N. (1989). State estimation schemes for instrument
fault detection, in R.J. Patton, P.M. Frank and R.N. Clark
(Eds.), Fault Diagnosis in Dynamic Systems: Theory and
Application, Prentice Hall, London.

Daigle, M., Koutsoukos, X. and Biswas, G. (2006). Multiple
fault diagnosis in complex physical systems, 17th Interna-
tional Workshop on Principles of Diagnosis, Penaranda de
Duero, Spain, pp. 69–76.

de Kleer, J. and Kurien, J. (2003). Fundamentals of model-based
diagnosis, Proceedings of the 5th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Pro-
cesses, SAFEPROCESS 2003, Washington, DC, USA,
pp. 25–36.



Double fault distinguishability in linear systems 405

de Kleer, J. and Williams, B.C. (1987). Diagnosing multiple
faults, Artificial Intelligence 32(1): 97–130.

De-Persis, C. and Isidori, A. (2001). A geometric approach to
nonlinear fault detection and isolation, IEEE Transactions
on Automatic Control 46(6): 853–866.

Ding, S.X. (2008). Model-based Fault Diagnosis Techniques,
Springer, Berlin/Heidelberg.

Frank, P.M. (1987). Fault diagnosis in dynamic systems via
state estimations methods: A survey, in S.G. Tzafestas, M.
Singh and G. Schmidt (Eds.), System Fault Diagnostics,
Reliability and Related Knowledge-based Approaches,
Vol. 2, D. Reidel Publishing Company, Dordrecht/Boston,
MA/Lancaster/Tokyo.

Frank, P.M. (1991). Enhancement of robustness in
observer-based fault detection, Proceedings of the
IFAC/IMACS Symposium on Fault Detection, Supervision
and Safety of Technical Processes, SAFEPROCESS,
Baden-Baden, Germany, pp. 275–288.

Geltler, J. and Singer, D. (1990). A new structural framework
for parity equation based failure detection and isolation,
Automatica 26(2): 381–388.

Gertler, J. (1998). Fault Detection and Diagnosis in Engineering
Systems, Marcel Dekker, Inc., New York, NY/Basel/Hong
Kong.

Górny, B. (2001). Consistency-Based Reasoning in Model-
Based Diagnosis, Ph.D. thesis, AGH University of Science
and Technology, Cracow.

Hamscher, W., Console, L. and de Kleer, J. (1992). Readings
in Model-Based Diagnosis, Morgan Kaufmann Publishers,
San Mateo, CA.

Hashtrudi, S. and Massoumnia, M. (1999). Generic solvability
of the failure detection and identification problem, Auto-
matica 35(5): 887–893.

Hwee, T.N. (1991). Model-based, multiple-fault diagnosis
of dynamic, continuous physical devices, IEEE Expert
6(6): 38–43.

Isermann, R. (2006). Fault Diagnosis Systems. An Introduction
from Fault Detection to Fault Tolerance, Springer-Verlag,
New York, NY.

Khémiri, K., Ben Hmida, F., Ragot, J. and Gossa, M.
(2011). Novel optimal recursive filter for state and fault
estimation of linear stochastic systems with unknown
disturbances, International Journal of Applied Mathe-
matics and Computer Science 21(4): 629–637, DOI:
10.2478/v10006-011-0049-3.
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