
Int. J. Appl. Math. Comput. Sci., 2013, Vol. 23, No. 2, 247–261
DOI: 10.2478/amcs-2013-0019

BIFURCATION AND CONTROL FOR A DISCRETE–TIME PREY–PREDATOR
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The dynamics of a discrete-time predator–prey model with Holling-IV functional response are investigated. It is shown
that the model undergoes a flip bifurcation, a Hopf bifurcation and a saddle-node bifurcation by using the center manifold
theorem and bifurcation theory. Numerical simulations not only exhibit our results with the theoretical analysis, but also
show the complex dynamical behaviors, such as the period-3, 6, 9, 12, 20, 63, 70, 112 orbits, a cascade of period-doubling
bifurcations in period-2, 4, 8, 16, quasi-periodic orbits, an attracting invariant circle, an inverse period-doubling bifurcation
from the period-32 orbit leading to chaos and a boundary crisis, a sudden onset of chaos and a sudden disappearance of the
chaotic dynamics, attracting chaotic sets and non-attracting sets. We also observe that when the prey is in chaotic dynamics
the predator can tend to extinction or to a stable equilibrium. Specifically, we stabilize the chaotic orbits at an unstable fixed
point by using OGY chaotic control.
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1. Introduction

For the purpose of system modelling and analysis in
mathematical biology, discrete-time models are more
considered an essential tool. Firstly, discrete-time models
are more suitable for describing systems which evolve
over time. Secondly, compared with continuous-time
models, the advantage they offer is that they are generally
more direct, more convenient and more accurate to
formulate. Thirdly, recent works have shown that
for discrete-time models the dynamics can produce a
much richer set of patterns than those observed in
continuous-time models (Busłowicz, 2010; Busłowicz
and Ruszewski, 2012; Duda, 2012; Feedman, 1980;
Holling, 1965; Huang and Xiao, 2004; Hsu, 1978; Raja
et al., 2011; Xu et al., 2011; Zhang et al., 2011). At
last, we can get more interesting dynamical behaviors
and more accurate numerical simulations results from the
discrete-time models; moreover, numerical simulations of
continuous-time models are obtained by discretizing the
models.

Until now, many works have concerned discrete-time
two-species predator–prey models (Jing and Yang, 2006;

Guckenheimer and Holmes, 1983; Wiggins, 1990; He and
Lai, 2011; Liu and Xiao, 2007; Hu et al., 2011; Tong
et al., 2012). In these articles, the main studied topics
are the existence and local stability of an equilibrium,
flip bifurcation and Hopf bifurcation by using the center
manifold theorem and bifurcation theory.

Tong et al. (2012) discussed the existence of periodic
solutions for discrete semi-ratio-dependent prey-predator
models with functional response. The permanence in
a delayed discrete prey–predator model with Holling-III
functional response was discussed by Fan and Li (2004).
Kuznetsov (1998) summarized local stability conditions
for equilibria, and used numerical computation to obtain
codim-1 bifurcation curves that emanate at codim-2
bifurcation points in order to compute the stability
boundaries of cycles with periods 4, 5, 8 and 16, but
without a theorematic proof.

It is well known that continuous-time two-species
prey–predator model with Holling-IV functional response
is described in the following form (Liu et al., 2010):
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⎧
⎪⎨

⎪⎩

ẋ1 = x1(1 − x1 − kx2
1 −

x2

x2
1 + β2

),

ẋ2 = x2(−δ0 − δ1x2 +
γx1

x2
1 + β2

),
(1)

where x1(t) and x2(t) represent prey and predator
densities, respectively, k, β, δ1, γ are positive constants,
and δ0 is a constant. Applying the Euler forward scheme
to model (1), we obtain the following discrete-time model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(n + 1)
= x1(n) + δx1(n)

(
1 − x1(n)

−kx2
1(n) − x2(n)

x2
1(n) + β2

)
,

x2(n + 1)
= x2(n) + δx2(n)

(
− δ0

−δ1x2(n) +
γx1(n)

x2
1(n) + β2

)
,

(2)

where δ > 0 is the time step size. In this paper, we
investigate the bifurcation problems of the model (2) in
the interior of the first quadrant R

2
+ by using bifurcation

theory and the center manifold theorem. We will
prove that the model (2) possesses flip bifurcation, Hopf
bifurcation and saddle-node bifurcation. Furthermore, by
using the OGY method, we will study the chaotic control
of the model (2).

This paper is organized as follows. In Section 2,
we study the existence and local stability of equilibria of
the model (2). In Sections 3–5, the sufficient conditions
on the existence of flip bifurcation, Hopf bifurcation and
saddle-node bifurcation are established. In Section 6, the
OGY controller to eliminate the unstable periodic orbits is
designed. In Section 7, numerical simulations are given to
illustrate the results obtained in this paper. In Section 8,
we provide a discussion to conclude this paper.

2. Local stability of equilibria

From the point of view of biology, we will focus on the
dynamical behaviors of the model (2) in the closed first
quadrant R

2
+ of the (x1, x2) plane. It is clear that the

equilibria of (2) satisfy the following equations:

⎧
⎪⎨

⎪⎩

x1 = x1 + δx1(1 − x1 − kx2
1 −

x2

x2
1 + β2

),

x2 = x2 + δx2(−δ0 − δ1x2 +
γx1

x2
1 + β2

).
(3)

We have the following results.

Lemma 1.
(i) The model (2) always has two equilibria, E0(0, 0) and

E1(m, 0), where m = −1+
√

1+4k
2k .

(ii) If δ0 ≥ 0 and δ0(m2 + β2) < γm or δ0 < 0 and
δ1β

2 > −δ0, then the model (2) also has at least a pos-
itive equilibrium E2(x∗

1, x
∗
2), where (x∗

1, x
∗
2) satisfies the

following equations:

⎧
⎪⎨

⎪⎩

0 = 1 − x1 − kx2
1 −

x2

x2
1 + β2

,

0 = −δ0 − δ1x2 +
γx1

x2
1 + β2

, 0 < x1 < m.
(4)

Proof. The conclusion (i) is obvious. Let

I(x1) =δ1(1 − x1 − kx2
1)(x

2
1 + β2)2 (5)

+ δ0(x2
1 + β2) − γx1.

When the conditions of Lemma 1 hold, we have I(0) =
δ0β

2 + δ1β
4 > 0 and I(m) = δ0(m2 + β2) − γm < 0.

Hence, there exists at least a positive x∗
1 ∈ (0, m) such

that I(x∗
1) = 0. Let x∗

2 = 1
δ1

(−δ0 + γx∗
1

x∗2
1 +β2 ). Then

x∗
2 > 0. Obviously, (x∗

1, x
∗
2) satisfies Eqn. (4). Therefore,

the conclusion (ii) is proved. This completes the proof.
�

Now, we study the stability of these equilibria of
model (2) by using a linearization method and a Jacobian
matrix.

A Jacobian matrix at E0(0, 0) is

J(E0) =

(
1 + δ 0

0 1 − δδ0

)

. (6)

Two eigenvalues of J(E0) are λ1 = 1 + δ and λ2 = 1 −
δδ0. We see that E0(0, 0) is always unstable, and E0(0, 0)
is non-hyperbolic if δ = 2/δ0.

We can see that when δ = 2/δ0, one of the
eigenvalues of J(E0) is −1, and the other is neither 1 nor
−1. Thus, flip bifurcation may occur when parameters
vary in a neighborhood of δ = 2/δ0.

A Jacobian matrix at E1(m, 0) is

J(E1)

=

⎛

⎝
1 + δ(−m − 2km2) − δm

m2+β2

0 1 + δ
(
− δ0 + γm

m2+β2

)

⎞

⎠ .

(7)

Two eigenvalues of J(E1) are

λ1 = 1 + δ(−m − 2km2) (8)

and

λ2 = 1 + δ
(
− δ0 +

γm

m2 + β2

)
. (9)
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Obviously, E1(m, 0) is asymptotically stable if and only
if

δ0 >
γm

m2 + β2
(10)

and

δ < min
{ 2

m + 2km2
,

2(m2 + β2)
δ0(m2 + β2) − γm

}
. (11)

E1(m, 0) is unstable if and only if

δ0 <
γm

m2 + β2
(12)

or

δ > min
{ 2

m + 2km2
,

2(m2 + β2)
δ0(m2 + β2) − γm

}
, (13)

and E1(m, 0) is non-hyperbolic if and only if

δ =
2

m + 2km2
(14)

or

δ0 =
γm

m2 + β2
(15)

or

δ0 >
γm

m2 + β2
, δ =

2(m2 + β2)
δ0(m2 + β2) − γm

. (16)

We can see that one of the eigenvalues of J(E1) is
−1 and the other is neither 1 nor −1 when the parameters
of the model (2) are located in one of the following sets:

FA =
{

(δ1, k, β, δ0, γ, δ) : δ =
2

m + 2km2
,

δ0 �= γm

m2 + β2
, δ �= 2m2 + 2β2

δ0(m2 + β2) − γm

}
.

E1(m, 0) can undergo flip bifurcation when all parameters
of the model (2) vary in a small neighborhood of FA.
When the parameters are in FA, a center manifold of the
model (2) is x2 = 0, and (2) restricted to this center
manifold is

x1(n + 1) = x1(n) + δx1(n)(1 − x1(n) − kx2
1(n)).

(17)

This shows that the predator becomes extinction and the
prey undergoes flip bifurcation to chaos on choosing
bifurcation parameter δ.

In Section 7, we will give an example to show that
flip bifurcation at E1(m, 0) occurs when the parameters
are in FA with bifurcation parameter δ.

A Jacobian matrix at E2(x∗
1, x

∗
2) is

J(E2) =

⎛

⎜
⎜
⎝

1 + δ(−x∗
1 − 2kx∗2

1 +
2x∗2

1 x∗
2

(x∗2
1 + β2)2

)

γδx∗
2(β2 − x∗2

1 )
(x∗2

1 + β2)2
(18)

−δx∗
1

x∗2
1 + β2

1 − δδ1x
∗
2

⎞

⎠ .

The characteristic equation of J(E2) can be written as

λ2 + p(E2)λ + q(E2) = 0, (19)

where

p(E2) = −2 − Gδ, q(E2) = 1 + Gδ + Hδ2, (20)

with

G = −x∗
1 − 2kx∗2

1 − δ1x
∗
2 +

2x∗2
1 x∗

2

(x∗2
1 + β2)2

, (21)

and

H = δ1x
∗
1x

∗
2 + 2kδ1x

∗2
1 x∗

2

+
γx∗

1x
∗
2(β

2 − x∗2
1 )

(x∗2
1 + β2)3

− 2δ1x
∗2
1 x∗2

2

(x∗2
1 + β2)2

.
(22)

Two eigenvalues of J(E2) are

λ1,2 = 1 +
1
2
δ(G ±

√
G2 − 4H). (23)

Proposition 1.
(i) E2(x∗

1, x
∗
2) is asymptotically stable if one of the follow-

ing conditions holds:
(i.1) −2

√
H ≤ G < 0, H > 0, and δ < −G

H .

(i.2) G < −2
√

H , H > 0, and δ < −G+
√

G2−4H
H .

(ii) E2(x∗
1, x

∗
2) is unstable if one of the following condi-

tions holds:
(ii.1) −2

√
H ≤ G < 0, H > 0, and δ > −G

H .

(ii.2) G < −2
√

H , H > 0, and δ > −G+
√

G2−4H
H .

(iii) E2(x∗
1, x

∗
2) is non-hyperbolic if one of the following

conditions holds:
(iii.1) −2

√
H ≤ G < 0, H > 0, and δ = −G

H .

(iii.2) G < −2
√

H, H > 0, δ = −G+
√

G2−4H
H or

δ = −G−√
G2−4H
H .

(iii.3) H = 0, which is equivalent to

δ1 =
D

(x∗2
1 + β2)3(1 + 2kx∗

1)
,

where

D = γ(3x∗2
1 − β2) − 2δ0x

∗
1(x

∗2
1 + β2).
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We easily see that one of the eigenvalues of J(E2) is
−1 and the other is neither 1 nor −1 when the parameters
of the model (2) are located in the following sets:

F31 =
{
(δ1, k, β, δ0, γ, δ) : G < −2

√
H,

δ = −G +
√

G2 − 4H

H
, H > 0,

δ �= − 2
G

, δ �= − 4
G

, δ0 > 0
}
,

and

F32 =
{
(δ1, k, β, δ0, γ, δ) : G < −2

√
H,

δ = −G −√
G2 − 4H

H
, H > 0,

δ �= − 2
G

, δ �= − 4
G

, δ0 > 0
}
.

We can obtain that the eigenvalues of J(E2) are
a pair of conjugate complex numbers with module 1
when the parameters of the model (2) are located in the
following set:

F33 =
{

(δ1, k, β, δ0, γ, δ) : −2
√

H ≤ G < 0,

H > 0, δ = −G

H
, δ0 > 0

}
.

We can also obtain that one of the eigenvalues of J(E2)
is 1 and the other is neither 1 nor −1 when the parameters
of the model (2) are located in the following set:

F34 = {(δ1, k, β, δ0, γ, δ) :

δ1 =
D

(x∗2
1 + β2)3(1 + 2kx∗

1)
,

δ1 �= 2γx∗2
1 − 2δ0x

∗
1(x

∗2
1 + β2)

(x∗2
1 + β2)D1

,

δ1 �= 2δx∗2
1 [γx1 − δ0(x∗2

1 + β2)]
(x∗2

1 + β2)D2
,

δ0 < 0}.
where

D1 = γδx∗
1 + (x∗2

1 + β2)(x∗
1 + 2kx∗2

1 − δδ0),

D2 = γδx∗
1 + (x∗2

1 + β2)(x∗
1 + 2kx∗2

1 − δδ0 − 2).

In the following sections, by using the center
manifold theorem and bifurcation theory given by
Robinson (1999) and Guckenheimer (1983), we will study
flip bifurcation of E2(x∗

1, x
∗
2) if all parameters of the

model (2) vary in a small neighborhood of F31 (or F32),
Hopf bifurcation of E2(x∗

1, x
∗
2) if all parameters of the

model (2) vary in a small neighborhood of F33, and
saddle-node bifurcation of E2(x∗

1, x
∗
2) if all parameters of

the model (2) vary in a small neighborhood of F34.
In the following discussion, for convenience, for a

function f(x1, x2, . . . , xn), we shall write fxi , fxixj , and
fxixjxk

for the first order, second order, and third order
partial derivative of f(x1, x2, x3, . . . , xn) with respect to
xi, xj , and xk, respectively.

3. Flip bifurcation

In this and the following three sections, we always assume
that the model (2) has a positive equilibrium E2(x∗

1, x
∗
2),

that is, the condition (ii) of Lemma 1 always holds.
We first discuss flip bifurcation of the model (2) at

E2(x∗
1, x

∗
2) when parameters (δ1, k, β, δ0, γ, δ) vary in a

small neighborhood of F31. Similar arguments can be
applied to the case F32.

Taking parameters (δ1, k, β, δ0, γ, δ) =
(δ11, k1, β1, δ01, γ1, δ) ∈ F31. Further, giving δ a
perturbation δ∗ at δ, we consider a perturbation of the
model (2) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(n + 1)

= x1(n) + (δ + δ∗)x1(n)(1 − x1(n)

−k1x1(n)2 − x2(n)
x2

1(n) + β2
1

)

� f(x1(n), x2(n), x3),

x2(n + 1)

= x2(n) + (δ + δ∗)x2(n)(−δ01

−δ11x2(n) +
γx1(n)

x2
1(n) + β2

)

� g(x1(n), x2(n), x3),

(24)

where |δ∗| � 1, and x3 = δ∗.
Let u1(n) = x1(n) − x∗

1, u2(n) = x2(n) − x∗
2, then

equilibrium E2(x∗
1, x

∗
2) is transformed into the origin,

and further expanding f and g as a Taylor series at
(u1, u2, x3) = (0, 0, 0) to the third order, the model (24)
becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(n + 1)

= a1u1(n) + a2u2(n) + a11u
2
1(n)

+a11u1(n)u2(n) + a13u1(n)x3

+a23u2(n)x3 + a111u
3
1(n)

+a112u
2
1(n)u2(n) + a113u

2
1(n)x3

+a123u1(n)u2(n)x3

+o((|u1(n)| + |u2(n)| + |x3|)4),
u2(n + 1)

= b1u1(n) + b2u2(n) + b11u
2
1(n)

+b12u1(n)u2(n) + b22u
2
2(n)

+b13u1(n)x3 + b23u2(n)x3 + b111u
3
1(n)

+b112u
2
1(n)u2(n) + b113u

2
1(n)x3

+b123u1(n)u2(n)x3 + b223u
2
2(n)x3

+o((|u1(n)| + |u2(n)| + |x3|)4),
(25)
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where

ai = fxi(x∗
1, x

∗
2, 0),

bi = gxi(x∗
1, x

∗
2, 0),

aij = fxixj (x∗
1, x

∗
2, 0),

bij = gxixj (x∗
1, x

∗
2, 0),

aijk = fxixjxk
(x∗

1, x
∗
2, 0),

bijk = gxixjxk
(x∗

1, x
∗
2, 0), i, j, k = 1, 2, 3.

We define

T =

(
a2 a2

−1 − a1 λ2 − a1

)

. (26)

It is obvious that T is invertible. Using the transformation

(
u1(n)

u2(n)

)

= T

(
x1(n)

x2(n)

)

, (27)

the model (25) becomes
{

x1(n + 1) = −x1(n) + f1(u1(n), u2(n), δ∗),

x2(n + 1) = λ2x2(n) + g1(u1(n), u2(n), δ∗),
(28)

where the functions f1 and g1 denote the terms in the
model (28) in variables (u1(n), u2(n), δ∗) with the order
at least two.

From the center manifold theorem given by
Robinson (1999) and Guckenheimer (1983), we know that
there exists a center manifold W c(0, 0, 0) of the model
(28) at (0,0) in a small neighborhood of δ∗ = 0, which
can be approximately described as follows:

W c(0, 0, 0)
=
{

(x1(n), x2(n), δ∗) ∈ R
3 :

x2(n + 1) = a1x
2
1(n) + a2x1(n)δ∗

+o((|x1(n)| + |δ∗|)3
}
,

(29)

where

a1 =
a2[(1 + a1)a11 + a2b11]

1 − λ2
2

+
b22(1 + a1)2

1 − λ2
2

− (1 + a1)[a12(1 + a1) + a2b12]
1 − λ2

2

, (30)

a2 =
(1 + a1)[(1 + a1)a23 + a2b23]

a2(1 + λ2)2

− (1 + a1)a13 + a2b13

(1 + λ2)2
. (31)

We obtain that the model (28), which is restricted to center
manifold W c(0, 0, 0), has the following form:

x1(n + 1)

= −x1(n) + h1x
2
1(n) + h2x1(n)δ∗

+h3x
2
1(n)δ∗ + h4x1(n)δ∗2 + h5x

3
1(n)

+o((|x1(n)| + |δ∗|)3)
� F (x1(n), δ∗),

(32)

where

h1 =
a2[(λ2 − a1)a11 − a2b11]

1 + λ2
− b22(1 + a1)2

1 + λ2

− (1 + a1)[(λ2 − a1)a12 − a2b12]
1 + λ2

,

(33)

h2 =
(λ2 − a1)a13 − b13a2

1 + λ2

− (1 + a1)[(λ2 − a1)a23 − a2b23]
a2(1 + λ2)

,
(34)

h3 =
(λ2 − a1)a1a13 − b13a2

1 + λ2

+
[(λ2 − a1)a23 − a2b23]a1(λ2 − a1)

a2(1 + λ2)

− (1 + a1)[(λ2 − a1)a123 − a2b123]
1 + λ2

+
a2[(λ2 − a1)a113 − a2b113]

1 + λ2
− b223(1 + a1)2

1 + λ2

+
2a2a2[(λ2 − a1)a11 − a2b11]

1 + λ2

−2b22a2(1 + a1)(λ2 − a1)
1 + λ2

+
a2[(λ2 − a1)a12 − a2b12](λ2 − 1 − 2a1)

1 + λ2
,

(35)

h4 =
a2[(λ2 − a1)a13 − b13a2]

1 + λ2

+
[(λ2 − a1)a23 − a2b23]a2(λ2 − a1)

a2(1 + λ2)

+
2a2a3[(λ2 − a1)a11 − a2b11]

1 + λ2

+
2b22a3[(1 + a1)(λ2 − a1)]

1 + λ2

+
[(λ2 − a1)a12 − a2b12](λ2 − 1 − 2a1)a3

1 + λ2
,

(36)
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h5 =
2a2a1[(λ2 − a1)a11 − a2b11]

1 + λ2

+
2b22a1(1 + a1)(λ2 − a1)

1 + λ2

+
[(λ2 − a1)a11 − a2b11](λ2 − 1 − 2a1)a1

1 + λ2

+
a2
2[(λ2 − a1)a111 − a2b111]

1 + λ2

−a2(1 + a1)[(λ2 − a1)a112 − a2b112]
1 + λ2

.

(37)

For flip bifurcation, we require that two
discriminatory quantities α1 and α2 be nonzero,

α1 =
( ∂2F

∂x1∂δ∗
+

∂F∂2F

2∂δ∗∂x2
1

)∣
∣
∣
(0,0)

= h2,

α2 =
( ∂3F

6∂3x1
+
( ∂2F

2∂x2
1

)2
)∣
∣
∣
(0,0)

= h5 + h2
1.

(38)

Finally, from the above analysis and Theorem 3.1 of
Guckenheimer (1983, Chapter 7), we have the following
result.

Theorem 1. If α1 �= 0 and α2 �= 0, then the model
(2) undergoes flip bifurcation at E2(x∗

1, x
∗
2) when the pa-

rameter δ varies in a small neighborhood of δ. Moreover,
if α2 > 0(resp. α2 < 0), then the period-2 points that
bifurcation from E2(x∗

1, x
∗
2) are stable (resp. unstable).

Remark 1. For the equilibrium E0(0, 0) of the model
(2), by calculation we can obtain α1 = 0. Therefore, the
conditions of Theorem 1 are not satisfied. Since E0(0, 0)
is always unstable for any δ > 0, the model (2) cannot
undergo flip bifurcation at E0(0, 0) when parameter δ
varies in a neighborhood of δ = 2/δ0.

In Section 7, we will give an example to show that
flip bifurcation at E2(x∗

1, x
∗
2) occurs under the conditions

of Theorem 1.

4. Hopf bifurcation

In this section, we discuss the Hopf bifurcation of
the model (2) at E2(x∗

1, x
∗
2) when the parameters

(δ1, k, β, δ0, γ, δ) vary in a small neighborhood
of F33. Taking parameters (δ1, k, β, δ0, γ, δ) =
(δ11, k1, β1, δ01, γ1, δ) ∈ F33, and further giving δ a
perturbation δ∗∗ at δ, the model (2) is described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(n + 1)

= x1(n) + (δ + δ∗∗)x1(n)(1 − x1(n)

−k1x
2
1(n) − x2(n)

x2
1(n) + β2

1

)

� f(x1(n), x2(n), δ∗∗),

x2(n + 1)

= x2(n) + (δ + δ∗∗)x2(n)(−δ01

−δ11x2(n) +
γ1x1(n)

x2
1(n) + β2

1

)

� g(x1(n), x2(n), δ∗∗).

(39)

Let u1(n) = x1(n) − x∗
1, u2(n) = x2(n) − x∗

2

in the model (39). Then the equilibrium E2(x∗
1, x

∗
2) is

transformed into the origin. Further expanding f and g as
a Taylor series at (u1, u2) = (0, 0) to the third order, we
have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(n + 1)

= c1u1(n) + c2u2(n) + c11u
2
1(n)

+c12u1(n)u2(n) + c22u
2
2(n)

+c111u
3
1(n) + c112u

2
1(n)u2(n)

+c122u1(n)u2
2(n) + c222u

3
2(n)

+o((|u1(n)| + |u2(n)|)4),
u2(n + 1)

= d1u1(n) + d2u2(n) + d11u
2
1(n)

+d12u1(n)u2(n) + d22u
2
2(n)

+d111u
3
1(n) + d112u

2
1(n)u2(n)

+d122u1(n)u2
2(n) + d222u

3
2(n)

+o((|u1(n)| + |u2(n)|)4),

(40)

where

ci = fxi
(x∗

1, x
∗
2, 0),

di = gxi
(x∗

1, x
∗
2, 0),

cij = fxixj
(x∗

1, x
∗
2, 0),

dij = gxixj
(x∗

1, x
∗
2, 0),

cijk = fxixjxk
(x∗

1, x
∗
2, 0),

dijk = gxixjxk
(x∗

1, x
∗
2, 0), i, j, k = 1, 2.

Note that the characteristic equation associated with
the linearization of the model (40) at (u1(n), u2(n)) =
(0, 0) is given by

λ2 + p(δ∗∗)λ + q(δ∗∗) = 0, (41)
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where

p(δ∗∗) = −2 − G(δ∗∗ + δ),

q(δ∗∗) = 1 + G(δ∗∗ + δ) + H(δ∗∗ + δ)2.
(42)

The roots of the characteristic equation (41) are

λ1,2(δ∗∗) =
1
2
(−p(δ∗∗) ± i

√
4q(δ∗∗) − p2(δ∗∗). (43)

We have

|λ1,2(δ∗∗)| = (q(δ∗∗))
1
2 . (44)

From |λ1,2(δ∗∗)| = 1, when δ∗∗ = 0 we have

q(0) = 1 + Gδ + Hδ
2

= 1. (45)

Hence, Hδ = −G. Consequently,

l =
d|λ1,2(δ∗∗)|

dδ∗∗

∣
∣
∣
δ∗∗=0

= −G

2
> 0. (46)

In addition, it is required that, when δ∗∗ = 0, λm
1,2 �= 1 for

m = 1, 2, 3, 4, which is equivalent to p(0) �= −2, 0, 1, 2.
Note that Δ = p2(0) − 4q(0) < 0 and then p(0) �=

−2, 2. We only prove that p(0) �= 0, 1, and we have
p(0) = −2 − Gδ �= 0, 1. Then −Gδ �= 2, 3, and hence

δx∗
1 + 2k1δx

∗2
1 + δδ11x

∗
2 −

2δx∗2
1 x∗

2

(x∗2
1 + β2

1)2
�= 2, 3. (47)

Therefore, eigenvalues λ1,2 do not lie in the intersection
of the unit circle with the coordinate axes when δ∗∗ = 0
and (47) holds.

Let

α = 1 − 1
2
δ
[
x∗ + 2kx∗2 + δ1y

∗ − 2x∗2y∗

(x∗2 + β2)2
]
,

(48)

ω = δ12

√
4H − G, (49)

and

T =
(

0 1
ω α

)

. (50)

Use the transformation
(

u1(n)

u2(n)

)

= T

(
x̂1(n)

x̂2(n)

)

. (51)

Then the model (40) becomes
{

x̂1(n + 1) = αx̂1(n) − ωx̂2(n) + f2(x̂1(n), x̂2(n)),

x̂2(n + 1) = ωx̂1(n) + αx̂2(n) + g2(x̂1(n), x̂2(n)),
(52)

where the functions f2 and g2 denote the terms in the
model (52) with the order at least two in variables
(x̂1(n), x̂2(n)).

In order to undergo Hopf bifurcation, we require that
the following discriminatory quantity a be nonzero:

a = −Re
[(1 − 2λ)λ

2

1 − λ
ξ11ξ20

]
− 1

2
||ξ11||2

− ||ξ02||2 + Re(λξ21), (53)

where

ξ20 =
1
8
α(2d22 − αc22 − c12 + 4ωc22)

+
1
4
ωc12 +

1
8
αi(4ωc22 − 2c12 − 2αc22)

+
1
8
i(4ωd22 + 2ω2c22 − 2c11)

+
αc11 − 2d11

4ω
+

α3c22 − α2d22

4ω

+
1
8
d12 − α2c12 − αd12

4ω
,

(54)

ξ11 =
1
2
ω(d22 − αc22) +

1
2
i(ω2c22 + c11

+αc12 + α2c22) +
d11 − αc11

2ω

+
αd12 − α2c12

2ω
− α2d22 − α3c22

ω
,

(55)

ξ02 =
1
4
ω(2αc22 + c12 + d22)

+
1
4
i(d12 + 2αd22 − 2αc12 − c11)

−d11 − αc11

4ω
− αd12 − α2c12

4ω

+
1
4
c22i(ω2 − 3α2) +

α2d22 − α3c22

4ω
,

(56)

ξ21 =
3
8
d222(ω2 + α2) +

1
8
d112 +

1
4
αc112

+
1
4
αd122 + c122(

1
8
ω2 +

3
8
α2 − 1

4
α)

+
3
8
c111 +

3
8
c222i(ω2 + 2α2) +

3
8
αωc122i

−1
8
ωd122i − 3

8
αωd222i − 3d111 − 3αc111

8ω
i

−3αd112 − 3α2c112

8ω
i − 3α2d122 − 3α3c122

8ω
i

−3α3d222 − 3α4c222

8ω
i.

(57)

From the above analysis and Theorem 3.5.2 of
Guckenheimer (1983), we have the following result.
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Theorem 2. If the condition (47) holds and a �= 0, then
the model (2) undergoes Hopf bifurcation at E2(x∗

1, x
∗
2)

when the parameter δ∗∗ varies in a small neighborhood
of the origin. Moreover, if a < 0 (resp. a > 0), then
an attracting (resp. repelling) invariant closed curve bi-
furcates from E2(x∗

1, x
∗
2) for δ∗∗ > 0 (resp., δ∗∗ < 0).

In Section 7, we will give an example to show Hopf
bifurcation occurs at E2(x∗

1, x
∗
2) under the conditions of

Theorem 2.

5. Saddle-node bifurcation

Finally, we discuss saddle-node bifurcation of model (2)
at E2(x∗

1, x
∗
2) when parameters (δ1, k, β, δ0, γ, δ) vary

in a small neighborhood of F34. Taking parameters
(δ1, k, β, δ0, γ, δ) = (δ11, k1, β1, δ01, γ1, δ) ∈ F34, and
further giving δ1 a perturbation δ∗1 at δ11, the model (2) is
described by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(n + 1)

= x1(n) + δx1(n)(1 − x1(n)

−k1x
2
1(n) − x2(n)

x2
1(n) + β2

1

)

� f̂(x1(n), x2(n), x3),

x2(n + 1)

= x2(n) + δx2(n)[−δ01

−(δ11 + δ∗1)x2(n) +
γ1x1(n)

x2
1(n) + β2

1

]

� f̂(x1(n), x2(n), x3),

(58)

where |δ∗1 | � 1, and x3 = δ∗1 .

Let u1(n) = x1(n) − x∗
1, u2(n) = x2(n) − x∗

2.
Then the equilibrium E2(x∗

1, x
∗
2) is transformed into the

origin, and further expanding f̂ and ĝ as the Taylor series
at (u1, u2, x3) = (0, 0, 0) to the second order, the model
(58) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(n + 1)

= e1u1(n) + e2u2(n)

+e11u
2
2(n) + e12u1(n)u2(n)

+o((|u1(n)| + |u2(n)| + |x3|)3),
u2(n + 1)

= k1u1(n) + k2u2(n)

+k3x3 + k11u
2
1(n) + k12u1(n)u2(n)

+k22u
2
2(n) + k23u2(n)x3

+o((|u1(n)| + |u2(n)| + |x3|)3),

(59)

where

ei = f̂xi(x∗
1, x

∗
2, 0),

ki = ĝxi(x∗
1, x

∗
2, 0),

eij = f̂xixj (x
∗
1, x

∗
2, 0),

kij = ĝxixj (x∗
1, x

∗
2, 0), i, j = 1, 2, 3.

Let

T =

(
a11 1

1 a22

)

, (60)

where

a11 =
x3(x∗2

1 + β2
1)2

(β2
1 − x∗2

1 )γ1
,

a22 =
x3x

∗
2(x

∗2
1 + β2

1)
x∗

1

. (61)

Use the transformation
(

u(n)

v(n)

)

= T

(
x̃1(n)

x̃2(n)

)

. (62)

Then the model (59) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̃1(n + 1)

= x̃1(n) − k3

|T |δ
∗
1 + f3(x̃1(n), x̃2(n), δ∗1),

x̃2(n + 1)

= λ2x̃2(n) +
k3a11

|T | δ∗1

+g3(x̃1(n), x̃2(n), δ∗1),

(63)

where the functions f3 and g3 denote the terms in the
model (63) with the order at least two in variables
(x̃1(n), x̃2(n), δ∗1).

Applying the center manifold theorem given by
Guckenheimer (1983) and Kuznetsov (1998), we obtain
that there exists a center manifold W c(0, 0, 0) of the
model (63) at (0, 0) in a small neighborhood of δ∗1 = 0,
which can be approximately described as follows:

W c(0, 0, 0)

=
{
(x̃1, x̃2, δ

∗
1) ∈ R

3 : x̃2(n + 1) = â0δ
∗
1

+â1x̃1(n)δ∗1 + â2x̃1(n)2 + â3δ
∗2
1

+o((|x̃1(n)| + |δ∗1 |)3)
}

,

(64)

where

â0 =
1

1 − λ2

k3a11

|T | , (65)



Bifurcation and control for a discrete-time prey–predator model with Holling-IV functional response 255

â1 =
1

1 − λ2

[
2â0a11

a11k11 − e11

|T |
+â0(1 + a11a22)

a11k12 − e12

|T |
+2â0a22

a11k22

|T | +
a11k23

|T |
]
,

(66)

â2 =
a11

1 − λ2

[
a11

k11 − e11

|T | +
k22

|T |
+a2

11

a11k12 − e12

|T |
]
,

(67)

â3 =
â0

1 − λ2

[a11k11 − e11

|T | +
k22a11a

2
22

|T |
+a22

a11k12 − e12

|T | +
a22a11k23

|T |
]
.

(68)

Further, we have that the model (63) restricted to
center manifold W c(0, 0, 0) has the following form:

x̃1(n + 1)

= x̃1(n) + l0δ
∗
1 + l1x̃1(n)2 + l2x̃1(n)δ∗1

+l3δ
∗2
1 + o((|x̃1(n)| + |δ∗1 |)3)

� F̂ (x̂1(n), δ∗1),

(69)

where

l0 = − k3

|T | , (70)

l1 =
a22e11 − k11

|T | a2
11 +

a22e12 − k12

|T | a11, (71)

l2 = 2â0a11
a22e11 − k11

|T | − 2â0a22k22

|T |
+â0(1 + a11a22)

a22e12 − k12

|T | − k23

|T | ,
(72)

l3 =
a22e11 − k11

|T |â0
− â0a

2
22k22

|T |
+

a22e12 − k12

|T | â0a22 − â0a22k23

|T | .
(73)

In order to undergo saddle-node bifurcation, we
require that the discriminatory quantities ηi(i = 1, 2, 3, 4)
be nonzero,

η1 =
∂F̂

∂δ∗1

∣
∣
∣
(0,0)

= l0 �= 0, (74)

η2 = 3
∂F̂

∂x̃1

∣
∣
∣
(0,0)

= 1 �= 0, (75)

η3 =
∂2F̂

∂x̃1∂δ∗1

∣
∣
∣
(0,0)

= l2 �= 0, (76)

η4 =
∂2F̂

∂x̃2
1

∣
∣
∣
(0,0)

= l1 �= 0. (77)

From the above analysis and applying Theorem 4.1
given by Kuznetsov (1998, Chapter 4), we have the
following theorem.

Theorem 3. If ηi (i = 1, 3, 4) �= 0, then the model (2) un-
dergoes saddle-node bifurcation at E2(x∗

1, x
∗
2) when the

parameter δ∗1 varies in a small neighborhood of the origin.
Moreover, if ηi (i = 1, 3, 4) > 0 (resp. ηi (i = 1, 3, 4) <
0) and δ∗1 > 0 (resp. δ∗1 < 0), then new equilibria occur
(resp. equilibria overlap).

In Section 7, we will give an example to show that
saddle-node bifurcation occurs at E2(x∗

1, x
∗
2) under the

conditions of Theorem 3.

6. Chaos control

Unstable fluctuations, bifurcations and chaos have always
been regarded as unfavorable phenomena in biology, so
they are harmful for the breeding of biological population.
Naturally, we need take action to stabilize the latter.

In this section, to eliminate the unstable periodic
orbits or the chaotic orbits of the model (2), we will
introduce the OGY chaos control method given by Ott
et al. (1990), Grebogi et al (1983) as well as Scholl
and Schuster (2008) to the model (2). We will design an
OGY controller to stabilize the unstable periodic orbits
embedded in the chaotic attractor of the model (2) to a
positive equilibrium.

Consider the following corresponding controlled
form of (2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(n + 1)

= x1(n) +
(
(δ∗ + p)x1(n)(1 − x1(n)

−kx1(n)2 − x2(n)
x1(n)2 + β2

)
)
,

x2(n + 1)

= x2(n) + (δ∗ + p)x2(n)(−δ0

−δ1x2(n) +
γx1(n)

x1(n)2 + β2
),

(78)

where p is chosen as the control adjusted signal. Here, we
always assume that the model (2) has unstable periodic
orbits embedded in the chaotic attractor when δ = δ∗.

For simplicity, we only discuss the control law of
period-1 orbits; the other cases (for example, higher
period) are similar to this case. We will stabilize the
unstable periodic orbits embedded in the chaotic attractor
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of the model (2) to equilibrium E2(x∗
1, x

∗
2). Choose the

response vector w as follows:

w = det (I − J(E2))

(
1

1

)

, (79)

where I denotes the identity matrix. Let λ1 and λ2

be eigenvalues of J(E2), and λ1 (λ2) correspond to the
unstable manifold (stable manifold). Then |λ1| > 1
(|λ2| < 1).

The unstable orientation of E2(x∗
1, x

∗
2) is denoted by

ρ1 and orthogonal dual vector ρ2:

ρ1 =

⎛

⎜
⎝

1

(β2 − x∗2
1 )γδx∗

2

(x∗2
1 + β2)2(λ1 − 1 + δδ1x∗

2)

⎞

⎟
⎠ , (80)

ρ2 =

⎛

⎜
⎝

1

− δx∗
1

(x∗2
1 + β2)(λ1 − 1 + δδ1x∗

2)

⎞

⎟
⎠ , (81)

and the control adjusted signal can be written as

p =
λ1ρ

T
2

(λ1 − 1)ρT
2 w

(
x1(n) − x∗

1

x2(n) − x∗
2

)

. (82)

Choose the allowable range of parameter variation ε (for
example, ε = 0.08)). Then we obtain the control
condition

|ΔSx2
x1
| <

(
1 − 1

λ1

)
ρT
2 wε, (83)

where

ΔSx2
x1

= ρT
2

(
x1(n) − x∗

1

x2(n) − x∗
2

)

. (84)

If the model (78) satisfies the control condition,
we start control. Applying the results given by Ott et
al. (1990), Grebogi et al (1983) as well as Scholl and
Schuster (2008), we have the following theorem.

Theorem 4. If the controlled model (78) satisfies the
control condition

|ΔSx2
x1
| <

(
1 − 1

λ1

)
ρT
2 ωε, (85)

0 < ε � 1 defines the allowable range of parameter vari-
ation, and the controller adjusted signal is

p =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if | λ1

(λ1 − 1)ρ2ω
ΔSx2

x1
| < ε,

λ1ρ
T
2

(λ1 − 1)ρT
2 w

(
x1 − x∗

1

x2 − x∗
2

)

otherwise,
(86)

then this controller can stabilize the unstable periodic or-
bits embedded in the chaotic attractor to a positive equi-
librium.

For the model (2), when to start controlling the
unstable periodic orbits embedded in the chaotic attractor
is quite important. Ott et al. (1990) and Grebogi et
al. (1986; 1987) gave detailed expressions for general
OGY chaos control. The time of starting control usually
depends on the control adjusted signal p. When time t is
large enough, p has the following exponential probability
distribution:

p(t) ∝ exp
(
− t

〈t〉
)
, (87)

where 〈t〉 has to do with δ and presents the average time
of chaos. Particularly, when δ is quite small, we further
have

〈t〉 ∝ δ−γ , (88)

where

γ = 1 +
1
2

ln λ1

ln |λ2|−1
. (89)

Therefore, the time of starting control can be determined
by δ and γ.

7. Numerical simulations

In this section, we give the bifurcation diagrams, phase
portraits of the model (2) to confirm the above theoretical
analysis and show new interesting complex dynamical
behaviors by using numerical simulations. Furthermore,
we have performed some numerical simulations to see
how the OGY chaos control method stabilizes the unstable
periodic orbits embedded in the chaotic attractor. The
parameters are considered for the following four cases.

Case 1. Varying δ in the range 0.8 ≤ δ ≤ 2.2, and
fixing δ1 = 0.32, k = 2.2, β = 0.5, δ0 = 0.2,γ = 0.51.
When we evaluate Eqns. (4), the model (2) has a unique
positive equilibrium E2(0.1434, 0.2195). When δ =
0.8565, the Jacobian matrix J(E2) has two eigenvalues
λ± = 0.9226 ± i0.3858 with |λ±| = 1. Hence,
(δ1, k, β, δ0, γ, δ) = (0.32, 2.2, 0.5, 0.2, 0.51, 0.8565) ∈
F33. Further, by computing (53), we can obtain that
a = −0.1235. This illustrates Theorem 2.

From Fig. 1, we observe that the equilibrium E2

of the model (2) is stable for δ < 0.8565 and loses its
stability at δ = 0.8565, and that an invariant circle appears
when δ exceeds 0.8565.

Figure 1 clearly depicts how a smooth invariant
circle bifurcates from the stable equilibrium E2. When
δ exceeds 0.8565, there appears a circular curve enclosing
E2, and its radius becomes larger with the growth of δ
when δ reaches certain values. For instance, δ = 1.84, the
circle disappears and the period-3, 6, 9, 12, 20, 63, 70, 112
windows within the chaotic regions and boundary crisis
emerges at δ = 2.1813. Further, from Fig. 1 we observe
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Fig. 1. Hopf bifurcation of the model (2) in the (δ, x1) plane,
and initial values (x10, x20) = (0.3, 0.1).
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Fig. 2. Time responses for the state x1 of the controlled model
(78) in the (n, x1) plane with δ = 1.86, and initial val-
ues (x10, x20) = (0.3, 0.1).
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Fig. 3. Time responses for the state x2 of the controlled model
(78) in the (n, x2) plane with δ = 1.86, and initial val-
ues (x10, x20) = (0.3, 0.1).

the number of predators decreases due to the increased
ability of prey and the population of the predators is
extinct at last.

We have performed some numerical simulations
to see how the OGY controller stabilizes the unstable
periodic orbits embedded in the chaotic attractor.
Parameter values are fixed as (δ1, k, β, δ0, γ, δ) =
(0.32, 2.2, 0.5, 0.2, 0.51, 0.933). Figures 2 and 3 show
that, when n < 500, we do not apply control to the
model (2) (that is, p ≡ 0), and (2) presents chaotic
behavior. When n > 500, the chaotic orbits fall into a
small neighborhood of the desired equilibrium, we start
control, so that the chaotic orbit is quickly stabilized to
E2.

Case 2. Varying δ in the range 1.2 ≤ δ ≤ 2, and
fixing δ1 = 0.8, k = 2.5, β = 0.4, δ0 = 0.6, γ = 0.5.
By evaluating Eqn. (4), the model (2) has a unique
positive equilibrium E2(0.4391, 0.0279). When δ =
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Fig. 4. Flip bifurcation of the model (2) in the (δ, x1) plane, and
initial values (x10, x20) = (0.3, 0.1).
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Fig. 5. Time responses for the state x1 of the controlled model
(78) in the (n, x1) plane with δ = 1.78, and initial val-
ues (x10, x20) = (0.3, 0.1).
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1.5184, the Jacobian matrix J(E2) has two eigenvalues
λ1 = −1, λ2 = 0.9716. Hence, (δ1, k, β, δ0, γ, δ) =
(0.8, 2.5, 0.4, 0.6, 0.5, 1.5184) ∈ F31. Further, by
computing (30) and (31), we can obtain that α1 =
−4.654, α2 = 43.32. This illustrates Theorem 1.

From Fig. 4 we observe that equilibrium E2 is stable
for δ < 1.5184, and there are orbits of period-doubling
for δ = 1.5184. From δ = 1.76 to 1.83, we can see the
attracting chaotic sets, and when δ from 1.88 to 1.92, we
can see the non-chaotic sets.

We have performed some numerical simulations
to see how OGY control stabilizes the unstable
periodic orbits embedded in the chaotic attractor.
Parameter values are fixed as (δ1, k, β, δ0, γ, δ) =
(0.8, 2.5, 0.4, 0.6, 0.5, 1.5184). Figure 5 shows that we
do not perform control to the model (2) when n < 500
(that is, p ≡ 0), and (2) presents chaotic behavior. When
n > 500, the chaotic orbit falls into a small neighborhood
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Fig. 6. Flip bifurcation of the model (2) in the (δ, x1) plane, and
initial values (x10, x20) = (0.12, 0.0012).
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Fig. 7. Time responses for the state x1 of the controlled model
(78) in the (n, x1) plane with δ = 1.78, and initial val-
ues (x10, x20) = (0.12, 0.0012).

of the desired equilibrium, we start control, so that the
chaotic orbits are quickly stabilized to E2.

Case 3. Varying δ in the range 1 ≤ δ ≤ 2.6,
and fixing δ1 = 0.42, k = 2.2, β = 0.273, δ0 =
0.71, γ = 0.43. By computing, the model (2) has
an equilibrium at E1(0.4842, 0). When δ = 1.3123,
the Jacobian matrix J(E1) has two eigenvalues λ1 =
−1, and λ2 = 2.3123. Hence, (δ1, k, β, δ0, γ, δ) =
(0.42, 2.2, 0.273, 0.71, 0.43, 1.3123) ∈ FA. Further, by
computing (30) and (31), we can obtain that α1 =
−0.1297, α2 = 3.2875. This illustrates Theorem 1.

From Fig. 6 we see that equilibrium E1 is stable
for δ < 1.3123, and loses its stability when δ =
1.3123. Furthermore, there is flip bifurcation from Fig. 6.
Moreover, a chaotic set is emerged with the increasing of
δ, and we know that when δ increases to 1.7823 the prey
tends to extinct, and at last the predator and prey tend to
extinction.
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Fig. 8. Saddle-node bifurcation of the model (2) in the (δ1−x2)
plane, and initial values (x10, x20) = (0.12, 0.0012).
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Fig. 9. Local amplification corresponding to Fig. 8 for δ1 ∈
[0.08, 0.25] in the (δ1, x2) plane.
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We have performed some numerical simulations
to see how the OGY control stabilizes the unstable
periodic orbits embedded in the chaotic attractor.
Parameter values are fixed as (δ1, k, β, δ0, γ, δ) =
(0.42, 2.2, 0.273, 0.71, 0.43, 1.3123). Figure 7 shows that
we do not perform control to model (2) when n < 500
(that is, p ≡ 0), and model (2) presents chaotic behavior.
When n > 500, the chaotic orbits falls into small
neighborhood of the desired equilibrium, we start control,
so that the chaotic orbits is quickly stabilized to E1.

Case 4. Varying δ1 in the range 0.04 ≤ δ1 ≤ 0.7,
and fixing δ = 0.23, k = 2.2, β = 0.273, δ0 =
−0.34, γ = 0.23. By computing (4), when δ1 = 0.4712,
the model (2) has a positive equilibrium (0.1375, 0.0731)
and the Jacobian matrix J(E2) has two eigenvalues
λ1 = 1, λ2 = −3.9741. Hence, (δ1, k, β, δ0, γ, δ) =
(0.4712,−0.34, 2.2, 0.273, 0.23, 0.23) ∈ F34. Further,
for smaller δ1 = 0.0812, by computing (4), the model
(2) has two positive equilibria (0.0063, 4.4239) and
(0.0274, 5.2163). By computing (74)–(77), we can obtain
that η1 = −4.9255, η2 = 21.3847, η3 = 3.2988, η4 =
−0.2319. This illustrates Theorem 3.

We give the saddle-node bifurcation diagram Figs. 8
and 9 of the model (2) in the (δ1, x2) plane for δ0 =
−0.34, k = 2.2, β = 0.273, γ = 0.23, δ = 0.23,
and 0.04 ≤ δ1 ≤ 0.7. From Figs. 8 and 9, we
can see that period-2 occurs at δ1 = 0.0812, period-4
occurs at δ1 = 0.1183, and cascades of period-halving
bifurcation and flip bifurcation can be seen. And as
δ1 increases from 0.1724 to 0.1863, the model (2) goes
through quasi-periodicity. When δ1 increases to 0.4712,
the model (2) becomes stable. This illustrates Theorem 3.

8. Discussion

In this paper, we discuss the dynamical behaviors of
the model (2), precisely by choosing the step size δ
and the death rate of the predators δ1 as a bifurcation
parameter, it has been shown that the model undergoes
a series of bifurcations including a flip bifurcation, a
Hopf bifurcation, and a saddle-node bifurcation. We
obtain these bifurcations by only changing the bifurcation
parameters; we also obtain flip bifurcation and chaos
at boundary equilibrium (m, 0) by choosing δ as a
bifurcation parameter. At the same time, as the
parameters vary, the model exhibits a stable period-one
orbit, a period-two orbit, a period-n orbit or coexistence
of several periodic orbits, an invariant cycle, chaotic
oscillators, even a sudden onset of chaos suddenly and the
chaotic dynamics approach to the period orbits, inverse
period-doubling orbits. Furthermore, we obtain that the
preys and predators can tend to stable equilibria when the
preys and predators are in a chaotic dynamic by using
chaos control.

However, for the continuous-time two-species
prey-predator model (1), from the article by Liu et al.
(2010) we see that the dynamical behaviors are quite
simple. In particular, if there exists a unique positive
equilibrium E2(x∗

1, x
∗
2), then E2(x∗

1, x
∗
2) can be global

asymptotically stable under some certain conditions, or
there exists a unique stable limit cycle around E2(x∗

1, x
∗
2).

Therefore, from the analysis and results in this paper
we see that the discrete-time two-species prey–predator
model (2) can produce a much richer set of patterns
than those observed in the corresponding continuous-time
model (1).

Acknowledgment

The authors are very grateful to the editor and anonymous
referees for their valuable comments and helpful
suggestions, which led to a substantial improvement of
the original manuscript. This work was supported by the
National Natural Science Foundation of China (Grants
No. 11271312, 11001235) and the Natural Science
Foundation of Xinjiang (Grants No. 2012211B07,
2011211B08).

References

Busłowicz, M. (2012). Robust stability of positive
continuous-time linear systems with delays, International
Journal of Applied Mathematics and Computer Science
20(4): 665–670, DOI: 10.2478/v10006-010-0049-8.

Busłowicz, M. and Ruszewski, A. (2012). Computer
method for stability analysis of the Roesser type model
of 2D continous-discrete linear systems, International
Journal of Applied Mathematics and Computer Science
22(2): 401–408, DOI: 10.2478/v10006-012-0030-9.

Duda, J. (2012). A Lyapunov functional for a system with
a time-varying delay, International Journal of Applied
Mathematics and Computer Science 22(2): 327–337, DOI:
10.2478/v10006-012-0024-7.

Fan, Y. and Li, W. (2004). Permanence for a delayed discrete
ratio-dependent predator–prey system with Holling type
functional response, Journal of Mathematical Analysis and
Applications 299(2): 357–374.

Freedman, H.I. (1976). Graphical stability, enrichment, and
pest control by a natural enemy, Mathematical Biosciences
31(3–4): 207–225.

Freedman, H.I. (1980). Deterministic Mathematical Models in
Population Ecologys, Marcel Dekker, New York, NY.

Grebogi, C., Ott, E. and Yorke, J.A. (1983). Crises, sudden
changes in chaotic attractors, and transient chaos, Physica
D: Nonlinear Phenomena 7(1–3): 181–200.

Grebogi, C., Ott, E. and Yorke, J.A. (1986). Critical exponent of
chaotic transients in nonlinear dynamical systems, Physi-
cal Review Letters 57(11): 1284–1287.



260 Q. Chen et al.

Grebogi, C., Ott, E., Romeiras, F. and Yorke, J.A. (1987).
Critical exponents for crisis-induced intermittency, Phys-
ical Review A 36(11): 5365–5380.

Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscil-
lations, Dynamical Systems, and Bifurcations of Vector
Fields, Springer-Verlag, New York, NY.

Hainzl, J. (1988). Stability and Hopf bifurcation in a
predator–prey system with several parameters, SIAM Jour-
nal on Applied Mathematics 48(1): 170–190.

Harrison, G.W. (1986). Multiple stable equilibria in a
predator–prey system, Bulletin of Mathematical Biology
48(2): 137–148.

He, Z. and Lai, X. (2011). Bifurcation and chaotic behavior of
a discrete-time predator–prey system, Nonlinear Analysis:
Real World Applications 12(1): 403–417.

Holling, C.S. (1965). The functional response of predators
to prey density and its role in mimicry and population
regulation, Memoirs of the Entomological Society of
Canada 97(45): 1–60.

Hsu, S.B. (1978). The application of the Poincare-transform to
the Lotka–Volterra model, Journal of Mathematical Biol-
ogy 6(1): 67–73.

Hu, Z., Teng, Z. and Zhang, L. (2011). Stability and
bifurcation analysis of a discrete predator–prey model with
nonmonotonic functional response, Nonlinear Analysis:
Real World Applications 12(4): 2356–2377.

Huang, J. and Xiao, D. (2004). Analyses of bifurcations and
stability in a predator–prey system with Holling type-IV
functional response, Acta Mathematicae Applicatae Sinica
20(1): 167–178.

Jing, Z. (1989). Local and global bifurcations and applications
in a predator–prey system with several parameters, Systems
Science and Mathematical Sciences 2(4): 337–352.

Jing, Z. , Chang, Y. and Guo, B. (2004). Bifurcation and chaos
in discrete FitzHugh–Nagumo system, Chaos, Solitons &
Fractals 21(3): 701–720.

Jing, Z. and Yang, J. (2006). Bifurcation and chaos in
discrete-time predator–prey system, Chaos, Solitons &
Fractals 27(1): 259–277.

Kazarinoff, N.D. and Van Den Driessche, P. (1978). A model
predator–prey system with functional response, Mathemat-
ical Biosciences 39(1–2): 125–134.

Kuznetsov, Y.A. (1998). Elements of Applied Bifurcation The-
ory, Springer-Verlag, Berlin.

Liu, X. and Xiao, D. (2007). Complex dynamic behaviors of
a discrete-time predator–prey system, Chaos, Solitons &
Fractals 32(1): 80–94.

Liu, W., Li, D. and Yao, T. (2010). Qualitative analysis
of Holling IV predator–prey system with double density
retrie, Natural Sciences Journal of Harbin Normal Univer-
sity 26(6): 8–12, (in Chinese).

Ott, E., Grebogi, C. and Yorke, J.A. (1990). Controlling chaos,
Physical Review Letters 64(11): 1196–1199.

Raja, R., Sakthivel, R., Anthoni, S.M. and Kim, H. (2011).
Stability of impulsive Hopfield neural networks with
Markovian switching and time-varying delays, Interna-
tional Journal of Applied Mathematics and Computer Sci-
ence 21(1): 127–135, DOI: 10.2478/v10006-011-0009-y.

Robinson, C. (1999). Dynamical Systems, Stability, Symbolic
Dynamics and Chaos, 2nd Edn., CRC Press, Boca Raton,
FL/London/New York, NY/Washington, DC.

Ruan, S. and Xiao, D. (2001). Global analysis in a predator–prey
system with nonmonotonic functional response, SIAM
Journal on Applied Mathematics 61(4): 1445–1472.

Scholl, E. and Schuster, H.G. (2008). Handbook of Chaos Con-
trol, Wiley-VCH, Weinheim.

Tong, Y., Liu, Z. and Wang, Y. (2012). Existence of period
solutions for a predator–prey system with sparse effect
and functional response on time scales, Communica-
tions in Nonlinear Science and Numerical Simulation
17(8): 3360–3366.

Wang, Y., Jing, Z. and Chan, K. (1999). Multiple limit cycles
and global stability in predator–prey model, Acta Mathe-
maticae Applicatae Sinica 15(2): 206–219.

Wiggins, S. (1990). Introduction to Applied Nonlinear Dynami-
cal Systems and Chaos, Springer-Verlag, Berlin.

Wolkowicz, G.S.K. (1988). Bifurcation analysis of a
predator-prey system involving group defence, SIAM Jour-
nal on Applied Mathematics 48(3): 592–606.

Xu, C., Liao, M. and He, X. (2011). Stability and Hopf
bifurcation analysis for a Lotka–Volterra predator–prey
model with two delays, International Journal of Applied
Mathematics and Computer Science 21(1): 97–107, DOI:
10.2478/v10006-011-0007-0.

Zhang, Q., Yang, L. and Liao, D. (2011). Existence and
exponential stability of a periodic solution for fuzzy cellar
neural networks with time-varying delays, International
Journal of Applied Mathematics and Computer Science
21(4): 649–658, DOI: 10.2478/v10006-011-0051-9.

Qiaoling Chen is an M.Sc. student at the College
of Mathematics and Systems Science, Xinjiang
University, Urumqi, China. She received the
B.Sc. degree from Xinjiang University in 2010.
Her research interests focus on dynamical behav-
iors of differential and difference equations, in-
cluding bifurcation theory and chaotic control.

Zhidong Teng is a professor at the College
of Mathematics and Systems Science, Xinjiang
University, Urumqi, China. He received the
Ph.D. from Al-Farabi Kazakh National Univer-
sity, Alma-Ata, in 1995. His research interests
focus on the theory of differential and difference
equations, population dynamical systems, epi-
demic models, and neural network systems.



Bifurcation and control for a discrete-time prey–predator model with Holling-IV functional response 261

Zengyun Hu is a Ph.D. student at the College
of Mathematics and Systems Science, Xinjiang
University, Urumqi, China, and an assistant re-
search fellow at the Xinjiang Institute of Ecology
and Geography, Chinese Academy of Sciences.
He received his M.Sc. degree from Xinjiang Uni-
versity in 2011. His research interests focus on
discrete systems and epidemic models.

Received: 13 April 2012
Revised: 8 September 2012


