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The paper presents the development of modelling and control strategies for a six-degree-of-freedom, unmanned combat
aerial vehicle with the inclusion of the centre of gravity position travel during the straight-leg part of an in-flight refuelling
manoeuvre. The centre of gravity position travel is found to have a parabolic variation with an increasing mass of aircraft. A
nonlinear dynamic inversion-based neurocontroller is designed for the process under investigation. Three radial basis func-
tion neural networks are exploited in order to invert the dynamics of the system, one for each control channel. Modal and
time-domain analysis results show that the dynamic properties of the aircraft are strongly influenced during aerial refuelling.
The effectiveness of the proposed control law is demonstrated through the use of simulation results for an F-16 aircraft. The
longitudinal neurocontroller provided interesting results, and performed better than a baseline nonlinear dynamic inversion
controller without neural network. On the other hand, the lateral-directional nonlinear dynamic inversion-based neurocon-
troller did not perform well as the longitudinal controller. It was concluded that the nonlinear dynamic inversion-based
neurocontroller could be applied to control an unmanned combat aerial vehicle during aerial refuelling.
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1. Introduction

Significant efforts have been devoted to increase the flight
endurance and payload of Unmanned Aerial Vehicles
(UAVs). Extended endurance has been achieved due to the
progress made in propulsion and aerodynamics without
the need for a pilot in the system. However, one of
the major limitations of UAVs is currently the lack of
an aerial-refuelling capability as is present in manned
aircraft. An air force having unmanned vehicles that can
refuel in the air would have the advantage of a greatly
extended endurance (weeks, months, and possibly even
years) and the ability to immediately respond to a threat
thousands of miles away. Without a man in the cockpit
and with an aerial-refuelling capability, the endurance of
the aircraft would only be limited by routine maintenance,
allowing larger payloads, giving rise to new operational
capabilities (Clark, 2000; Pardesi, 2005; Withrow, 2004;
Fravolini et al., 2003; Thompson, 1998; Vendra et al.,
2007; Ollero and Merino, 2004; Jin et al., 2006).

Autonomous command and control have been
identified as one of the core areas of technology that

will ensure success in future Unmanned Aerial Vehicle
(UAV)/Unmanned Combat Aerial Vehicle (UCAV)
development (Withrow, 2004; Clark, 2000; Hansen
et al., 2004; Wong and Bill, 1998). From a control
point of view, manned aerial refuelling is a difficult task
for the pilot, especially in bad weather conditions
(Pardesi, 2005; Wilson, 2005; Withrow, 2004).
Hence Automated Aerial Refuelling (AAR) is
deemed a challenging task (Withrow, 2004; Hansen
et al., 2004; Khanafseh and Pervan, 2007). Without the
presence of a skilled pilot in the cockpit, it becomes a
control system challenge for a UAV during the refuelling
manoeuvre. For AAR to be successful, the receiver
aircraft must maintain an accurate position relative to
the tanker aircraft (Pachter et al., 1997). This can only
be achieved by a proper control system development. In
the context of unmanned systems, it has been stated that
the aim of aerial refuelling research is to develop control
systems to reliably guide aircraft during this phase of
flight (Mao and Eke, 2008).

Selection of correct gains required by a traditional
controller affects the system response and stability. With
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degradation in controller performance, gains need to
be re-tuned. Also, controller gains are dependent on
the operating conditions of the aircraft—should these
change, new gains are required. Re-tuning controller
gains is impractical and time consuming (Soares et al.,
2006). In addition, traditional controller design usually
involves complex and extensive mathematical analysis,
which implies high cost and cannot guarantee a good
performance level in the whole flight envelope. Assuming
linear and time invariant dynamics requires gains to be
scheduled as functions of the nominal flight condition
in a conventional flight controller. It could happen
that, in certain flight conditions, the performance of
such systems can deteriorate due to unmodelled effects
and nonlinearities present in the flight dynamics. Gain
scheduling has been used to deal with nonlinear elements
present in aircraft dynamics, provided the gain scheduling
parameters vary slowly compared with the dynamic
response of the aircraft. This process has worked well but,
with increased capabilities and performance requirements
for modern aircraft, traditional controllers often do not
offer acceptable performance (Reiner et al., 1996; Gili and
Battipede, 2001; Lane and Stengel, 1988).

Neural Network (NN) control schemes have been put
forward as a valid means to overcome most of the typical
limitations of classical control techniques and to solve
complex control problems. Hagan and Demuth (1999)
presented a review of various neural control techniques,
such as adaptive inverse controllers, nonlinear internal
model controllers, model reference controllers, adaptive
critic controllers, stable direct adaptive. Adaptive control
offers an alternative to completely re-designing a control
system for these changes (Gili and Battipede, 2001;
Dufrene, 2004; Soares et al., 2006).

Nonlinear Dynamic Inversion (NDI) control laws
can also be used to overcome limitations of conventional
controllers. The advantage provided by the NDI
control law is the ability to directly command specific
state variables. This controller has a more accurate
representation of forces and moments due to large state
and control perturbations. The use of dynamic inversion
eliminates the need for a gain scheduled controller.
Nonlinear dynamic inversion control as applied by
Spaulding et al. (2005), Steinberg (2001), Lombaerts et al.
(2011), Bajodah (2009) and Lee et al. (2005) has been
successful. However, NDI controllers are susceptible to
errors arising from the inversion of the plant dynamics.

Research has shown that neural networks can be used
to overcome this issue in dynamic inversion controllers.
The neural network cancels inversion errors by learning
the approximate inverse plant dynamics (McFarland and
Calise, 2000; Lane and Stengel, 1988).

Online neural networks have been used for
controllers to be able to adapt to changes in the
aircraft dynamics and to be applicable throughout

the entire flight envelope (Kaneshige et al., 2000; Li
et al., 2001; Battipede et al., 2003). When considering
a very wide operating envelope, the online network has
been shown to be effective but, as highlighted in the study
of Battipede et al. (2003), intense computation is required
for this option.

A Growing Radial Basis Function Network
(GRBFN) was proposed by Li et al. (2001). This was
done in order to capture the aircraft dynamics over a
wide operating range. Kamalasadan and Ghandakly
(2011) designed an online Radial Basis Function Neural
Network (RBFNN)-based controller in parallel with a
Model Reference Adaptive Controller (MRAC) for a
fighter aircraft pitch-rate command tracking.

When modelling the receiver aircraft during aerial
refuelling, there are three considerations: relative motion
of receiver with respect to the tanker, the changing mass
and inertia properties, and the effect of the tanker’s wake
vortices on the receiver (Waishek et al., 2009). Studies
involving the modelling of UAVs during aerial refuelling
(Dogan et al., 2005; Ochi and Kominami, 2005; Pollini
et al., 2003; Fravolini et al., 2003) have considered the
aircraft centre of gravity (cog) position to be fixed. Linear
models of receiver aircraft have been developed (Wang
et al., 2008) in conjunction with a wake model. Much
effort has been channeled to specifically research issues
related to finding the relative distance between a tanker
and a UAV (Vendra et al., 2007; Dell’Aquila et al., 2007;
Mammarella et al., 2008).

Various control systems have been proposed thus far
in order to address the UAV automated aerial refuelling
problem (Mao and Eke, 2008). A Linear Quadratic
Regulator (LQR)-based multi input/multi output state
feedback and integral control technique was considered
for a tanker and receiver aircraft in an aerial refuelling
manoeuvre (Dogan and Kim, 2007). Fravolini et al.
(2003) developed an LQR controller for the tanker and
an H∞ controller for the receiver. Pachter et al.
(1997) proposed a control system based on quantitative
feedback theory for an air-to-air refuelling operation.
Proportional navigation guidance, where the line of a
sight angle is controlled similarly as in missile guidance,
was considered (Ochi and Kominami, 2005). Khanafseh
and Pervan (2007) put forward a GPS-based navigation
approach for the control of UAVs during aerial refuelling.
The controller developed for the linear model by Wang
et al. (2008) was a novel L1 adaptive neural network
controller. A PID controller was considered by Pollini
et al. (2003). The preliminary steps involved with setting
up a multi-input multi-output feedback linearization
controller were considered by Elliot and Dogan (2010).
A linear controller were presented, along with an
investigation within nonlinear control where the selection
of various combinations of controlled (output) variables
was considered.
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Design of NDI-based neural controllers for
unmanned combat aerial vehicles during aerial refuelling
has not been considered in the surveyed literature.
However, in other applications, NDI controllers have
been used and were found to give useful results.
Spaulding et al. (2005) studied an unaugmented ducted
fan UAV, having nonlinear dynamic characteristics,
and both unstable and susceptible to disturbances. A
nonlinear dynamic inversion controller was proposed
to overcome the poor flying qualities of the UAV. The
controller approach used was found to be adequate
in that the complex vehicle dynamics were reduced
to those of a simple integrator, which was able to
cover the entire flight envelope without the need for gain
scheduling. A comparative study within the field of neural
control for aircraft used seven control techniques with a
scheduled dynamic inversion controller as the baseline
(Steinberg, 2001). The study, amongst other objectives,
sought to track a linear desired performance model for
different types of single and multiaxis manoeuvres with
the F-18 aircraft as the plant. It was found that the
dynamic inversion controller was fairly robust and that it
was difficult to develop another scheme that could exceed
its performance overall.

A helicopter trajectory tracking controller was
designed by Lee et al. (2005). In the implementation
of feedback linearization, it is necessary to invert the
plant dynamics. A simple Sigma-Pi neural network was
used to this end. Further, this study considered the
lack of full knowledge of the helicopter dynamics. It
was found that the inversion error due to insufficient
information regarding the dynamics was reduced through
the use of neural networks. Deng et al. (2009)
applied the combination of Model Predictive Control
(MPC) with feedback linearization control to address the
issues of input constraints. This work led to taking
advantage of two control techniques. A reconfigurable
flight control algorithm was also designed combining
model identification and adaptive NDI (Lombaerts et al.,
2011). Parametric uncertainty was considered along
with dynamic inversion by MacKunis et al. (2010).
Dynamic inversion methodologies were also considered
in spacecraft attitude control (Bajodah, 2009).

The main objective of the study is to investigate the
suitability of using an NDI-based neurocontroller for a
UCAV during aerial refuelling in order for it to maintain
an accurate position relative to a tanker aircraft. A
controller is developed for the receiver aircraft in the
straight leg of a refuelling manoeuvre. Control of the
receiver is considered relative to the Earth-fixed inertial
frame. The time-varying cog position of the UCAV is
considered. The F-16 aircraft is selected as the basis for
a converted UCAV concept (Pardesi, 2005; Clark, 2000).
A specific case in a possibly large operating envelope is
considered; for this reason, a simple RBF network will be

sufficient to use, as opposed to the one proposed by Li
et al. (2001). It is unnecessary at this stage to consider
using an online network as the neural networks used are
trained off-line to simply invert the plant dynamics.

The rest of the paper is organized as follows.
Section 2 describes the nonlinear six-DOF aircraft model
with the inclusion of the effects of the cog position
travel. The proposed control algorithms based on
NDI with an RBFNN are formulated and discussed in
Section 3. Section 4 presents model validation, NN
training results, aircraft inherent behaviour and aircraft
controlled behaviour. Finally, concluding remarks are
given in Section 5.

2. Mathematical model of the receiver
aircraft

2.1. Equations of motion. The aircraft dynamic
equations of motion with the inclusion of the effects of
a change in the cog position are derived from the first
principles using Lagrange’s equation (Pedro, 1992):

d
dt

(
∂T ∗

∂q̇i

)
− ∂T ∗

∂qi
+
∂U

∂qi
= Qi, (1)

where

Qi =
∂

∂qi
(δW ) ,

where T ∗ is the total kinetic energy of the aircraft,U is the
total potential energy of the aircraft, Qi is the generalized
force, qi stands for the generalized coordinates, and δW
is the work associated with any arbitrary displacements
of the generalized coordinates. Equation (1) is consistent
with the equations of motion of Etkin and Reid (1996)
as well as Steven and Lewis (1992) when these effects
are neglected. The twelve aircraft equations of motion are
broken down into four sets:

Force equations:

X = m (u̇+ qw − rv) − Sx

(
q2 + r2

)
(2)

− Sy (ṙ − pq) + Sz (q̇ + pr) +mg sin θ,

Y = m (v̇ + ru− pw) + Sx (ṙ + qp) (3)

− Sy

(
p2 + r2

)− Sz (ṗ+ qr) −mg cos θ sinφ,

Z = m (ẇ + pv − qu) − Sx (q̇ − pr) (4)

+ Sy (ṗ+ qr) − Sz

(
q2 + p2

)−mg cos θ cosφ,

where X , Y , and Z are the generalized forces due to
aerodynamic and propulsive sources, u, v, and w are the
aircraft velocity components along x, y, and z-body axes,
respectively, p, q, and r are the aircraft roll, pitch, and
yaw rates, respectively, φ and θ are the aircraft roll and
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pitch angles respectively, m is the aircraft mass, g is the
acceleration due to gravity, and Sx, Sy and Sz are the
static moments of inertia about x, y, and z-body axes,
respectively (this is caused by the cog movement during
aerial refuelling).

Moment equations:

L = Ixṗ− (Iy − Iz) qr − Ixy (q̇ − pr) − Ixz (ṙ

+ pq) − Iyz

(
q2 − r2

)
+ Sy (ẇ − uq + pv)

− Sz (v̇ − pw + ur) −mg (yc cos θ cosφ−
− zc cos θ sinφ) − ITωT (r sinϕTZ

+ q cosϕTZ sinϕTY ) , (5)

M = Iy q̇ − (Iz − Iz) rp− Ixy (ṗ− qr) − Iyz (ṙ

− qp) − Ixz

(
r2 − p2

)− Sx (ẇ − uq + pv)
+ Sz (u̇− vr + qw) +mg (zc sin θ
+ xc cos θ cosφ) + ITωT (r cosϕTZ cosϕTY

+ p cosϕTY ) , (6)

N = Iz ṙ − (Ix − Iy) pq − Iyz (q̇ − pr) − Ixz (ṗ

− qr) − Ixy

(
p2 − q2

)
+ Sx (v̇ − wp+ ru)

− Sy (u̇− rv + wq) −mg (xc cos θ sinφ
+ yc sin θ) − ITωT (q cosϕTZ cosϕTY

− p sinϕTz ) , (7)

where L, M , and N are the generalized moments due to
aerodynamic and propulsive sources, Ix, Iy , and Iz are the
vehicle moments of inertia about x, y, and z-body axes,
respectively, Ixy , Ixz , and Iyz are the vehicle products
of inertia, respectively, IT is the moment of inertia of
the spinning rotor about its major axis, ωT is the angular
velocity of the spinning rotor, and ϕTY , and ϕTZ are the
engine pitch and yaw settings, respectively. Thus

Ix = Ix0 +m
(
y2

c + z2
c

)
,

Iy = Iy0 +m
(
x2

c + z2
c

)
, (8)

Iz = Iz0 +m
(
x2

c + y2
c

)
,

Ixy = Ixy0
+mxcyc,

Ixz = Ixz0 +mxczc, (9)

Iyz = Iyz0
+myczc,

Sx = mxc, Sy = myc, Sz = mzc, (10)

where Ix0 , Iy0 , Iz0 , Ixy0
, Ixz0 and Iyz0

are the vehicle
moments and products of inertia before refuelling occurs.

The cog position vector, rc, shown in Fig. 1, is given
by

rc = [xc, yc, zc]T (11)

= [xcgref
− xcg, ycgref

− ycg, zcgref
− zcg]T ,

Fig. 1. Aircraft axes with the cog position vector.

where xcg, ycg, and zcg are the cog positions along the
x, y, and z-body axes, respectively, and xcgref

, ycgref
, and

zcgref
are the reference cog positions along the x, y, and

z-body axes, respectively.
The generalized forces and moments due to

aerodynamic and propulsive sources are given as (Pedro
and Bigg, 2005)

X = q̄S
[
Cx0 + Cxαα+ (c̄/2V )

(
Cxq (α) q (12)

+ Cxα̇ (α) α̇) + Cxδe
δe
]
+ T cosϕTZ cosϕTY ,

Y = q̄S
[
Cy0 + Cyβ

β + (b/2V )
(
Cyp (α) p (13)

+ Cyr (α) r) + Cyδa
δa + Cyδr

δr
]
+ T sinϕTZ ,

Z = q̄S
[
Cz0 + Czαα+ (c̄/2V )

(
Czq (α) q (14)

+ Czα̇ (α) α̇) + Czδe
δe
]− T cosϕTZ sinϕTY ,

L = q̄Sb
[
Cl0 + Clββ + (b/2V )

(
Clp (α) p

+ Clr (α) r) + Clδa
δa + Clδr

δr
]

(15)

− T (yT cosϕTZ sinϕTY + zT sinϕTZ ) ,

M = q̄Sc̄
[
Cm0 + Cmαα+ (c̄/2V )

(
Cmq (α) q

+ Cmα̇ (α) α̇) + Cmδe
δe + Czxc

]
(16)

+ T (zT cosϕTZ cosϕTY + xT cosϕTZ sinϕTY ) ,

N = q̄Sb
[
Cn0 + Cnβ

β + (b/2V )
(
Cnp (α) p

+ Cnr (α) r) + Cnδa
δa + Cnδr

δr + Cyxcc̄/b
]

+ T (xT sinϕTZ − yT cosϕTZ cosϕTY ) , (17)

where q̄ = 0.5ρV 2 is the dynamic pressure, V is the
aircraft velocity, ρ is the air density, S is the wing area,
c̄ is the mean aerodynamic chord, b is the wing span,
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Cx, Cy , and Cz are the aerodynamic force coefficients
along x, y, and z-body axes, respectively, Cl, Cm, and
Cn are the aerodynamic rolling, pitching, and yawing
moment coefficients, respectively, δa, δe, and δr are the
aileron, elevator, and rudder deflections, respectively, T
is the thrust force, ϕTY and ϕTZ are the engine pitch
and yaw settings, respectively, and xT , yT , and zT are
the coordinates of point of thrust application in the body
frame.

Kinematic equations:

φ̇ = p+ (q sinφ+ r cosφ) tan θ, (18)

θ̇ = q cosφ− r sinφ, (19)

ψ̇ = (q sinφ+ r cosφ) sec θ. (20)

Navigation equations:

ẋE = u cos θ cosψ + v (sinφ sin θ cosψ − cosφ (21)

= sinψ) + w (cosφ sin θ cosψ + sinφ sinψ) ,

ẏE = u cos θ sinψ + v (sinφ sin θ sinψ − cosφ (22)

= cosψ) + w (cosφ sin θ sinψ − sinφ cosψ) ,

ḣ = −żE = u cos θ− v sinφ cos θ−w cosφ cos θ, (23)

where xE , yE , and h are the aircraft position components
in the Earth-fixed frame. The angle of attack, α, the
sideslip angle, β, and the total speed, V , are calculated
from

α = tan−1 (w/u) , β = sin−1 (v/V ) , (24)

V =
√
u2 + v2 + w2. (25)

The throttle position, δT , is related to the thrust, T, as
follows (Pedro and Bigg, 2005):

T = (ρ/ρ0)
0.7 (

AV 2 +BV + C
)
δT /δTmax . (26)

The thrust component axes transformations from
engine to body axes are indicated in Fig. 2. The time
lag of the control surfaces was also modelled. This has
been modelled as transfer functions of

G (s) =
δi (s)
δci (s)

=
1

τcis+ 1
, (27)

where δci is the commanded control deflection, δi is the
actual control deflection, and τci is the time constant. The
time lag of 0.0495 s is assumed in the movement of the
aerodynamic control surfaces while the engine lag is taken
to be 0.5 s (Kung, 2008).

Examining the equations of motion as has been
described, it is observed that there is a coupling between

Fig. 2. Axes and transformation angles for thrust components.

the lateral-directional and longitudinal motions via Sx,
Sy , and Sz . The force in the X-direction is seen to
be dependent on the yaw acceleration and the square
of the yaw rate via the cog position. The Y -direction
force is a function of the roll acceleration due to the
centre of gravity being misaligned with the reference cog.
Similarly with the Z-direction force, a coupling exists
between the longitudinal and lateral-directional variables.
The moment equations also show a very interesting cross
coupling of terms related via the centre of gravity position.
The yaw and roll moments exhibit dependence on the rate
of change of vertical and forward speed, respectively. All
three moments have contributions from the mass of the
aircraft due to the cog having changed the position from
the reference.

The following simplifying assumptions have been
applied in order to obtain the specific flight refuelling
model:

• The rate of fuel used during the refuelling period was
negligible compared with the rate of the fuel inflow.

• The products of inertia of the aircraft remained
constant throughout the refuelling period.

• Only the variation of the cog along the x-axis is
considered:

xc �= 0, yc = zc = 0 ⇒ Sx �= 0, Sy = Sz = 0.
(28)

• The line of action of the thrust force is assumed to
be aligned in the plane of the aircraft cog, and thus
gives no contribution to the force in the y-direction
and z-direction; neither does it contribute to any of
the aerodynamic moments, i.e.,

ϕTY = ϕTZ = 0, yT = zT = 0. (29)
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• The gyroscopic effects of engine spinning rotors are
negligible, i.e.,

ITωT ≈ 0. (30)

• Using body axes, the plane Cxz is a plane of
symmetry i.e.,

Ixy = Iyz = 0. (31)

After applying the assumptions given by Eqns. (28)–(31),
the final dynamic equations of motion can be written as
follows:

m (u̇+ qw − rv) − Sx

(
q2 + r2

)
= −mg sin θ + T − q̄SCx, (32)

m (v̇ + ru− pw) + Sx (ṙ + qp)
= mg cos θ sinφ+ q̄SCy, (33)

m (ẇ + pv − qu) − Sx (q̇ − pr)
= mg cos θ cosφ+ q̄SCz, (34)

Ixṗ− (Iy − Iz) qr − Ixz (ṙ + pq) = q̄SbCl, (35)

Iy q̇−(Iz − Iz) rp−Ixz

(
r2 − p2

)−Sx (ẇ − uq + pv)
= −mgxc cos θ cosφ+ q̄Sc̄Cm, (36)

Iz ṙ− (Ix − Iy) pq− Ixz (ṗ− qr) +Sx (v̇ − wp+ ru)
= mgxc cos θ sinφ+ q̄SbCn. (37)

The kinematic and navigation equations remain
unchanged.

2.2. Flight refuelling model. For the UCAV
configuration of the F-16, there are two 600
gallon tanks on each wing (Eshel, 2004), as
depicted in Fig. 3. This gives a total mass
of 4290 kg of fuel. The fuelling rate for the
F-16 is 4572.12 kg of fuel in 7 minutes, that is,
10.886 kg/s (Koch, 2005). Based on this, the total time
taken to refuel the F-16 external tanks is 395 s. Note that,
before refuelling, the F-16 mass is 9299 kg (Steven and
Lewis, 1992). Figure 4 shows the cog of the aircraft and
the cog of the fuel added into the external tanks.

The new overall cog position is therefore given by
the following relation:

xcg =
mfuel × D

2 +ma × (1 − 0.35) c̄
mfuel +ma

, (38)

where mfuel is the fuel mass and 0.35c̄ refers to the
nominal cog position (see Fig. 4) while ma is the mass
of the aircraft before aerial refuelling.

Fig. 3. F-16 external fuel tank arrangement.

Fig. 4. Layout of the wing/external fuel tank.

2.3. Trim conditions. “An aircraft is in trimmed,
equilibrium flight when its velocity is fixed and its pitch
and roll angles are unchanging” (Stengel, 2004).

The trim problem is to find the control settings that
yield a steady flight condition. The objective is to set the
vector equation:

ẋd = fd (xd,u,w) , (39)

by a proper choice of control u subject to the constant
values of xd and disturbance w, where

xd = [u, v, w, p, q, r]T . (40)

The remaining components,

xk = [xE , yE, h, φ, θ, ψ]T , (41)

may be treated as fixed or free parameters.
The desired trim condition can be specified by

various combinations of velocity and angle components.
With conventional δe, δa, δr, and δT , a typical
specification would be V , γ = θ − α (flight path angle),
β, and ψ, θ, and φ would be free to take the necessary
values. The trim variables and attitude angles specify the
corresponding u, v, w, p, q, and r. Although they are free
variables, θ and φ do not change unless forced to do so,
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i.e., an adjustment rule is required. That rule is provided
by incorporating the free variables in the control vector,
hence u is (Stengel, 2004):

u = [δe, δa, δr, δT , θ, φ]T . (42)

3. Controller implementation

3.1. Nonlinear dynamic inversion. The equations of
motion as described by Eqns. (32)–(37) and (18)–(23) can
be written in a matrix form as

ẋ = F (x,u) = f (x) + g (x)u, (43)

y = h (x) , (44)

where f and g are nonlinear state and control distribution
functions, respectively. The state vector, x, the control
vector, u, and the output vector, y, are given as

x = [x1, . . . , x12]T

=

⎡
⎢⎢⎢⎣

(u, v, w)T

(p, q, r)T

(φ, θ, ψ)T

(xE , yE, h)T

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣
X1

X2

X3

X4

⎤
⎥⎥⎦ ∈ R

12, (45)

u = [u1, . . . , u4]T =
[

(δa, δe, δr)
T

δT

]
=
[

δ
δT

]
∈ R

4,

(46)
y = [y1, . . . , y4]T =

[
β, p, γ, q

]T ∈ R
4. (47)

Equation (43) can be rewritten as

Ẋ1 = F1 (V, α, β, p, q, r, φ, θ, h, δ, δT ) , (48)

Ẋ2 = F2 (V, α, β, p, q, r, h, δ, δT ) , (49)

Ẋ3 = F3 (p, q, r, φ, θ, ψ) , (50)

Ẋ4 = F4 (V, φ, θ, ψ) . (51)

The control law can be found from Eqn. (43) as

u = g−1 (x) [ẋ − f (x)] , (52)

under the assumption that g (x) is invertible for all values
of x. The aircraft is to be commanded to specified states,
x. But the rates of the state vector will be specified as
ẋcom. This is substituted in Eqn. (52) to obtain

u = g−1 (x) [ẋcom − f (x)] . (53)

It is important to note that perfect inversion is not
always possible. The assumption that g (x) may be
invertible for all x may not necessarily be true. When
there are more states than controls, inversion is not
possible. On the other hand, if g (x) is invertible and
small, the control inputs become large. Thus actuator
saturation must be taken into account.

Fig. 5. Overall dynamic inversion control block diagram.

Nonlinear dynamic inversion is implemented in the
present work by solving Eqn. (49) simultaneously for
the control inputs, (δa, δe, δr), needed to achieve the
commanded accelerations (Ito et al., 2002; Spaulding
et al., 2005; Pashikar et al., 2007):

[
δa δe δr

]T = K2

(
V, α, β, p, q, r, h, Ẋ2, δT

)
,

(54)
where the commanded accelerations, Ẋ2, are given by

Ẋ2 =
[
ṗ q̇ ṙ

]T =
[
ṗcom q̇com ṙcom

]T
.
(55)

Equation (49) is solved by inverting the plant dynamics
so that the deflections of the elevator, aileron and rudder
are commanded to match the desired dynamics. Full state
feedback with measurements u, v, w, p, q, r, φ, θ, and
ψ is assumed. The complete dynamic inversion scheme
is represented in Fig. 5. The command inverter block
changes displacement commands into rate commands so
that these may be directly implemented in the desired
dynamics block. The rate commands are mapped to the
desired acceleration terms using a proportional element
within the desired dynamics block. Inversion of the plant
dynamics takes place in the dynamic inversion block so
that the commanded control surface deflections can be
determined. For further details see the work of Ito et al.
(2002).

A separate speed controller similar to that of McLean
(1990) was adopted to determine thrust control, δT .
The system has two inputs: the aircraft longitudinal
acceleration, u̇, and its airspeed, u. The response of the
accelerometer is taken to be instantaneous as it is assumed
that the bandwidth of the accelerometer is much greater
than that of the entire aircraft system. The airspeed sensor
is approximated as a first order system. Also included
in the system is the time constant for the actuation
system of the jet engines (McLean, 1990). The values
of the accelerometer sensitivity, Ku̇, and the airspeed
controller’s proportional gain,Kc1 , will have to be chosen
after extensive testing.

3.2. RBFNN training and optimization. The
radial basis function has originated from techniques for
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Fig. 6. Structure of the radial basis function neural network.

performing exact interpolation of a set of data points in
a multi-dimensional space. This problem requires every
input vector to be mapped exactly onto the corresponding
target vector (Bishop, 1995; Haykin, 1999). A schematic
representing the network is shown in Fig. 6. The desired
inverse functions can be approximated by a general
RBFNN of the form

yk (x) = wk0 +
M∑

j=1

wkjφj (x) = wk0 +wT Φ (x) , (56)

where wk0 is the network bias, φj are the basis functions,
wkj are the output layer weights, M is the number of
neurons in the hidden layer, w = (w1, w2, . . . , wM ) is
the weight vector and Φ is the vector of basis functions.
We use the Gaussian basis functions in the present work
for the RBFNN, i.e.,

φj (x) = exp

(
−‖ x − μj ‖2

2σ2
j

)
, (57)

where μj and σj are the centre and width of the j-th kernel
unit, respectively, and x is the d-dimensional input vector
with elements xi (Bishop, 1995).

When training the RBFNN, initially, the parameters
governing the basis functions are determined (μj , σj )
using only the input data (xn). The basis functions are
then kept fixed while the second layer weights are found
in the second part of training. Since the basis functions are
fixed, the network is equivalent to a single layer network.

The weights can be optimized by the minimization of
a suitable error function. It is convenient to consider the
sum-of-squares error (Bishop, 1995; Haykin, 1999):

E =
1
2

∑
n

∑
k

{yk (xn) − tn
k}2

, (58)

where tn
k is the target value for output unit k when the

network is presented the input vector xn. The error

Fig. 7. Overall controller model.

function is a quadratic function of the weights, and so
its minimum can be found in terms of a set of linear
equations. The weights are determined by

ΦT ΦWT = ΦTT, (59)

where (T)nk = tn
k and (Φ)nj = φj (xn). The formal

solution to the weights is given by

WT = Φ∗T, (60)

where Φ∗ is the pseudo-inverse of Φ.

3.3. Combined NDI-RBFNN. The desired inverse
functions, K2, in Eqn. (54) can be approximated by a
neural network to obtain the neurocontroller architecture:

[δa, δe, δr]
T

= NN2

(
V, α, β, p, q, r, h, Ẋ2, δT

)

= ŵ02 + ŵT
2 Φ̂2

(
V, α, β, p, q, r, h, Ẋ2, δT

)
, (61)

where w02, w2, Φ2 represent estimates of the network
bias terms, the RBF weight vector and the basis functions
vector, respectively.

A global view of the controller can be seen in
Fig. 7. Here xd stands for the commanded states (input
to reference model) of the aircraft. This is compared with
the state variables in the feedback loop, and the error is
sent to the dynamic inversion neural network controller.
Manipulations are performed in the controller block
(command inversion, desired dynamics and nonlinear
inversion), and the input signal, u, is fed into the nonlinear
plant.

4. Numerical simulations and results

The equations of motion given in Section 2.1 were
modelled in the Matlab and Simulink environment. The
full nonlinear model was simulated, and then, the Jacobian
matrices were extracted. Once these were obtained,
the eigenvalues and other relevant parameters were
determined for various points in the refuelling envelope.
The modes of motion were identified across the refuelling
range. The F-16 aircraft was chosen for simulation. The
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Table 1. Geometrical, mass and inertial properties of the F-16.
Symbols Values Symbols Values

Ix 12874.84 kg m2 b 9.14 m
Iy 75673.58 kg m2 c̄ 3.45 m
Iz 85554.4 kg m2 m 9300 kg
Ixz 1331.41 kg m2 S 27.87 m2

Ixy 0 kg m2 Iyz 0 kg m2

basic geometrical, mass and inertial properties of this
aircraft are presented in Table 1 (Morelli, 1998).

The aircraft model was validated by comparing its
trim conditions for two cruise cases with relevant and
compatible data from the work of Steven and Lewis
(1992). The aircraft cruise speed in both cases was 153
m/s and the altitude was 0 m, i.e., at sea level. The
distinguishing factor between the two cases was the cog
position, the first case having a cog position of 0.3c̄, while
the second cog position was 0.38c̄. The validation data are
presented in Table 2.

Table 2 shows that the results of the Matlab
simulation and the cited values are the same up to three
decimal places in some cases. Some of the values (viz.
the sideslip angle, aileron and rudder deflections) are
extremely small, and can be considered to be zero. Thus,
the model is accurate in estimating the trim conditions.

The eigenvalues were found and compared for the
single case of the aircraft in cruise at a speed of 153 m/s
with a forward cog of 0.3c̄. The eigenvalues, damping
coefficients, and the periods are given in Table 3. The
eigenvalues are compared for all the modes, while the
damping coefficients and the periods are presented for
only short-period, phugoid and the Dutch roll modes. The
comparison shows that the accuracy for the short period,
Dutch roll and roll modes lie to two decimal places at

Table 2. Comparison of trimmed aircraft conditions: model val-
idation.

cog= 0.3c̄ cog= 0.38c̄
Simulated Steven Simulated Steven

Results & Lewis Results & Lewis

V 153 153 153 153

α 2.26 2.26 2.03 2.03

β −6.2e−15 2.4e−7 3.3e−11 1.8e−8

φ 0 0 0 0

θ 2.26 2.26 2.03 2.03

p 0 0 0 0

q 0 0 0 0

r 0 0 0 0

δT 0.149 0.149 0.133 0.133

δe −1.93 −1.93 −0.056 −0.056

δa 1.7e−15 −7e−8 −9.4e−12 −5.1e−7

δr −1.7e−14 8.3e−7 8.1e−11 4.3e−6

Table 3. Comparison of eigenvalues, damping coefficients, and
periods.

Mode types Simulated results
λ ζ T (s)

Short period −1.29 ± 1.27i 0.7 4.96

Phugoid −0.0097 ± 0.068i 0.15 88.35

Dutch roll −0.43 ± 3.25i 0.13 1.93

Spiral −0.0021 − −
Roll −3.62 − −

Mode types Steven & Lewis
λ ζ T (s)

Short period −1.29 ± 1.49i 0.6 4.2

Phugoid −0.0087 ± 0.074i 0.12 84.9

Dutch roll −0.44 ± 3.22i 0.14 1.95

Spiral −0.0013 − −
Roll −3.6 − −

most, while the spiral and the Phugoid modes are in the
same region of values. The Dutch roll mode is the most
accurate, and the Phugoid is the least accurate in terms of
the damping coefficients and periods. The discrepancies
are not large enough to cause the model to be inaccurate,
and the model will be deemed sufficient to analyse the
behaviour of the F-16 accurately.

Figure 8 shows the four cases chosen to be analysed
during the flight refuelling process. Applying Eqn. (38),
the cog position travel was found to have a parabolic
variation with mass. The initial mass, when fuelling
starts, was taken as 9298.6 kg with the cog at 0.35c̄. The
maximum cog position was found to be 0.406c̄.

The Dutch roll movement in Table 4 shows that, as
the mass increases, the mode gets more stable. The mode
becomes less oscillatory until the cog passes the turning
point and starts to decrease again, then the mode gets

Fig. 8. Cases considered in refuelling inherent behaviour analy-
sis.
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Table 4. Eigenvalues changes during refuelling.
Case 1

Mode types Eigenvalues

Longitudinal mode −1;−0.0014

Phugoid −0.0193 ± 0.118i

Dutch roll −0.271 ± 2.45i

Spiral −0.00491

Roll −1.8

Case 2

Mode types Eigenvalues

Longitudinal mode −1;−0.0015

Phugoid −0.00855 ± 0.1i

Dutch roll −0.278 ± 2.37i

Spiral −0.00536

Roll −2.18

Case 3

Mode types Eigenvalues

Longitudinal mode −1;−0.0015

Phugoid −0.0083 ± 0.093i

Dutch roll −0.287 ± 2.38i

Spiral −0.00488

Roll −2.21

Case 4

Mode types Eigenvalues

Longitudinal mode −1;−0.0015

Phugoid −0.122 ± 0.056i

Dutch roll −0.347 ± 2.67i

Spiral −0.00172

Roll −1.5

more oscillatory. The Phugoid mode is less stable as
the mass is increased until the cog position reaches the
turning point and starts to decrease again, then the mode
gets more stable. The mode becomes more oscillatory as
the aircraft mass increases. The Short Period Oscillatory
(SPO) mode decomposed into two first-order modes: one
highly damped and the other very poorly damped, and
remains largely unchanged throughout the flight refuelling
process. The decomposition of SPO can be attributed to
the addition of mass into the system, as well as an aft
cog. When mass is introduced steadily and the cog moves
further aft, the results show that the longitudinal dynamics
are affected.

Three RBFNNs were set up in Matlab using the
Netlab Toolbox developed by Nabney (2002). One
NN each was required for determining the commanded
elevator, aileron and rudder deflections. The individual
networks consisted of 75 neurons and were trained over
5000 cycles each. The training data was generated in
Simulink using a random number generator set within the
limits of the state and control variables (see Table 5).

The networks’ characteristics are summarized in
Table 6. The weights and centres are large arrays and are

Table 5. Limits of the state and control variables used in
RBFNN training.

Variables Lower limits Upper limits

α (deg) −10 45

β (deg) −3 3

p (deg/s) −28.65 28.65

q (deg/s) −28.65 28.65

r (deg/s) −28.65 28.65

δT (-) 0 1

δe (deg) −25 25

δa (deg) −21.5 21.5

δr (deg) −30 30

Fig. 9. Percentage error in prediction of commanded elevator
deflection.

not reported here.
The networks were tested after training and

predictions were compared with the actual values. The
neural network errors are plotted in Figs. 9–11 for the
elevator, aileron and rudder, respectively. The elevator
prediction was the most accurate. The error in prediction
of the elevator deflection reached a maximum of just over
1%. However, for the aileron and rudder, excessively high
errors were found in certain instances. Errors of 6000% in
the aileron prediction and 200% in the rudder prediction
can be considered as single outliers. The average of the
errors in the aileron prediction was 5.8% and in the rudder
prediction 0.5 %. This means that the majority of the
results are reasonable.

Before the neural network results can be analysed,

Table 6. Network characteristics obtained after RBFNN train-
ing.

Netlab Toolbox Description Values
variables

actfn hidden unit ‘Gaussian’
activation function

outfn output error ‘linear’
function

nwts total number of 826
weights and biases

c centres 75 × 9 array
w1 squared widths 1 × 75 array
w2 second layer 75 × 1 array

weight matrix
b2 second layer 6138.4

bias vector
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the conventional NDI (without an NN for plant inversion)
controller results are presented. Figure 12 shows the
UCAV state variables over the refuelling period.

The aircraft angle of attack is not constant, nor can
the controller maintain the aircraft at a constant altitude
and speed during the refuelling period. No change is
observed in the pitch rate, sideslip angle, and roll angle.
The commanded control surface deflections are shown in
Fig. 13. These are found to be very small and insufficient
to keep the aircraft in steady flight.

The time domain results presented show that the
performance of this controller is inadequate. This can
be attributed to the use of the aerodynamic model
uncertainties during the flight refuelling process. This led
to some inversion error. The NDI controller coupled with
the NN shows excellent results. All states are maintained
as constant during the 400 seconds duration of the flight
refuelling (see Fig. 14). The elevator deflection required
to maintain steady flight is shown in Fig. 15. This
variation is well within the physical limits of the elevator
actuator. The results here can be attributed to the low
inversion error of the trained neural network. The results
also show that the controller with the NN is less sensitive
to the aerodynamic model uncertainties during the flight
refuelling process. The NN is trained using the model of
Ito et al. (2002) and is implicitly used in this controller.

This result compared to the basic NDI controller with
no NN ties up with the conclusions of Li et al. (2001). The
neural controller was able to overcome modelling errors
which posed a challenge to the NDI controller without the
NN.

The results of the lateral controller are promising.
The sideslip angle shown in Fig. 16 does not stay
steady—a small deviation is observed. The sideslip angle
quickly steadies to a fixed value thereafter. However, all
other states are steady throughout the refuelling. The
aileron and rudder deflections are shown in Fig. 17. These
are within the physical limits. The aileron deflection was
observed to be unaffected by the refuelling process/mass
increase of the aircraft. The rudder deflection followed
a similar trend to that of the elevator in Fig. 15. It is
also observed that the commanded aileron and rudder
deflections are non zero. This is to maintain the sideslip
angle that was observed in Fig. 16. The adequate
performance of the lateral neural controller over the plain
NDI controller can also be attributed to the addition of the

Fig. 10. Percentage error in prediction of commanded aileron
deflection.

Fig. 11. Percentage error in prediction of commanded rudder
deflection.

Fig. 13. Commanded control surface deflections: NDI without
an NN.

Fig. 15. Time history of the elevator deflection for the longitu-
dinal NDI-based neurocontroller.

RBF network, which is less sensitive to model errors as
described earlier.

5. Conclusion

For the aerial-refuelling model, a nonlinear
six-degree-of-freedom aircraft model including the
centre of gravity movement during refuelling was built.
Published data verified the accuracy of the aircraft model.
When refuelling, the centre of gravity variation with
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Fig. 12. Time history of controlled state variables for the NDI-based controller without an NN.

Fig. 14. Time history of controlled state variables for the longitudinal NDI-based neurocontroller.
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Fig. 16. Time history of controlled state variables for the lateral-directional NDI-based neurocontroller.

Fig. 17. Time history of the aileron and rudder deflections for the lateral-directional NDI-based neurocontroller.

increasing mass was found to be parabolic. Modal
analysis of the unmanned vehicle during refuelling was
done. For the Dutch roll mode, as refuelling occurs, the
mode is initially less oscillatory, but as the mass increases
further, the cog starts to move forward again and the
Dutch roll mode becomes more oscillatory.

Controllers were designed to maintain the aircraft
path in the straight leg of a racetrack manoeuvre. A

dynamic inversion controller with no neural network was
used initially. The performance of this controller was
not satisfactory. This is attributed to the difference in
aerodynamic models used to evaluate the aerodynamic
forces in the six-degree-of-freedom model and in the
inversion. This controller was sensitive to model
uncertainties.

When training the dynamic inversion controller with
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the radial basis function network, it was found that
the error in the elevator prediction was the lowest.
The longitudinal nonlinear dynamic inversion-based
neurocontroller gave excellent results. The control surface
deflections were within the physical limits of the aircraft.
The lateral-directional nonlinear dynamic inversion-based
neurocontroller showed promising results. However,
steady flight was not able to be maintained initially.
The results were dependent on the training of the neural
network via the number of neurons used. Finally, it can be
concluded that a nonlinear dynamic inversion controller
with a neural network can be applied to control an
unmanned combat aerial vehicle during aerial refuelling.

As this field of study has not yet been exhausted,
many avenues for future work are still available. Other
neural network architectures (other than radial basis
functions) can be used. This can extend to the well
known multi-layered perceptron, where results using this,
or any other architecture, can be compared with existing
radial basis function based results. The use of dynamic or
recurrent neural networks can be explored. Moving away
from the neural implementation, recommendations can be
made with respect to modelling sources of uncertainty,
thereby giving robust and reliable simulation results.
Further considering robustness and reliability applied to
modelling and simulation, aircraft parameters (such as
inertia/mass properties, trimmed state variables) can be
statistically varied and subjected to Monte Carlo analysis.
The changing inertia tensor and aerodynamic effects of the
tanker on the receiver can also be added to the dynamic
model. Another area where this work could be improved
is to explore the possibility of a combined longitudinal and
lateral-directional controller.
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