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The paper presents selected aspects of evolutionary sets of safe ship trajectories—a method which applies evolutionary al-
gorithms and some of the assumptions of game theory to solving ship encounter situations. For given positions and motion
parameters of the ships, the method finds a near optimal set of safe trajectories of all ships involved in an encounter. The
method works in real time and the solutions must be returned within one minute, which enforces speeding up the optimi-
sation process. During the development of the method the authors tested various problem-dedicated crossover operators to
obtain the best performance. The results of that research are given here. The paper includes a detailed description of these
operators as well as statistical simulation results and examples of experiment results.
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1. Introduction

There is a number of approaches to solving multi-ship
encounter situations. One of the most successful and
flexible methods is searching for the ship trajectory by
evolutionary algorithms. The method has been first
proposed by Śmierzchalski and Michalewicz (2000),
and since then similar approaches have been attempted
by other researchers: the evolutionary method may be
applied for finding an optimal path (Zeng, 2003) as well
as the optimal collision avoidance manoeuvre (Tsou et al.,
2010). In short, these methods use genetic or evolutionary
algorithms, which, for a given set of pre-determined
input trajectories, find a solution that is optimal according
to a given fitness function. A similar approach based
on Ant Colony Optimisation (ACO) of course alteration
manoeuvres was presented by Tsou and Hsueh (2010).
Apart from these, automatic collision avoidance of ships
using an artificial potential field and speed vector (Xue
et al., 2009) is also employed, which is an adaptation
of the Potential Field Method (PFM) widely used for
navigating mobile robots (Pradhan et al., 2006). The ACO
and PFM based methods face the same limitations as the
general evolutionary approach mentioned before, that is,

focusing on one’s own ship only and assuming that target
motion parameters not to change.

The authors have proposed a new approach where,
instead of finding an optimal ship trajectory for the
unchanged courses and speeds of targets, an optimal set
of safe trajectories of all ships involved in an encounter
is sought. The method is called evolutionary sets of safe
trajectories and its earlier version has been presented by
one of the authors (Szłapczyński, 2011). Optimising a
set of trajectories instead of a single trajectory drastically
magnifies the searching space. At the same time,
working in a restricted water environment and trying
to obey the international collision avoidance rules (also
known as COLREGS) produces multiple constraints,
which make it more difficult to find any acceptable
solution. All these factors contribute to an atypical
optimisation problem, often unsolvable by pure genetic
algorithms in a given time, strictly limited because of
operating while the ships are approaching each other or
the landmasses. To meet all the requirements, the authors
had to apply a number of special problem-dedicated
operators, modify the traditional evolutionary order of
operations and experiments with crossover methods. The
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paper presents a description and discussion of the choices
and modifications made in the crossover phase of the
evolutionary cycle, as well as its implications for other
phases.

The rest of the paper is organised as follows. In the
next section the task of finding sets of safe trajectories
is presented as an optimisation problem. In Section 3
the evaluation of individuals is described, including its
consequences for an evolutionary cycle. The investigated
crossover operators are presented in Section 4 and their
test results and conclusions drawn from the experiments
in Section 5. Finally, a summary is provided in Section 6.

2. Optimisation problem

For a given multi-ship encounter, a set of safe ship
trajectories which minimises an average way loss is
sought. It is assumed that we are given the following data:

• stationary constraints (defined by a map including
navigational obstacles),

• positions, courses and speeds of all ships involved,

• ship domain defined for each ship considered (a
domain is an area around the ship free from other
ships, obstacles, etc.),

• times necessary for accepting and executing the
proposed manoeuvres.

Knowing all the above mentioned parameters, the
goal is to find a set of trajectories which minimises the
average way loss spent on manoeuvring, while fulfilling
the following conditions:

• key COLREGS rules (Rules 13–17) are obeyed,

• none of the stationary constraints is violated,

• none of the ship domains is violated,

• the minimal acceptable course alteration should not
be too small (the minimal alteration of 15 degrees has
been assumed here),

• the maximal acceptable course alteration should not
be too large (the maximal alteration of 60 degrees has
been assumed here),

• speed alteration is not to be applied unless necessary
(collision cannot be avoided by course alteration up
to 60 degrees),

• a ship only manoeuvres when obliged to,

• in the case of head-on and crossing encounters,
manoeuvres to starboard are favoured over
manoeuvres to port board.

The conditions are mostly either imposed by
COLREGS (Cockroft and Lameijer, 1993) and good
marine practise or by economics. In particular, course
alterations less than 15 degrees might be misleading for
ARPA systems (problems with detection), and course
alterations larger than 60 degrees are inefficient. Also,
ships should only manoeuvre when necessary, since each
manoeuvre makes it harder to track its motion parameters
for the ARPA systems of other ships. An additional
computational constraint results from the fact that due
to the optimisation being performed in real time (with
the ships approaching each other and the obstacles), the
solution should be returned within a short time specified
by the operator of the system (by default, one minute is
assumed).

3. Evaluation of individuals and its
consequences

In an evolutionary method all individuals (here sets of
trajectories) are evaluated by a specially designed fitness
function, which should reflect optimisation criteria and
constraints (Michalewicz and Fogel, 2004). In this section
we show how this fitness function is formulated.

3.1. Basic criterion: Minimizing way loss. The basic
criterion is the economic one—minimizing way losses
of trajectories in a set. For each of the trajectories, a
trajectory economy factor, tef , is computed according to
the following formula:

tef i =
tr lengthi − tr way lossi

tr lengthi

, (1)

where: i is the index of the current ship [/], tef is the
economy factor of the i-th trajectory [/], tr length is the
total length of the i-th ship’s trajectory [nautical miles],
tr way loss is the total way loss of the i-th ship’s trajectory
[nautical miles] computed as a difference between the
trajectory length and the length of a segment joining the
trajectory’s start and endpoints. As can be seen, tef is
always a number from the interval (0,1].

3.2. Detecting and penalizing static constraint vi-
olations. The method uses a vector map of a given
area. The authors have decided not to process the vector
map directly for constraint violation detection (due to an
extremely high time complexity of such an approach), but
to use the vector map for generating the bitmap of an area.
Although it is a time-consuming operation, fortunately,
it is enough to generate such bitmaps off-line and only
once for each area. Then, when the method runs in real
time, each bitmap cell, traversed by the trajectory of a
ship, is read and checked for belonging to the landmass
or a safety isobate. For a bitmap whose detail level
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reflects that of a given vector map, the computational time
would be proportional to the number of traversed cells and
thus acceptable. This approach is also flexible in terms
of implementation of bathymetry: for a cell containing
information on the water depth, it is easy to check whether
or not it is passable for a particular ship. It is also possible
to apply the bitmap strategy for ECDIS software systems.
A bitmap for the area of interest only (not the whole
map) would be generated on-line prior to the land crossing
checkup. An example of such a bitmap-based ECDIS
solution is NaviWeather by NavSim with weather routing
software. A description of the software is intended to be
published by Szłapczyńska (2012).

After the trajectory economy factor (1) has
been computed, the static constraints are handled by
introducing penalties for violating them. For each
trajectory its static constraints factor, scf, is computed.
The static constraints are always valid and their violations
must be avoided at all cost. Therefore, penalties applied
here are the most severe—hence the square in the
following formula:

scf i =
(

tr lengthi − tr cross lengthi

tr lengthi

)2

, (2)

where scf is the static constraints violation factor of the
i-th ship’s trajectory [/], tr cross length is the total length
of the parts of the i-th ship’s trajectory which violate
stationary constraints [nautical miles].

The static constraint factor is a number from the
interval [0, 1], where the ‘1’ value means no static
constraint violation (no landmasses or other obstacles
are crossed) and the ‘0’ value is for trajectories crossing
landmasses on their whole length.

3.3. Detecting and penalising collisions with
other ships. The algorithm for detecting ship-to-ship
collisions is as follows. Each ship’s trajectory is checked
against those of all other ships. For each pair of ships,
the start and end times of each trajectory’s segments are
computed. If two segments of the two trajectories overlap
in time, they are checked for geometrical crossing. In the
case of a crossing, a special collision risk measure—the
approach factor value (Szłapczyński, 2006) is computed.
Then, if the approach factor value indicates a collision,
the type of encounter (head-on, crossing or overtaking)
is determined on the basis of the ships’ courses, and it is
decided which ship is to give way (both ships in case of
a head-on encounter). The collision is only registered for
the give way ship and the information on the collision is
stored in the corresponding trajectory data structure.

Analogically to the static constraint factor, the
collision avoidance factor, caf, is computed to reflect the
ship’s collisions with all other privileged ships as shown

by (3):

caf i =
n∏

j=1,j �=i

(
min

(
f min

ij
, 1

))
, (3)

where caf is the collision avoidance factor of the i-th
ship’s trajectory [/], n is the number of ships [/], j is the
index of a target ship [/], fmin is the approach factor value
(Szłapczyński, 2006) for an encounter of ships i and j; if
the i-th ship is the privileged one, the potential collision
is ignored and the approach factor value is equal to ‘1’ by
definition. [/]

The collision avoidance factor is a number from the
interval [0, 1] where ‘1’ means no ship domain violation
and ‘0’ means a crash with at least one of the targets.

3.4. Detecting and penalising COLREGS violations.
The three most common types of COLREGS violations
are as follows:

• a ship does not give way when it should,

• a ship gives way when it should not (making
unexpected and misleading manoeuvres),

• a ship manoeuvres to port board when it should
manoeuvre to starboard.

Each of these three situations may happen on either
open or restricted waters, which gives us a total of six
cases to handle. The difficulty with deciding whether
or not a ship has acted lawfully lies in the nature of
evolutionary algorithms as well as in the nature of the
problem itself: COLREGS specify only the procedures
for ship-to-ship encounters. When looking at a set of ship
trajectories for a multi-target encounter, it is sometimes
impossible to tell what was the reason for a particular
manoeuvre: which ship was given way intentionally, and
which one benefited from it only accidentally. Therefore
the final COLREGS violations detection rules applied in
the method include the following.

1. On open waters:

(a) if a ship is not obliged to give way to any other
ship, any manoeuvre it performs is registered as
a COLREGS violation,

(b) if a ship is obliged to give way and does
not perform a manoeuvre, it is registered as a
COLREGS violation,

(c) all manoeuvres to port board are registered as
COLREGS violations.

2. On restricted waters: Here, as explained before,
every trajectory node, which is a part of a manoeuvre,
contains information on the reason why this
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particular node has been inserted or shifted—land or
other stationary obstacle avoidance, target avoidance
or accidental manoeuvre generated by evolutionary
mechanisms. Based on this, COLREGS violations
are registered as follows:

(a) if a ship does not initially have to give way to
any target and its first manoeuvre has a reason
other than static constraint violation avoidance,
it is registered as a COLREGS violation,

(b) any manoeuvre to port board for a reason
other than static constraint violation avoidance
is registered as a COLREGS violation.

The COLREGS violations are secondary to static
constraint violations and to collisions with other ships,
and therefore the authors have decided to penalize
them moderately, to make sure that constraints from
the previous two points are met first. The COLREGS
compliance factor, ccfi is computed according to the
following formula:

ccf i = 1 −
m∑

k=1

[COLREGS violation penaltyk], (4)

where ccf is the COLREGS violation factor of the i-th
ship’s trajectory [/], m is the number of COLREGS
violations registered for the current ship [/], k is the index
of a registered violation [/], COLREGS violation penalty
is the penalty for the k-th of the registered COLREGS
violation [/].

The penalty values for all registered COLREGS
violations are configurable in the method and are set to
0.05 by default.

3.5. Fitness function value. Once all aforementioned
factors have been computed, the fitness function value
is calculated. The function is normalised and has
been designed to keep a relatively high resolution of
evaluation: minor stationary constraints violations are
penalised similarly as major collisions with other ships
and minor collisions with other ships are penalised
similarly as multiple COLREGS violations. The final
fitness function is as follows:

fitness =
1
n

n∑
i=1

tr fitnessi, (5)

where

tr fitnessi = tef i· scf i· caf i· ccf i. (6)

The final fitness function value assigned to an
individual is an arithmetical average of fitness function

values computed for all trajectories. It is disputable
whether all trajectories should have the same impact on
the final fitness function value (as is done here) or the
trajectory fitness function values should be taken with
weights proportional to the trajectory lengths. When
combined with the formula for the trajectory economy
factor, the current approach means that we are trying to
minimise the average relative way loss computed over
all trajectories, instead of the total absolute way loss
(with weights being used). However, experiments have
shown that minimising the total absolute way loss leads
to discrimination of ships whose basic trajectories are
shorter and to their large relative way losses.

3.6. Changes in the evolutionary cycle. Due to
the complex violation detection process, the evaluation
is the most time-consuming phase of the evolutionary
algorithm, with the computational times of other stages
being relatively insignificant. Combined with the fact
that the evolutionary process is executed in real time,
this seriously limits the number of generations we can
afford. For the most complex scenarios including several
ships of various dynamics, complex ship domain models
and restricted waters with multiple obstacles, only up
to 200 generations can be processed for a population of
100 members, even if more generations could cause a
further increase in the fitness function values. Thus, an
obvious conclusion is that it is necessary to achieve as
much progress as possible in each of the generations.

The authors have done this by investing more
computational time in specialised operators which fix
constraint violations (Szłapczyński and Szłapczyńska,
2011). However, these operators need the violations
to be detected and registered first, which means that
this phase must be preceded by evaluation. Therefore
a new evolutionary scheme has been introduced, which
is shown in Fig. 1(a). The obvious disadvantage of
the modified evolutionary algorithm shown above is
doubling the time-costly evaluation phase. It would
be performed first after reproduction and then again
after specialised operators/mutation phase. Doubling
the evaluation phase in a cycle increases the total
computational time approximately 1.5 times (the extra
evaluation after reproduction is done for a population half
the size of the one after mutation).

To shorten the process, the authors have decided to
try a radical change in the order of operations within the
algorithm. The reproduction phase and the specialised
operations mutation phase have switched places so
that the evaluation could be done only once for each
cycle—directly preceding succession. The result is shown
in Fig. 1(b). Unfortunately, using this scheme means that
the crossover has to be limited to operators which do not
need evaluation data. Thus we are facing the question
whether it is better to use an extended set of crossover
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(a) (b)

Fig. 1. Changed evolutionary cycle: with a doubled evaluation (a), with a single evaluation and an amended order of evolutionary
operations (b).

operators (at the cost of doubling the evaluation phase)
or a limited set of operators (and have a single evaluation
phase). This issue is addressed in Section 4.2.

4. Crossover operators

The majority of contemporary AI systems using
Evolutionary Algorithms (EAs) are hybrid ones. EAs may
be successfully combined with neural networks (Styrcz
et al., 2011), reinforcement learning (Krawiec et al.,
2011), ensemble machine learning methods (Troć and
Unold, 2010) or heuristics which reduce the search space
(Belter and Skrzypczyński, 2010). Hybrid approaches
may also be utilised at various stages of EAs, including
crossover (Jóźwiak and Postula, 2002).

4.1. Crossover in EAs. Eiben and Schoenauer (2002)
summarise that in GAs crossover is considered to be
the essential variation operator while mutation is only a
background necessity. On the other hand, in the past many
researchers did not use any crossover at all. Today the
general opinion is that the answer is problem-dependent.
If there exists an appropriate crossover for the problem
at hand, it should be tried (otherwise mutation alone
might be sufficient to find good solutions and the resulting
algorithm can still be called an evolutionary algorithm).
Crossover operators can be divided into categories in
several ways. The most commonly used classifications
are

• one point crossover and multi-point (including
two-point) crossover,

• intermediate recombination and discrete
recombination.

One-point crossover is strongly supported by the
so-called building block hypothesis. It states (Beyera
et al., 2002) that such crossover often allows putting
together good parts of one parental bit string with other
good parts of the second parent delivering an even better
combination of both in an offspring. In two-point
crossover, the bit strings of two parents are cut at two
random positions (instead of one) and put together by
exchanging the innermost parts between the parents, thus
creating two offspring at a time. A disadvantage of
two-point crossover (Jóźwiak and Postula, 2002) is a high
chance of producing children identical or very similar
to their parents by converging populations (i.e., if the
parent chromosomes are similar to each other). This
may result in premature convergence of the algorithm.
However, multi-point crossover has been successfully
used in problems where individuals are complex and may
be easily decomposed, e.g., the spanning tree problem
(Julstrom, 2004).

In the case of intermediate recombination (Beyera
et al., 2002) the average of the parental variable
values is transferred to the offspring, whereas discrete
recombination chooses each component from one of the
parents at random. No checking is imposed whether the
parents involved are all different, and there is no mating
selection—all parents have the same chance to be chosen.

Apart from the basic types, many researchers apply
more customized crossover, an example of which is
the merge operator (Jóźwiak and Postula, 2002)—a
deterministic crossover operator which, instead of
combining two population members at random, tries to
combine two population members in such a way that
their good features are combined and the bad ones are
eliminated. The choice of crossover operators has an
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impact on faster or slower convergence (Kowalczuk and
Białaszewski, 2006) and therefore sometimes, e.g., in
parallel genetic algorithms for continuous optimisation
(Alba et al., 2004), special crossover operators promoting
exploration or exploitation are introduced.

Additionally, in EAs, elements of traditional
GA crossover operators (which do not express the
characteristics of the selected individuals within
a population) may be combined with Estimation
of Distribution Algorithms (EDAs), where these
characteristics are taken into account by considering the
interdependencies between the different variables that
form an individual (Miquelez et al., 2004). For selected
problems, it is also possible to design crossover operators
that guarantee generating legal offspring, e.g., for job
scheduling problems (Mesghouni et al., 2004). Clearly,
the choice of crossover operators to be applied (or the
lack of them) may be essential for the results returned by
EAs and therefore this issue should be investigated for
the problem at hand.

4.2. Crossover in the ESoSST method. Contrary to
genetic algorithms, where the individuals are coded (e.g.,
binary), here the individuals are implemented directly
using objects, structures and arrays of real numbers. In the
crossover phase, pairs of individuals (parents) are crossed
to generate new individuals (offspring).

4.2.1. Mating selection: Methods and probabili-
ties. Four types of parent selection have been taken into
account by the authors, with the total probability of being
selected as a parent established as follows.

(a) Threshold:

Pk =

{
0 if fitnessk < threshold ,

1 if fitnessk ≥ threshold .
(7)

(b) Random proportional (roulette wheel):

Pk = 1 −

⎛
⎜⎜⎜⎜⎝1 − fitnessk

N∑
i=1

[fitnessi]

⎞
⎟⎟⎟⎟⎠

n

. (8)

(c) Modified random proportional (roulette wheel with
scaled fitness function values):

Pk = 1 −

⎛
⎜⎜⎜⎜⎝1 − fitnessk − min fitness

N∑
i=1

[fitnessi] − min fitness

⎞
⎟⎟⎟⎟⎠

n

,

(9)

where min fitness is the minimal fitness function
value over all population. The uniform version is

Pk = 1 −
(

1 − 1
n

)n

, (10)

where n is the population size.

All four types of mating selection were tested
and the differences in results for various methods were
insignificant. Therefore uniform selection was chosen,
which does not need the evaluation data and enables the
authors to apply the evolutionary scheme from Fig. 2(b).

4.2.2. Crossover operators applied. Four types of
crossover operators have been designed and implemented:

(a) fitness-based trajectory exchange: an offspring
inherits whole trajectories from both parents and
the higher-valued of the two possible trajectories is
chosen (Fig. 2),

(b) random trajectory exchange: an offspring inherits
whole trajectories from both parents and the choice
of a particular trajectory (from the first or the second
parent) is done randomly (again Fig. 2),

(c) one-point trajectory crossover: each of the trajectories
of the offspring is a crossover of the appropriate
trajectories of the parents (Fig. 3),

(d) intermediate recombination of nodes: each node of a
trajectory is a crossover of the nodes in the parents’
trajectories (Fig. 4).

Another possible operator, multi-point trajectory
crossover, has not been applied due to relatively
short trajectories and the high probability of generating
identical offspring. Of the operators applied, the first
one (fitness-based trajectory exchange) was designed to
combine the best features of two parent individuals and
it can be classified as the “merge operator” mentioned
in the previous section. It is the only one of the
operators applied in the paper which should statistically
produce the offspring higher valued than the parents.
Unfortunately, using this operator has to be preceded
by the evaluation phase, which enforces applying the
evolutionary scheme with a doubled evaluation phase,
cf. Fig. 1(a). Therefore, during experiments, it has
been tested whether its advantages compensate for the
additional computational time, which results in a reduced
number of possible generations.

As for the other operators, there is no guarantee
or even a high probability that offspring of two highly
valued parents will be highly valued itself. For example,
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in the case of the random trajectory exchange (b),
the resulting trajectories may not fit other trajectories
(collisions between ships). Therefore, to make sure that
the best individuals will not be lost (the parents might
be better fitted than their offspring), the overlapping
populations are used. As a result, reproduction doubles
the temporary population size.

Fig. 2. Crossover inheriting entire trajectories utilised by the
fitness-based trajectory exchange and the random trajec-
tory exchange.

Fig. 3. Crossover of trajectories utilised by one-point trajectory
crossover.

Fig. 4. Crossover of nodes utilised by intermediate recombina-
tion of nodes.

5. Comparison of crossover approaches and
customized operators

5.1. Compared approaches. The simulation
experiments were aimed at comparing competitive
versions of the method, namely, those having different
combinations of crossover operators and different
evolutionary schemes applied. The basic test parameters
are gathered in Table 1. The 91 randomly generated test
scenarios cover open and restricted waters, all typical
combinations of courses with the number of ships ranging
from 2 to 6.

Table 1. Test parameters.
Test scenarios 91
Runs 10
Generations 100 or 200
Population size 100
Basic mutation probability 0.05
Specialised operators probability 1.00

Test results for various settings are provided in
Tables 2 and 3. For each of the sets of crossover
operators considered both evolutionary schemes (with
single evaluation as in Fig. 1(a) and with doubled
evaluation as in Fig. 1(b)) were tried. It is assumed that
the method would normally run for 100 generations, but
the tests were also run for 200 generations to find out what
further progress is possible.

5.2. Experiments results and conclusions. The
results led the authors to the following conclusions:

1. The differences in average fitness function values
between the tested versions are insignificant when
compared with the differences obtained when testing
the method with various fixing operators and
mutation settings (Szłapczyński and Szłapczyńska,
2011). When combined with generally high fitness
function values, this suggests that the designed
crossover operators (random trajectory exchange,
one-point trajectory crossover and intermediate
recombination of nodes) are effective enough and it
is unlikely to improve the method’s effectiveness by
experimenting with new ones.

2. The extended set of crossover operators
(fitness-based trajectory exchange, random trajectory
exchange, one-point trajectory crossover and
intermediate recombination of nodes) causes only
a minor increase in the fitness function and is not
worth the additional computational time spent on
the extra evaluation phase preceding the crossover
phase.
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Table 2. Statistical test results obtained for the method with a single evaluation phase and mutation/fixing operators preceding crossover
(Fig. 1(a)).

Crossover operators used
Number of
generations

Average fitness
function values

Random trajectory exchange and one-point trajectory crossover
100 0.9756
200 0.9764

Random trajectory exchange, one-point trajectory crossover
and intermediate recombination of nodes

100 0.9768
200 0.9773

Table 3. Statistical test results obtained for the method with the evaluation phase doubled and crossover preceding mutation/fixing
operators (Fig. 1(b)).

Crossover operators used
Number of
generations

Average fitness
function values

Random trajectory exchange and one-point trajectory crossover
100 0.9743
200 0.9749

Random trajectory exchange, one-point trajectory crossover and intermediate
recombination of nodes

100 0.9754
200 0.9762

Fitness-based trajectory exchange, random trajectory exchange, one-point tra-
jectory crossover and intermediate recombination of nodes

100 0.9770
200 0.9772

3. The set of three operators causes minor progress
when compared with a set of two operators only,
but it is obtained at no additional cost (the same
computational time), so it might be considered an
improvement over the basic set.

4. The experimental evolutionary scheme with
mutation and fixing operators preceding the
crossover phase (Fig. 1(b)) returned better average
results for all combinations of crossover operators
and maximum generation numbers. Thus this
scheme of the evolutionary algorithm may
be considered not only more efficient (saving
computational time due to a single valuation phase)
but also more effective and generally better suited
for the method.

5. As expected, the average fitness function values
were always higher for 200 generations than for
100 generations but the difference was always below
0.1% of the average fitness function values. This
shows that the progress is still possible with a
growing number of generations, but the solutions
returned for 100 generations are close enough to the
optimal ones to be accepted and recommended by the
system.

6. The favourable version of the method is the one with
a set of three crossover operators and a modified
evolutionary scheme (the last row of Table 2).

The example results returned by the selected version
of the method for 100 generations are provided below. In
both scenarios, apart from the landmass, a safety isobate

(marked as a dotted area in Figs. 5 and 6) also has to
be taken into account when manoeuvring on restricted
waters.

The first scenario is an overtaking encounter of two
ships in a narrow channel. The ship motion parameters
are given in Table 4 (Scenario 1). The result, i.e., a set of
two trajectories, is shown in Fig. 5.

As can be seen in Fig. 5, the overtaking ship
manoeuvres to starboard. The manoeuvre of the
overtaking ship is large enough to pass safely ahead of the
other ship, even though the other ship also manoeuvres
to its starboard to avoid violating the landmass’s safety
isobate. The fitness function value for this solution
is 0.9911, which means that the way loss spent on
manoeuvring is less than 1% of the distance covered by
the ships.

The second scenario is a more complex one: a
crossing encounter of five ships on restricted waters. The
ship motion parameters are given in Table 4 (Scenario 2).
The resulting set of five trajectories is shown in Fig. 6.

In the solution depicted in Fig. 6 all ships act as
recommended by COLREGS. The course alterations are
to starboard and each ship passes astern of the ships on
its starboard. The fitness function value for this solution
is 0.9698, which means about 3% of an average way loss
computed over all trajectories.

6. Summary

In the paper a method of solving encounter situations,
evolutionary sets of safe trajectories, has been presented
with a focus on specialised crossover operators. The
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Table 4. Ship parameters for Scenarios 1 and 2.
Scenario 1 Scenario 2

Ship 1 Ship 2 Ship 1 Ship 2 Ship 3 Ship 4 Ship 5

Initial
position

107.1;20.1 102.5;20.0 46.9;154.3 39.3;178.6 33.8;170.9 36.5;156.3 55.1;159.4

Goal po-
sition

138.3;21.1 142.9;21.3 44.6;179.9 52.2;155.7 57.8;163.4 54.9;178.0 36.4;174.9

Velocity
[kn]

15.64 26.12 12.84 13.17 12.60 14.24 12.17

Fig. 5. Resulting set of trajectories for the scenario of an overtaking encounter of two ships in a narrow channel.

Fig. 6. Resulting set of trajectories for the scenario of a crossing encounter of five ships.

method is a generalisation of evolutionary trajectory
determining. A set of trajectories of all ships involved,
instead of just ones’ own trajectory, is determination.
The method avoids violating ship domains and stationary
constraints while obeying COLREGS and minimising the
average way loss computed over all trajectories. The
use of specialised operators, which fix the constraint
violations, combined with strict time limits (one minute

by default) led to the necessary changes in the
evolutionary cycle. The authors have faced an alternative
of applying an additional, more conscious crossover
operator at the cost of doubling the evolutionary phase or
relying on a basic set of two or three random crossover
operators which do not need additional evaluation.
Altogether, six combinations of crossover operators and
evolutionary schemes have been compared in a series
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of tests. The results have shown that the method with
additional deterministic crossover returns insignificantly
better results and its advantages do not compensate
for the computational time which has to be spent on
the extra evaluation. Another conclusion is that the
modified evolutionary cycle which was introduced to
save computational time appeared to be slightly more
effective than the traditional one for all combinations of
crossover operators. The authors’ work on the method
and its optimal parameters will be continued. The
practical implementation of the method requires applying
a more precise model of the ship’s dynamics and handling
Rule 10 of COLREGS, which concerns traffic separation
schemes. Both issues are currently being researched
by the authors and the results will be presented in the
upcoming papers.
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Joanna Szłapczyńska, M.Sc.Eng. in computer
science, holds a Ph.D. in technical sciences. Cur-
rently, she works as an assistant professor at Gdy-
nia Maritime University, Faculty of Navigation.
Her scientific research has been focused on multi-
criteria optimisation of ship routes (weather rout-
ing) and application of AI methods to various
navigational problems.

Received: 8 December 2011
Revised: 28 May 2012


