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The article discusses the problem of designing a proper and efficient adaptive course-keeping control system for a sea-
going ship based on the adaptive backstepping method. The proposed controller in the design stage takes into account the
dynamic properties of the steering gear and the full nonlinear static maneuvering characteristic. The adjustable parameters
of the achieved nonlinear control structure were tuned up by using the genetic algorithm in order to optimize the system
performance. A realistic full-scale simulation model of the B-481 type vessel including wave and wind effects was applied
to simulate the control algorithm by using time domain analysis.
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1. Introduction

Numerous investigations oriented toward the design of
integrated ship control systems have been performed
recently. Despite a significant improvement in
automation, course control is still an active field of
research. Nowadays, in marine systems it is necessary,
when applying nonlinear adaptive techniques, to consider
structural and model parametric uncertainties. This is due
to the characteristics of a ship’s big inertia, nonlinearity,
perturbations of the parameters and random external
disturbances.

In the literature, numerous attempts have been made
to overcome these difficulties. The proposed methods
include: neural network control (Richter and Burns,
1993; Simensen, 1995), fuzzy control (Zhang and Jia,
2000), forecast control (Du et al., 2004), and genetic
and evolutionary algorithms (Karr, 1991; Alfarocid et al.,
2005; McGookin et al., 2000). The control algorithms
presented in the literature for the course changing process
are mainly based on a dynamic ship model. They include
linear–quadratic techniques (Zwierzewicz, 2004), H∞
control (Grimble et al., 1993; Messer and Grimble, 1993),
feedback linearization control, disturbance rejection
control (Han, 2002; Chen et al., 2008; Han et al., 2009),
sliding mode control (Tomera, 2010; Ruan, 2006), and
backstepping control.

These methods give solutions which are not fully

satisfying. For example, there is chattering in sliding
mode control. What is more, a high precision
model is required in H∞ control, generalized forecast
control, feedback linearization and the backstepping
method. Nowadays, autopilots which are installed on
ships usually use the algorithms of the PID controller,
because of their simplicity, reliability and easiness of
construction. Although some progress has been made in
that method (fuzzy PD, ADRC, PD-backstepping), some
disadvantages are still exposed. In fuzzy control, it is
usually difficult to determine and optimize the control
rules. It is always a hard work to optimize the parameters
of a disturbance rejection controller (ADRC) because of a
large number of parameters.

There is a main concept of the backstepping method
when designing a globally stable control system for a
class of nonlinear systems having a cascade structure.
The construction for both the feedback control law and
the accompanying Lyapunov function for systems with
unknown parameters is a systematic procedure. This
is an important property of the backstepping method.
An overview of the first works published in the initial
period of the development of the backstepping method
has been presented by Kokotovic and Arcak (2001) as
well as Fossen and Strand (1999). One of the most
important works describing the backstepping method was
published by Krstic et al. (1995). In marine technology,
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the presented method was used in ship control systems to
secure course stabilization (Do et al., 2004), position and
velocity stabilization or position and course stabilization
(Pettersen and Nijmeijer, 2004), and to effectively control
ships on a desired track (Bibuli et al., 2007; Almeida
et al., 2007). Moreover, the backstepping procedure is
useful for identifying parameters of nonlinear ship models
(Casado and Ferreiro, 2005).

The backstepping method can provide a systematic
construction process for controller design but it fails in
determining the optimal values of control parameters.
There seems to be no simple way to determine the control
parameters. In general, adaptive fuzzy backstepping
control can provide a systematic methodology of solving
tracking or regulation control problems, where fuzzy
systems are used to approximate unknown nonlinear
functions with unknown parameters (Shaocheng et al.,
2010).

The control algorithm suggested in this paper is
based on the adaptive backstepping method and a genetic
algorithm. The control system comprises the ship course
controller. It includes the control rule and the adaptation
mechanism which are derived using the backstepping
method. The controller parameters were tuned using
genetic algorithms (GAs) with an off-line method. The
system considered fulfils basic tasks such as system
stability, the tuning of controller amplifications, and
system adaptation to changing environmental conditions.
Thus it could hardly ensure an optimal result.

The systems presented in the literature that make use
of the backstepping method were optimized by classical
methods. They were usually based on the Riccati
equation (Krstic and Panagiotis, 1999; Zwierzewicz,
2004), the Powell method (Casado and Ferreiro, 2005)
or manual tuning procedures. The authors proposed
the genetic algorithm to optimise backstepping controller
parameters. This technique has not been developed with
the backstepping method in marine applications. In
comparison, classical methods have a major limitation
especially in changing working system conditions, while
the GA has a naturally built-in mechanism for adaptation.

In marine technology there is an essential problem
to regard the steering gear dynamics at the design
stage. This is due to its nonlinearity which is described
using nonlinearity with saturation. The steering gear
dynamics are not taken into consideration by the control
algorithms available in the literature. Furthermore, they
do not provide sufficient information on how to treat this
problem. In this paper the backstepping controller takes
into account, at the design stage, dynamic properties of
the simplified steering gear. This enlarges the number
of the recurrence. The additional step increases the
computational complexity of the backstepping algorithm
(a large number of uncertainties and a complex adaptation
law). However, it may produce an improved system

performance.
Our results are a continuation of studies initiated

earlier (Witkowska et al., 2007; Witkowska and
Smierzchalski, 2009). A large number of studies
which discuss application of the backstepping method
exist in marine systems. Although the derived control
law and the adaptation law are based on the well-known
backstepping method, they have not been previously
considered in such a form in the literature. That is the
reason for considering the Van Leeuven ship model which
has the complete nonlinear maneuvering characteristics
and the simplified steering gear dynamics.

2. Mathematical ship model

In ship motion control systems the course stabilization
task is usually realized by using linear models which
describe a linear relation between the rudder deflection
angle and the ship course. This linear relation becomes
insufficient for controlling the ship during course change
manoeuvres. The instantaneous velocity of the ship
decreases during such a manoeuvre. This is a result
of the increasing resistance to motion which appears
when the ship turns. Taking this effect into account,
the synthesis of the ship course control law will be done
using the nonlinear mathematical model proposed by Van
Leeuven (Amerongen, 1982). This model, described
by the differential equation (1), presents the nonlinear
changes of the ship’s angular velocity r depending on
instantaneous changes of the ship’s velocity U and the
rudder deflection angle δ,

T ∗
1 T

∗
2

(
L

U

)2

r̈ + (T ∗
1 + T

∗
2)
L

U
ṙ
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where HN is the nonlinear manoeuvring characteristic
of the ship, a∗i stands for manoeuvring characteristic
coefficients, L is the ship length, [m], U is the
instantaneous ship velocity, [m/s], T ∗

1 , T
∗
2 , T

∗
3 are

dimensionless time constants, K∗ is a dimensionless
amplification.

The time constants and amplifications are determined
from the results of manoeuvring tests which are performed
on real objects. As regards ships, they frequently range
between 0.5 < T ∗

i ,K
∗
i < 2.5. The manoeuvring

characteristic coefficients a∗i , i ∈ {0, 1, 2, 3}, are usually
determined in a test called the “spiral test".
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The ship actuator which controls the difference
between the current and the set rudder deflection angle
is the hydraulic steering gear. This device operates in the
nonlinear system of the rudder deflection servomechanism
and its speed is limited between 2 [deg/s]≤ δ̇max ≤ 7
[deg/s], with the maximum rudder deflection angle equal
to δmax = 35 [deg]. A large number of practically
used control methods is based on the assumption that
the steering gear dynamics are neglected. In the present
article, the mathematical model of the ship (1) is extended
by including the following linear equation of steering gear
dynamics (Amerongen, 1982) at the stage of designing the
control law:

δ̇(t) = δz(t) − δ(t). (3)

The input signal for the steering gear comes from
the course controller and has the form of the set rudder
deflection angle δz . The signal at the steering gear output
is the current value of the rudder deflection angle δ. The
model of the ship (1) and the steering gear (3) will be
used for designing the ship course control law further
on in the article. Assuming that the following state
variable vector is x(t) = [x1(t), x2(t), x3(t), x4(t)]

T =
[ψ(t), r(t), ṙ(t), δ(t)]T , the output signal is y (t) = x1 (t)
and the control variable is δz=uc(t), we can define the
model of the examined ship with the steering gear by the
set of fourth-order differential equations:

ẋ1(t) = x2(t), (4)

ẋ2(t) = x3(t), (5)

ẋ3(t) =
(U
L

)3

cx4(t) + ϕT (t)θ, (6)

ẋ4(t) = uc(t) − x4(t), (7)

in which, for simplifying purposes, the following
substitutions were made:
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(10)
The system defines the constant ship model

parameters b0, b1, b2, b3, a, the vector of the ship model
parameters θ ∈ R

5 and the state vector ϕ ∈ R
5 related

to the vector of parameters θ. All model nonlinearities
are included in the function ϕ. The block diagram of
the system (4)–(7) is shown in Fig. 1. The system has

Fig. 1. Block diagram of the system (4)–(7).

a lower-triangular cascade structure. Each subsystem
(4)–(7) in the presented structure can be considered a
scalar and affine system with respect to the control input.
Therefore the backstepping method can be successfully
used for the synthesis of the control law, as the system has
the required structure.

3. Adaptive course controller

The ship course control design process aims at
determining a control law uc(t) with feedback. It is
used for the asymptotic tracking of the set ship course
ψz(t) within the limits of the given tracking error. When
designing the control law, we assume that we have precise
information on the object, i.e., we consider the vector
of parameters θ and the parameter c to be known in the
adopted ship model. Then the ship course control law
can be derived using the classical backstepping method,
as was discussed in detail by Witkowska et al. (2007), as
well as Witkowska and Smierzchalski (2009).

With the reference to these works when designing
in the backstepping method, we can assume that the
state vector is z(t) = [z1(t), z2(t), z3(t), z4(t)] with the
components having the following form:

z1(t) = x1(t) − ψz(t), (11)

z2(t) = x2(t) − ψ̇z(t) − α1(t), (12)

z3(t) = x3(t) − ψ̈z(t) − α2(t), (13)

z4(t) = x4(t) −
(L
U

)3 1
c
ψ(3)

z (t) − α3(t), (14)

for which the stabilising functions are given by

α1(t) = −k1z1(t), (15)

α2(t) = −k2z2(t) − z1(t) + α̇1(t), (16)

α3(t) =
(L
U

)3 1
c

(−k3z3(t) − z2(t) + α̇2 (t) − ϕT θ
)
.

(17)

The new state variable z1 represents the minimized
ship course error, while z2 is the stabilized angular
velocity and z3 is connected with the ship acceleration.
The role of the functions α1 and α2 is to respectively
stabilize the subsystems (4) and (5). The fourth
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state variable z4 represents the deviation of the rudder
deflection angle from its set value. For the variables and
stabilizing functions defined as above, the derivatives of
the components of the vector z take the following form
(Witkowska et al., 2007; Witkowska and Smierzchalski,
2009):

ż1(t) = −k1z1(t) + z2(t), (18)

ż2(t) = −k2z2(t) + z3(t) − z1(t), (19)

ż3(t) =
(U
L

)3

cx4(t) + ϕT (t)θ − α̇2(t) − ψ(3)
z (t),

(20)

ż4(t) = ẋ4(t) − α̇3(t) −
(L
U

)3 1
c
ψ(4)

z (t). (21)

The adaptive backstepping method is the most
suitable backstepping method when precise information
about the object is not known and the uncertainties have
the form of unknown but constant parameters. The
incomplete information about the system in the case of
the ship model (4)–(7) refers to the unknown vector of
parameters θ and c. It is assumed that the dynamics of
the steering gear are known. The values of parameters can
change because of the changeable operating conditions of
the system caused by, e.g., a change in the ship course,
the weight of the carried cargo, the water depth, or
hydrodynamic conditions.

Since the first two model equations (4) and (5) do not
include uncertainties, the designing procedure is identical
here to that used in the classical backstepping method. We
can assume that the state vector components z1, z2, z3 are
given by the formulae (11) and (13), while the functions
α1, α2 are given by (15) and (16). In order to evaluate the
adaptation law, we substitute the unknown parameters θ, c
and ρ = 1/c with their estimates θ̂, ĉ and ρ̂. The third
stabilizing function α̂3 and the fourth state variable z4,
based on the formulae (14) and (17) take the forms
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Substituting (22) and (24) into (20), we obtain the
analytical form of the derivative:
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Let ρ̂ be the estimate of the parameter ρ = 1/c. Replacing
c/ĉ by 1−cρ̃, where ρ̃ = ρ− ρ̂, we get
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The function (22) can be written in a more convenient
form as
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From Eqn. (7), we get
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Then, assuming the control law uc in the form
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∂ᾱ3

∂ψ̈z

ψ3
z

+ ψ(4)
z (t)) +

(L
U

)3
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and substituting this into (31), we get the formula for the
derivative of the component z4 (t),
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The Lapunov function for the entire system,
complemented by the squares of the unknown parameter
errors, takes the form

Va (t) =
1
2
z2
1 (t) +

1
2
z2
2 (t) +

1
2
z2
3 (t)

+
1
2
z2
4 (t) +

1
2
θ̃T Γ−1θ̃+

|c|
2γc

ρ̃2 +
1

2γc
c̃2,

(34)

where Γ = diag (γ0, γ1, γ2, γ3, γa) > 0 is a diagonal
matrix with positively defined coefficients and γc > 0.

Its derivative is given by the formula

V̇a(t)
= z1 (t) ż1 (t) + z2 (t) ż2 (t) + z3 (t) ż3 (t)

+ z4 (t) ż4 (t) + θ̃T Γ−1 ˙̃θ +
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Since the parameters θ, c and ρ are constant or change

slowly, we can approximately assume that ˙̃
θ = − ˙̂

θ, ˙̃ρ =
− ˙̂ρ, ˙̃c = − ˙̂c. Hence
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Replacing the derivatives żi, i ∈ {1, 2, 3, 4} by the
formulae (18), (19), (26) and (33), we arrive at
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To eliminate the expressions containing the
estimation errors θ̃, c̃ and ρ̃ in the formula (37), we have
the following adaptation laws:

• for vector parameter θ:

˙̂
θ = Γϕ (t)

(
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• for parameter ρ:

˙̂ρ = −γcsgn (c) (ᾱ3 + ψ(3)
z )z3 (t) , (39)

• for parameter c:
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)
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In the simulation analyses, the values of the estimates
θ, c and ρ were calculated from Eqns. (37)–(40). These
approximate values were directly used in the control law
(32). The values of the estimates strongly depend on the
coefficients of the matrix Γ. The characteristic of the
estimated parameters in the adaptive system is remarkably
affected by the changeable amplification coefficients in
the adaptation loop. When these coefficients are too large,
over-regulation can take place and the quality of control
can become worse. A series of experimental tests were
performed to determine the values for the coefficients
in the matrix Γ. The obtained laws guarantee that the
derivative of the Lyapunov function is nonpositive and has
the following final form:

V̇a(t) = −
4∑

i=1

kiz
2
i (t) ≤ 0. (41)

If the values of the estimates are determined
correctly, the estimation errors θ̃ = θ − θ̂, ρ̃ = ρ− ρ̂, c̃ =
c − ĉ are zero and θ = θ̂, ρ = ρ̂, c = ĉ. In consequence,
the control law uc guarantees the convergence of the
output signal x1 to the set valueψz(t) as t → ∞. The state
equations have the form of the nonlinear matrix equation,
in which the main matrix is the sum of a diagonal matrix
with negative definite elements and a skew-symmetric
matrix:⎡
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where k1, k2, k3, k4 > 0 are design parameters.
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4. Control system structure

The correctness and quality of the designed adaptive ship
course controller were checked by using a simplified (1)
and full-scale mathematical model as a control system.
A general diagram of the ship course control system is
shown in Fig. 2. The system includes the mathematical
model of ship dynamics, complemented by the model of
environmental disturbances and the model of the steering
gear. The control system comprises the ship course
controller which includes the control rule derived using
the backstepping method with the control law (32).

The model parameters were estimated using
the adaptive backstepping method. The adaptation
mechanism of ship model parameters is determined
by the adaptation rule, according to the formulae
(38)–(40). The controller amplifications were selected
using genetic algorithms with an off-line method. The
obtained amplifications were used as the input data for
the backstepping controller. The model of environmental
disturbances included wind and wave disturbances which
were the result of wind. A third-order low passing filter
of frequency 0.05 [rad/s] was defined in the system to
facilitate obtaining smooth characteristics of the reference
signal of the course and its derivatives.

When presenting the simulation tests we shall
discuss in detail the following issues: the initial values
of the estimated parameters, the matrix of adaptation
coefficients, and the set parameters. The measured signals
were filtered before passing to the feedback loop to
reduce excessive movements of the rudder blade. For this
purpose, we used a low-pass filter which enables obtaining
a slight shift of the phase and amplitude of the measured
and filtered angular velocity with reference to the control
signal at the input to the steering gear. The system was
implemented in the Matlab/Simulink and C++ packages.

4.1. Full-scale mathematical model. The full-scale
mathematical model is a container ship model bearing
the shipyard symbol B-481. It includes the hull
dynamics and the main propulsion system which consists
of a single adjustable blade propeller, rudder and two
lateral thrusters: on the bow and stern sides. The
effect of disturbances of the environmental origin (wind,
waves, sea current) and changes in dynamics caused
by shallow water were also taken into account. The
model allows analysing the behaviour of the ship for two
load conditions: ballast and full load. The equations
composing the mathematical model of the B-481 vessel
are presented by Galbas (1988). Basic design parameters
of the real ship are given in Table 1.

4.2. Steering gear dynamic. Both simplified and
full-scale models were complemented by the dynamics
of the steering gear, described by Velagic et al. (2003)

Table 1. Basic design parameters of the B-481 type ship.
Ballast Full load

Overall length L [m] 181 181
Length between
perpendiculars Lp [m] 165 165

Length on waterline Lw [m] 161.6 173.15
Width B [m] 28.2 28.2

Bow draught TD [m] 5.55 9.64
Stern draught TR [m] 6.7 9.64
Displacement W [m3] 16400 28350

Distance of centre
of gravity from

midship section plane xG [m] 4.6 5.6

and schematically shown in Fig. 3. The simulation model
of the steering gear consisted of two electro-hydraulic
arrangements: a telemotor position servo and a rudder
servo actuator. The value of parameters for the obtained
steering machine were the following: K = 4 [deg],
DB = 1 [deg], H = 0.8 [deg], PB = 1.43 [deg/s],
N = 0.8 [deg], δmax = 20 [deg].

5. Optimization process

The classical genetic algorithm was applied for tuning
backstepping controller parameters k1, k2, k3, k4 with an
off-line method. Genetic operations comprised classical
selection, crossover and mutation. For more information
about genetic operations, see the work of Witkowska et al.
(2007).

5.1. Cost function. In the genetic method all
individuals (here sets of parameters k1,k2,k3,k4) are
evaluated by the cost function which should reflect
optimization criteria. The basic criterion is the economic
one. The autopilots aim to ensure such control of the
way which enables the least deviation from the setpoint
by decreasing the activity of the rudder. This manner of
control prevents excessive losses of speed, and reduces
the travel time and fuel consumption. The cost of the
function is computed according to the following formula
(Amerongen, 1982):

Jc1 =
0.0076
T

∫ T

0

(
Δψ2 + λδ2

)
dτ, (43)

where λ is the scale factor, λ = 0.1, Δψ is the course error,
δ is the rudder deflection angle, Jc1 is the loss of speed
[%].

Van Amerongen and Van Nauta Lemke (1978)
proposed another evaluation function described by the
formula

Jc2 =
0.0076
T

∫ T

0

(
Δψ2 + λ1Δ

˜̇ψ2 + λ2δ
2
)

dτ, (44)
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Fig. 2. General scheme of the ship course control system.

Fig. 3. Block diagram of the steering gear.

where ˜̇ψ is the wave filtered signal of rate of turn.
The loss of speed may be also expressed as a function

of the turn rate caused by rudder motion. The component
which is caused by disturbances, mainly the waves, should
be removed. It is appropriate to reflect the wave filtered
signal of the rate of turn in the evaluation function.
Based on the available literature (Amerongen, 1982), the
coefficients weight, for container vessels with a length of
about 200 [m], can be assumed as λ1 = 1.6, λ2 = 6.

5.2. Optimization test. Several manoeuvre tests using
the GA were made in the system shown in Fig. 2. On the
basis of the preliminary experiments with different values
of the initial GA parameters, it was assumed that the
probability of crossover was pcc = 0.40, the probability of
mutation pm = 0.01, the initial population size popsize =
200 and the space of solutions Ω = (1, 50) × (1, 50) ×
(1, 50)× (0, 5). The maximum number of generations for
each test was equal to 100. If, during the learning process,
the value of the quality coefficient Jc1 was on the same
level up to the first digit place within minimum 5 tests, the
process was stopped.

The tests were performed for various loading
conditions of the vessel, various sea states and different
values of the specified course of the ship. In each case
it was assumed that the desired propeller revolution was
ns

z = 1.006 [obr/s]. The configuration of the GA was
switched 15 times for each manoeuvre trial. First, the
system shown in Fig. 2 was tested in sea condition 5 [oB]
and wind direction 0 [deg].

The results are shown in Figs. 4 and 5. The ship

dynamic characteristic equations comprise parameters
estimated for ballasting state. The ship course rapidly
changed by 10 [deg]. The adjusted control parameters
k1, k2, k3, k4 are given in Table 2 for the full-scale
and the simplified model as an object. These are the
parameter values at which the minimum values of the
quality coefficient Jc1 were obtained at the stage of tuning
with the aid of the genetic algorithm. The time-histories of
system responses to a given rudder deflection angle were
recorded during the test within the time interval of 500 [s]
with the sampling period 0.5 [s]. They are shown in Figs.
4 and 5. The system operation was compared with the
simplified and the full-scale model.

The numerically obtained results determine
approximate characteristics for the two models without
overregulation. Tracking the set course values was
correct. The maximum course error did not exceeded
1 [deg]. With reference to the steering gear operation,
the actuator worked without chattering and the rudder
deflection angle change was a smooth function. The
overall performance was satisfactory. There is no
actuator saturation observed up to the maximum value
of the rudder deflection angle 20 [deg]. In order to
evaluate the intermediate intervals in the ship course
time-characteristics, the rapid changes of the set course
were simulated using direct control quality coefficients:
the build-up time tn, the value of the first overregulation
Mp with the accuracy of 0.01, and the control time tR
determined for 1% of the intermediate time-history part
after changing the set course.

Regulations on Classification and Building of Sea-
Going Vessels assume that the set course is kept with the
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Fig. 4. Time-histories of the ship course, rudder deflection angle, turning speed and ship speed during a rapid change of the set course:
full-scale model (solid line), simplified model (dashed line).

Table 2. Adjustable parameters and the cost function value (in sea conditions 5
[
0B
]

and wind direction 0 [deg]).
k1 k2 k3 k4 Jc1 [%] Jc2 [%] Nmax

Full-scale model 25.4839 23.2258 21 0.7 12.556.10-3 0.75333 34
Simplified model 29.0645 24.3871 35 1.204 9.3995.10-3 0.56395 29

Table 3. Values of temporal quality coefficients.
tn[s] Mp [%] tR[s]

Full-scale model 64 – 198
Simplified model 59 – 298

maximum single amplitude of 1.5 [deg] and its accuracy
is within 1 [deg]. The values of the temporal quality
coefficients for the test are given in Table 3. The speed of
the ship decreased during the course change manoeuvre.
After completing the manoeuvre the speed returned to the
initial value observed before the manoeuvre (after about
300 [s]). The differences in the obtained time-histories of
the instantaneous model ship speed resulted in part from
the adopted simplified assumptions about the ship model.
These can be observed in Fig. 4.

The state vector components z = [z1, z2, z3, z4]
tend to zero. This suggests that the system behaves
in a stable way. The initial values of the model
parameters, for which the controller settings were selected

in the control structure shown in Fig. 2 b0(0) =
17.2103, b1(0) = −5.4348, b2(0) = 0.017935, b3(0) =
−0.0086957, a(0) = −12.6087, c(0) = 8.6957, ρ(0) =
0.1150. The assumed initial values of the estimated
parameters were equal to 25% of the real parameter
value. Both real and accurate values of the estimated
parameters, which were obtained in the tests for the
full-scale model and the simplified model are given in
Tables 4 and 5. The backstepping method does not
guarantee the convergence of all parameters to their actual
values. In the examined case, the convergence of the
estimated parameters b1, b2, b3, a, c to the real values after
about 60 [s] are secured by the correct selection of the
adaptation matrix. The value of the parameter ρ changes
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Table 4. Real and estimated values of the full-scale model parameters obtained for the assumed amplifications.
Parameters b0 [deg] b1[−] b2[1/deg] b3[1/deg2] a[−] c[−] ρ[−]

Real 68.8413 -21.7391 0.0717 -0.0347 -50.4348 34.7826 0.02875
Estimated 68.8452 -21.738 0.07571 -0.03449 -50.4386 34.1723 0.1397

γ0 γ1 γ2 γ3 γa γc γc

Amplification 6.184 · 10−11 63.55 · 10−10 1 · 10−8 8 · 10−7 62.63 · 10−9 58.12 · 10−10 58.12 · 10−10

Table 5. Real and estimated values of the simplified model parameters obtained for the assumed amplifications.
Parameters b0 [deg] b1[−] b2[1/deg] b3[1/deg2] a[−] c[−] ρ[−]

Real 68.8413 -21.7391 0.0717 -0.0347 -50.4348 34.7826 0.02875
Estimated 68.8433 -21.7399 0.07188 -0.03466 -50.4348 34.7827 0.1284

γ0 γ1 γ2 γ3 γa γc γc

Amplification 4.414 · 10−11 8.64 · 10−9 1.57 · 10−8 3.86 · 10−7 2.893 · 10−8 9.483 · 10−9 9.483 · 10−9

Fig. 5. Time-histories of estimated parameters at a rapid change of the set course: full-scale model (solid line), simplified model
(dashed line).

relatively slowly and does not reach the value 1/c. The
time-histories of changes in the estimated parameters for
the simplified model and the full-scale model are shown
in Fig. 5.

6. Simulation tests

The simulation tests aim at checking the operation
correctness of the backstepping controller with the
estimating mechanism of model ship parameters. The

issues examined in the tests include the effect of
identifying accuracy of model parameters on the control
system dynamics, the convergence to real parameter
values and the ability to follow the fast changes in the
set course. The following assumptions were made in the
simulation tests:

• The dynamic model and parameters of the water
system in the vicinity of the ship are not precisely
known (there are only known the approximate values
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of the real model ships parameters. They have the
8% deflection in certain disturbances).

• All state variables are measurable. There is
a measuring system which provides accurate
information about the current ship position, course,
and linear and angular speed.

These assumptions were considered in the
manoeuvring test. The next test was performed for
the programmed inertial change of the set course. The
disturbances were corresponding to 7 [◦B] and the
wind direction to 0 [deg]. The time-histories shown in
Figs. 6 and 7 confirm the good ability of the control
system to follow fast changes of the set course (by 250
[s]). The application of adaptive controllers enables
keeping the optimal course independently of object
parameters changes. When the conditions of object
operation change, for instance, due to the ship course
change or intensification of disturbances, the values of
the parameters change in a limited manner (Fig. 6). The
estimated parameters change slowly within time intervals
of steady-load operation of the object. The presence of a
small drift was recorded for the parameter b0.

A method which is used on ships to minimise the
drift phenomenon is stopping the adaptation process for
some time after the manoeuvre has been completed. The
undesired phenomena which was the consequence of the
imperfection of the model can be minimised using the
so-called robust modifications of estimation algorithms,
such as sigma modification, projection of parameters,
epsilon modification, dead zone modification. They
are not analysed in the present article. During ship
steering, the wind and waves considerably affect the
rudder deflection angle. The controller characteristics can
be improved, e.g., by extending the steering gear dead
zone. This way some astatism of the control system can
be reached with respect to disturbances.

7. Conclusions

The article presents the backstepping method based on
ship course control system and the method providing a
automatic selection of backstepping controller parameters
to adapt to changing conditions of system operation.
All that is done with the aid of adaptive methods and
genetic algorithms. The backstepping method reduces
the system to the form of the linear system described
using new state variables. The obtained control law is
nonlinear. The presented system reveals high sensitivity
to control parameter changes. The backstepping method
enables designing a stable control system which follows
changes in system dynamics resulting from environmental
disturbances.

In the presented control system, the genetic
algorithm enables selecting controller settings, while the

adaptation law enables determining model parameters.
The ship course control algorithm, worked out using the
adaptive backstepping method, ensures correct control
system operation and the tracking of the set course
value. The system automatically adjusts parameters of
the controller to changing characteristics of the controlled
object and the environment. When analysing the problem
of resistance, the nonlinearities existing in the system
are used during the designing process of the control law
with the aid of the backstepping method. This is of high
importance when examining control systems’ resistance
to modelling errors. Moreover, it is not necessary
to have precise information on forces and moments
affecting the ship. The presented results reveal that the
system adapts well to changing environmental conditions.
Furthermore, the obtained results can be fully accepted in
real navigational practice.

The authors proposed the genetic algorithm to tune
the controller gains. This technique has not been
developed in marine applications for the above-mentioned
purpose by using the backstepping method. This has
advantages and disadvantages and is debatable. The
genetic algorithm applied is very general. It does
not impose special requirements regarding the goal
function. With the aim of unconstrained optimization and
low-dimensional problems, it may be one of the most
efficient algorithms for nonlinear global optimization
tasks. Of course, this depends on an efficient
implementation.

The task of optimizing the parameters of the
proposed backstepping controller is a precise example
of those characteristics. This is because of the low
dimensionality, non-linearity and complexity. Classical
methods have a major limitation, especially in changing
system working conditions, while the GA has a naturally
built-in mechanism of adaptation to changing working
conditions. The genetic algorithm is rather slow and
usually requires a relatively long computational time.
However, the application of a genetic algorithm in
real time will succeed only with a proper technical
implementation of the autopilot system. This is a subject
of future studies.
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Gdańsk, (in Polish).

Grimble, M., Zhang, Y. and Katebi, M.R. (1993). H∞-based
ship autopilot design, Ship Control Symposium, Ottawa,
Canada, pp. 678–683.

Han, J.Q. (2002). From PID technique to active disturbance
rejection control technique, Control Engineering of China
9(3): 13–18.

Han, Y., Xiao, H., Wang, C. and Zhou, F. (2009). Design
and simulation of ship course controller based on auto
disturbance rejection control technique, Proceedings of the
IEEE International Conference on Automation and Logis-
tics, Shenyang, China, pp. 686–691.

Karr, C.L. (1991). Design of an adaptive fuzzy logic
controller using a genetic algorithm, International Confer-
ence on Genetic Algorithms, ICGA, San Diego, CA, USA,
pp. 450–457.

Kokotovic, P. and Arcak, M. (2001). Constructive
nonlinear control: A historical perspective, Automatica
37(5): 637–662.

Krstic, M., Kanellakopulos, I. and Kokotovic, P.V. (1995). Non-
linear and Adaptive Control Design, John Wiley and Sons
Ltd., New York, NY.

Krstic, M. and Panagiotis, T. (1999). Inverse optimal
stabilization of a rigid spacecraft, IEEE Transactions on
Automatic Control 44(5): 1042–1043.

McGookin, E., Murray-Smith, D., Li, Y. and Fossen, T.I. (2000).
Ship steering control system optimisation using genetic
algorithms, Control Engineering Practice 8(4): 429–443.

Messer, A. and Grimble, M. (1993). Introduction to robust ship
track-keeping control design, Transactions of the Institute
of Measurement and Control 15(3): 104–110.

Pettersen, K. and Nijmeijer, H. (2004). Introduction to robust
ship track-keeping control design, Transactions of the In-
stitute of Measurement and Control 20(4): 189–199.

Richter, R. and Burns, R. (1993). An artificial neural network
autopilot for small vessels, Proceedings of the 1st Con-
ference of the UK Simulation Society, Edinburgh, UK,
pp. 168–172.

Ruan, J.H. (2006). The design of ship course intelligent
controller based on FNN of non-linear system, Journal of
Shandong Jiaotong University 14(4): 29–33.

Shaocheng, T., Changliang, L. and Yongming, L. (2010). Robust
adaptive fuzzy filters output feedback control of strict
feedback nonlinear systems, International Journal of Ap-
plied Mathematics and Computer Science 20(4): 637–653,
DOI: 10.2478/v10006-010-0047-x.

Simensen, R. (1995). Simulation of artificial neural networks for
ship steering control, Proceedings of the 2nd Conference of
the UK Simulation Society, Edinburgh, UK, pp. 65–72.

Tomera, M. (2010). Nonlinear controller design of a
ship autopilot, International Journal of Applied Math-
ematics and Computer Science 20(2): 271–280, DOI:
10.2478/v10006-010-0020-8.

Velagic, J., Vukic, Z. and Omerdic, E. (2003). Adaptive
fuzzy ship autopilot for track-keeping, Control Engineer-
ing Practice 11(4): 433–443.

Witkowska, A. and Smierzchalski, R. (2009). Nonlinear
backstepping ship course controller, International Journal
of Automation and Computing 6(3): 277–284.

Witkowska, A., Tomera, M. and Śmierzchalski, R. (2007). A
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