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This paper considers the problem of designing an observer-based output feedback controller to exponentially stabilize a
class of linear systems with an interval time-varying delay in the state vector. The delay is assumed to vary within an
interval with known lower and upper bounds. The time-varying delay is not required to be differentiable, nor should its
lower bound be zero. By constructing a set of Lyapunov–Krasovskii functionals and utilizing the Newton–Leibniz formula,
a delay-dependent stabilizability condition which is expressed in terms of Linear Matrix Inequalities (LMIs) is derived to
ensure the closed-loop system is exponentially stable with a prescribed α-convergence rate. The design of an observer-
based output feedback controller can be carried out in a systematic and computationally efficient manner via the use of an
LMI-based algorithm. A numerical example is given to illustrate the design procedure.
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1. Introduction

Time-delay systems have attracted widespread attention,
and many fundamental problems including stability,
stabilization and estimation have been reported and
studied in the literature (see, for example, the works of
Blizorukova et al. (2001), Busłowicz (2010), Fridman
and Shaked (2002), Gu et al. (2003), Kaczorek and
Busłowicz (2004), Kowalewski (2009), Park (1999), Raja
et al. (2011), Richard (2003), Tokarzewski (2009), Trinh
(1994; 1997; 1999; 2010), Xiang et al. (2010) and the
references therein). In particular, a problem of theoretical
and practical importance is the design of observer-based
controllers or dynamic output feedback controllers for
time-delay systems. This problem stems from a practical
constraint that not all of the state variables are available for
feedback control, and therefore either an observer-based
or a dynamical output feedback controller, which uses

only the available output information, is employed to
achieve the desired closed-loop system performance.
In this regard, the Lyapunov–Krasovskii functional
approach, which resulted in Riccati equations, LMIs
or matrix inequalities, has been among some popular
and effective tools used in the design of observer-based
and dynamic output feedback controllers for time-delay
systems (Baser and Kizilsac, 2007; Chen, 2007; Ivanescu
et al., 2000; Kwon et al., 2006; Park, 2004; Tong et al.,
2011). So far, the existing works have treated the time
delay as either constant (Chen, 2007; Ivanescu et al.,
2000; Kwon et al., 2006; Park, 2004) or time-varying
(Baser and Kizilsac, 2007), but with the assumption that
the time-varying delay is a continuously differentiable
function satisfying some boundedness conditions on its
derivative.

There has been growing research interest in stability
analysis and stabilization of systems subject to an interval
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time-varying delay (see, for example, Botmart et al.,
2011; Phat et al., 2012; Shao, 2009; Shao and Han,
2012). An interval time-varying delay is a time delay
that varies within an interval whose lower bound is
not restricted to be zero and its time derivative can
even be undefined or unknown. Recently, exponential
stability of linear systems with an interval time-varying
non-differentiable delay was considered by Phat et al.
(2012). Also, the problem of designing memoryless state
feedback controllers to exponentially stabilize a class of
linear uncertain systems with an interval time-varying
delay was studied by Botmart et al. (2011). When
not all of the state variables are available for feedback
control, a state observer may be used to provide an
estimate of the state vector and thus an observer-based
output feedback controller can be realized. Nevertheless,
compared with the state feedback design problem
(Botmart et al., 2011), the observer-based output feedback
design problem involves more control parameters and it
is more complicated and difficult to solve using a convex
programming approach.

This paper specifically focuses on interval
time-varying delays. We study a class of linear
systems subject to an interval time-varying delay in the
state vector. The time-varying delay varies within an
interval with known lower and upper bounds. Here,
the delay is not required to be differentiable nor should
its lower bound be zero. Under the practical constraint
that not all of the state variables of the system are
available for feedback control, we consider the problem
of designing an observer-based output feedback controller
to exponentially stabilize the closed-loop system with
a prescribed α-convergence rate. Since the real-time
knowledge of the delay is not available and completely
unknown, it is clear that no proposed structure for the
state observer can contain any internal delay. This
is in contrast to the existing observer-based design
methods (Chen, 2007; Ivanescu et al., 2000; Kwon
et al., 2006; Park, 2004), which treated a known constant
time delay and thus their proposed state observers
containing an internal time delay.

In this paper, we propose to use a completely
memoryless full-order Luenberger-type state observer to
reconstruct the state vector for the feedback control
purpose. Our objective is to systematically derive
both the observer and controller gain matrices to
ensure that the closed-loop system is exponentially
stable. By constructing a set of Lyapunov–Krasovskii
functionals and utilizing the Newton–Leibniz formula, a
delay-dependent LMI stabilizability condition is derived.
As a result, both the controller and observer parameters
can be derived via the use of an efficient LMI-based
algorithm.

Notation. The following notation will be used in this

paper: R
+ denotes the set of all real non-negative

numbers; R
n denotes the n-dimensional space with the

vector norm ‖ · ‖; Mn×r denotes the space of all (n ×
r)-dimensional matrices; AT denotes the transpose of
matrix A; A is symmetric if A = AT ; I denotes the
identity matrix; λ(A) denotes the set of all eigenvalues
of A; λmax(A) = max{Reλ; λ ∈ λ(A)};

xt := {x(t + s) : s ∈ [−h, 0]},
‖xt‖ = sups∈[−h,0]‖x(t + s)‖

C1([0, t], Rn) denotes the set of all R
n-valued

continuously differentiable functions on [0, t]. A
matrix A is called semi-positive definite (A ≥ 0) if
〈Ax, x〉 ≥ 0, for all x ∈ R

n; A is positive definite
(A > 0) if 〈Ax, x〉 > 0 for all x �= 0; A > B means
A − B > 0. The symmetric term in a matrix is denoted
by ∗.

2. Problem statement and preliminaries

Consider a linear system with an interval time-varying
delay in the state vector, where

ẋ(t) = A0x(t) + A1x(t − h(t)) + Bu(t), t ≥ 0,

y(t) = Cx(t),
(1)

with the initial condition function

x(t) = φ(t), t ∈ [−h2, 0], (2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is a
control vector, y(t) ∈ R

q is the output vector, A0, A1 ∈
R

n×n, B ∈ R
n×m and C ∈ R

q×n are constant matrices,
φ(t) ∈ C1([−h2, 0], Rn) is the initial function with the
norm

‖φ‖C1 = sup−h2≤t≤0{‖φ(t)‖, ‖φ̇(t)‖}.
The time-varying delay function h(t) satisfies

0 < h1 ≤ h(t) ≤ h2, h1 < h2, t ≥ 0.

It is worth noting that the time delay is assumed to be
a continuous function belonging to a given interval, which
means that the lower and upper bounds to the time-varying
delay are available, but the lower bound is not restricted
to being zero. Furthermore, the time-varying delay can be
non-differentiable.

Since not all of the state variables are available
for feedback control and the real-time knowledge of the
delay, h(t), is not available, we consider a completely
memoryless full-order Luenberger state observer for the
system (1),

˙̂x(t) = A0x̂(t) + Bu(t) + L
(
y(t) − Cx̂(t)

)
, t ≥ 0,

x̂(t) = 0, ∀t ∈ [−h2, 0],
(3)
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and the following control law for the system (1):

u(t) = −Kx̂(t), t ≥ 0, (4)

in which x̂(t) ∈ R
n is the observer state vector, K ∈

R
m×n and L ∈ R

n×q are the constant controller and
observer gain matrices, respectively.

Define an error vector Θ(t) = x(t) − x̂(t), which
denotes the difference between the actual state and
estimated states. Then we have the following closed-loop
system:

Θ̇(t) =
(
A0 − LC

)
Θ(t) + A1x(t − h(t)), (5)

ẋ(t) =
(
A0 − BK

)
x(t) + A1x(t − h(t))

+ BKΘ(t). (6)

The objective is to derive K and L so that the
above closed-loop system is exponentially stable with a
prescribed α-convergence rate.

Definition 1. (Phat et al., 2012) Given α > 0, the system
(1), where u(t) = 0, is α-stable if there exists a positive
number β > 0 such that every solution x(t, φ) satisfies the
condition

‖x(t, φ)‖ ≤ βe−αt‖φ‖C1 , ∀t ≥ 0.

We also introduce the following technical
well-known propositions, which will be used in the
proof of our results.

Proposition 1. (Jensen’s inequality (Gu et al., 2003)) For
any symmetric positive definite matrix M > 0, a scalar
γ > 0 and a vector function ω : [0, γ] → R

n such that
the integrations concerned are well defined, the following
inequality holds:

( ∫ γ

0

ω(s) ds

)T

M

(∫ γ

0

ω(s) ds

)

≤ γ

(∫ γ

0

ωT (s)Mω(s) ds

)
.

Proposition 2. (Schur complement lemma) Given con-
stant matrices X, Y, Z with appropriate dimensions sat-
isfying X = XT , Y = Y T and Y > 0, we have
X + ZT Y −1Z < 0 if and only if

(
X ZT

Z −Y

)
< 0 or

(−Y Z
ZT X

)
< 0.

3. Main results

In this section, using the Lyapunov–Krasovskii method,
we establish a delay-dependent criterion in terms of linear
matrix inequalities for the exponential stabilization of the
linear system (1) via the observer-based controller (3)–(4).

Now, we synthesize the gain matrices K and L of
controller and observer as follows:

K = Y P−1, L = −1
2
PCT , (7)

where P is a positive-definite matrix and Y are to be
designed.

Write

h12 = h2 − h1,

H =
[
MT

1 MT
2 0 0 0 0 0

]T
,

L =
[
NT

1 NT
2 0 0 0 0 0

]T
,

Ω =

⎡

⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

Ω11 Ω12 Ω13 −N1 Ω15 BY 0
∗ Ω22 M2 −N2 PAT

1 PAT
1 0

∗ ∗ Ω33 0 0 0 0
∗ ∗ ∗ Ω44 0 0 0
∗ ∗ ∗ ∗ Ω55 BY 0
∗ ∗ ∗ ∗ ∗ Ω66 PCT

∗ ∗ ∗ ∗ ∗ ∗ −I

⎤

⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

,

with

Ω11 = A0P + PAT
0 + 2αP − BY − Y T BT

+ Q1 + Q2 − e−2αh1S1,

Ω12 = N1 − M1 + A1P, Ω13 = M1 + e−2αh1S1,

Ω15 = PAT
0 − Y T BT ,

Ω22 = N2 + NT
2 − M2 − MT

2 ,

Ω33 = −e−2αh1Q1 − e−2αh1S1,

Ω44 = −e−2αh2Q2, Ω55 = h2
1S1 + h12S2 − 2P,

Ω66 = A0P + PAT
0 + 2αP,

λ = λmin(P−1),

Λ = 2λmax(P−1) + h1λmax(P−1Q1P
−1)

+ h2λmax(P−1Q2P
−1) +

1
2
h3

1λmax(P−1S1P
−1)

+
1
2
(h2

2 − h2
1)λmax(P−1S2P

−1).

Theorem 1. Given α > 0, u(t) = −Y P−1x̂(t) is an
observer-based controller for the system (1) if there ex-
ist symmetric positive-definite matrices P, S1, S2, Q1, Q2,
and matrices M1, M2, N1, N2, Y satisfying the following
LMIs:

Ω1 =
[

Ω h12H
h12HT −h12e

−2αh2S2

]
< 0,

Ω2 =
[

Ω h12L
h12LT −h12e

−2αh2S2

]
< 0.

Moreover, the solution x(t, φ) satisfies

‖x(t, φ)‖ ≤
√

Λ
λ

e−αt‖φ‖C1 , t ∈ R
+.
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Proof. For i = 1, 2 set

Qi = P−1QiP
−1, Si = P−1SiP

−1,

Mi = P−1MiP
−1, Ni = P−1NiP

−1.

Consider the following Lyapunov–Krasovskii
functional:

V =
5∑

i=1

Vi,

where

V1 = xT (t)P−1x(t) + ΘT (t)P−1Θ(t),

V2 =
∫ t

t−h1

e2α(s−t)xT (s)Q1x(s) ds,

V3 =
∫ t

t−h2

e2α(s−t)xT (s)Q2x(s) ds,

V4 =
∫ 0

−h1

∫ t

t+s

h1e
2α(τ−t)ẋT (τ)S1ẋ(τ) dτ ds,

V5 =
∫ −h1

−h2

∫ t

t+s

e2α(τ−t)ẋT (τ)S2ẋ(τ) dτ ds.

Taking the derivative of Vi, i = 1, . . . , 5, we have

V̇1 = xT (t)
[
P−1[A0 − BK] + [A0 − BK]T P−1

]
x(t)

+ 2xT (t)P−1A1x(t − h(t)) + 2xT (t)P−1BKΘ(t)

+ ΘT (t)
[
P−1[A0 − LC] + [A0 − LC]T P−1

]
Θ(t)

+ 2ΘT (t)P−1A1x(t − h(t)),
(8)

V̇2 = −2αV2 + xT (t)Q1x(t)

− e−2αh1xT (t − h1)Q1x(t − h1), (9)

V̇3 = −2αV3 + xT (t)Q2x(t)

− e−2αh2xT (t − h2)Q2x(t − h2), (10)

V̇4 = −2αV4 + h2
1ẋ

T (t)S1ẋ(t)

− e−2αh1

∫ t

t−h1

h1ẋ
T (s)S1ẋ(s) ds, (11)

V̇5 ≤ −2αV5 + h12ẋ
T (t)S2ẋ(t)

− e−2αh2

∫ t−h1

t−h2

ẋT (s)S2ẋ(s) ds. (12)

Using Proposition 1, we get

−
∫ t

t−h1

h1ẋ
T (s)S1ẋ(s) ds

≤ −(
x(t) − x(t − h1)

)T
S1

(
x(t) − x(t − h1)

)
.

By the Leibniz–Newton formula, we have

− e−2αh2

∫ t−h1

t−h2

ẋT (s)S2ẋ(s) ds

= −e−2αh2

∫ t−h(t)

t−h2

ẋT (s)S2ẋ(s) ds

− e−2αh2

∫ t−h1

t−h(t)

ẋT (s)S2ẋ(s) ds

+ 2ζT (t)M
[
x(t − h1) − x(t − h(t))

−
∫ t−h1

t−h(t)

ẋ(s) ds

]

+ 2ζT (t)N
[
x(t − h(t)) − x(t − h2)

−
∫ t−h(t)

t−h2

ẋ(s) ds

]
,

(13)

where

M =
[
M1

T
M2

T
0 0 0 0

]T

,

N =
[
N1

T
N2

T
0 0 0 0

]T

,

ζ(t) =
[
xT (t) xT (t − h(t)) xT (t − h1)

xT (t − h2) ẋT (t) ΘT (t)
]T

.

From (6) it follows that

2ẋT (t)P−1

[
[A0 − BK]x(t) + A1x(t − h(t))

+ BKΘ(t) − ẋ(t)
]

= 0.

(14)

From (8)–(14), we have

V̇ + 2αV

≤ ζT (t)Ξζ(t)

−
∫ t−h1

t−h(t)

[
2ζT (t)Mẋ(s) + ẋT (s)e−2αh2S2ẋ(s)

]
ds

−
∫ t−h(t)

t−h2

[
2ζT (t)N ẋ(s) + ẋT (s)e−2αh2S2ẋ(s)

]
ds

= h−1
12

∫ t−h1

t−h(t)

{
ζT (t)Ξζ(t) − 2h12ζ

T (t)Mẋ(s)

− h12ẋ
T (s)e−2αh2S2ẋ(s)

}
ds

+ h−1
12

∫ t−h(t)

t−h2

{
ζT (t)Ξζ(t) − 2h12ζ

T (t)N ẋ(s)

− h12ẋ
T (s)e−2αh2S2ẋ(s)

}
ds
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= h−1
12

∫ t−h1

t−h(t)

[
ζ(t)
ẋ(s)

]T [
Ξ −h12M

−h12MT −h12e
−2αh2S2

]

×
[
ζ(t)
ẋ(s)

]
ds

+ h−1
12

∫ t−h(t)

t−h2

[
ζ(t)
ẋ(s)

]T [
Ξ −h12N

−h12N T −h12e
−2αh2S2

]

×
[
ζ(t)
ẋ(s)

]
ds,

(15)

where

Ξ =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎣

Ξ11 Ξ12 Ξ13 −N1 Ξ15 P−1BK
∗ Ξ22 M2 −N2 AT

1 P−1 AT
1 P−1

∗ ∗ Ξ33 0 0 0
∗ ∗ ∗ Ξ44 0 0
∗ ∗ ∗ ∗ Ξ55 P−1BK
∗ ∗ ∗ ∗ ∗ Ξ66

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎦

,

with

Ξ11 = P−1
[
A0 − BK

]
+

[
A0 − BK

]T
P−1

+ 2αP−1 + Q1 + Q2 − e−2αh1S1,

Ξ12 = N1 − M1 + P−1A1,

Ξ13 = M1 + e−2αh1S1,

Ξ15 = AT
0 P−1 − KT BT P−1,

Ξ22 = N2 + N2
T − M2 − M2

T
,

Ξ33 = −e−2αh1Q1 − e−2αh1S1,

Ξ44 = −e−2αh2Q2,

Ξ55 = h2
1S1 + h12S2 − 2P−1,

Ξ66 = P−1A0 + AT
0 P−1 + 2αP−1

− P−1LC − CT LT P−1.

Setting

Υ1 =
[

Ξ −h12M
−h12MT −h12e

−2αh2S2

]
(16)

and

Υ2 =
[

Ξ −h12N
−h12N T −h12e

−2αh2S2

]
, (17)

we have

V̇ (t, xt, Θ(t)) + 2αV (t, xt, Θ(t))

≤ h−1
12

∫ t−h1

t−h(t)

[
ζ(t)
ẋ(s)

]T

Υ1

[
ζ(t)
ẋ(s)

]
ds

+ h−1
12

∫ t−h(t)

t−h2

[
ζ(t)
ẋ(s)

]T

Υ2

[
ζ(t)
ẋ(s)

]
ds.

(18)

We have to demonstrate that Υ1 < 0 is equivalent to
Ω1 < 0 and Υ2 < 0 is equivalent to Ω2 < 0. Indeed, we

pre- and post-multiply both sides of Υ1, Υ2 with

diag{P, P, P, P, P, P, P},

and, using the Schur complement lemma and the
condition (7), we have that Υ1 < 0 is equivalent to
Ω1 < 0 and Υ2 < 0 is equivalent to Ω2 < 0. Therefore,

V̇ (t, xt, Θ(t)) + 2αV (t, xt, Θ(t)) ≤ 0, ∀t ≥ 0. (19)

Integrating both the sides of (19) from 0 to t, we
obtain

V (t, xt, Θ(t)) ≤ V (0, x0, Θ(0))e−2αt, ∀t ∈ R
+.

By simple computation, we have

V (t, xt, Θ(t))

≥ λmin(P−1)‖x(t)‖2 + λmin(P−1)‖Θ(t)‖2

≥ λmin(P−1)‖x(t)‖2 = λ‖x(t)‖2, ∀t ≥ 0,

and
V (0, x0, Θ(0)) ≤ Λ‖φ‖2

C1 .

Hence

λ‖x(t, φ)‖2 ≤ V (t, xt, Θ(0)) ≤ V (0, x0, Θ(0))e−2αt

≤ Λe−2αt‖φ‖2
C1 ,

and the solution x(t, φ) of the system satisfies

‖x(t, φ)‖ ≤
√

Λ
λ

e−αt‖φ‖C1 , ∀t ≥ 0,

which implies that the closed-loop system is α-stable.
This completes our proof. �

Next, we provide a numerical example to show the
effectiveness of our result.

Example 1. Consider the system (1), where

A0 =
[−3 0
0.5 −0.9

]
, A1 =

[
0.1 0
−0.5 0.3

]
,

B =
[
1
3

]
, C =

[
1 0.1

]

with

⎧
⎪⎪⎨

⎪⎪⎩

h(t) = 0.1 + 0.8 sin2 t,

if t ∈ I = ∪k≥0[2kπ, (2k + 1)π],

h(t) = 0.1 if t ∈ R
+ \ I,

and φ(t) =
[
cost sint

]T
.
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It is worth noticing that the delay function h(t) is
non-differentiable, and therefore the design methods using
observer-based and dynamic output feedback controllers
for time-delay systems in the existing papers (Baser and
Kizilsac, 2007; Chen, 2007; Ivanescu et al., 2000; Kwon
et al., 2006; Park, 2004) are not applicable to this example.

We have that α = 0.4. By using the LMI Toolbox
from MATLAB, the LMIs in Theorem 1 are satisfied with
h1 = 0.1, h2 = 0.9, and

P =
[

0.8186 −0.1397
−0.1397 8.9918

]
,

Q1 =
[

0.1698 −0.0874
−0.0874 2.3185

]
,

Q2 =
[

0.2237 −0.4782
−0.4782 2.6813

]
,

S1 =
[

2.9162 −0.5388
−0.5388 3.9691

]
,

S2 =
[

0.2129 −0.4144
−0.4144 6.4924

]
,

M1 =
[−0.1300 0.0907

0.0244 −0.7705

]
,

M2 =
[

0.1550 −0.1804
−0.1080 2.0655

]
,

N1 =
[

0.0270 −0.0994
−0.0210 −0.0484

]
,

N2 =
[−0.0839 0.1947

0.1989 −1.1023

]
,

Y =
[−0.3274 1.3559

]
.

Therefore, the resulting controller and observer gains for
the system (1) are

K = Y P−1 =
[−0.3752 0.1450

]
,

L = −1
2
PCT =

[−0.4023
−0.3797

]
.

(20)

This implies that the system (1) is 0.4-stable by the
observer-based controller with controller and observer
gains given in (20). Moreover, the solution of the
closed-loop system satisfies

‖x(t, φ)‖ ≤ 5.1005e−0.4t‖φ‖C1 .

Figure 1 shows the closed-loop trajectories of the
state variables x1(t) and x2(t). The simulation shows that
the state trajectories converge to zeros.

Further simulation studies have also been conducted
for cases where the interval time-varying h(t) is
non-differentiable and varies in the interval [0.1, 0.9]. In
all the cases studied, it was found that the trajectories
of the state variables x1(t) and x2(t) all exponentially
converged to zeros.

0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time(sec)

x1
x2

Fig. 1. Closed-loop trajectories of x1(t) and x2(t).

4. Conclusion

This paper has studied the problem of designing
observer-based output feedback controllers for linear
systems with an interval non-differentiable time-varying
delay in the state vector. The design can be carried out by
an efficient LMI-based algorithm. A numerical example
has been given to demonstrate the simplicity of the design
procedure.
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