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Developing a model based digital human meridian system is one of the interesting ways of understanding and improving
acupuncture treatment, safety analysis for acupuncture operation, doctor training, or treatment scheme evaluation. In
accomplishing this task, how to construct a proper model to describe the behavior of human meridian systems is one
of the very important issues. From experiments, it has been found that the hysteresis phenomenon occurs in the relations
between stimulation input and the corresponding response of meridian systems. Therefore, the modeling of hysteresis in
a human meridian system is an unavoidable task for the construction of model based digital human meridian systems. As
hysteresis is a nonsmooth, nonlinear and dynamic system with a multi-valued mapping, the conventional identification
method is difficult to be employed to model its behavior directly. In this paper, a neural network based identification
method of hysteresis occurring in human meridian systems is presented. In this modeling scheme, an expanded input space
is constructed to transform the multi-valued mapping of hysteresis into a one-to-one mapping. For this purpose, a modified
hysteretic operator is proposed to handle the extremum-missing problem. Then, based on the constructed expanded input
space with the modified hysteretic operator, the so-called Extreme Learning Machine (ELM) neural network is utilized to
model hysteresis inherent in human meridian systems. As hysteresis in meridian system is a dynamic system, a dynamic
ELM neural network is developed. In the proposed dynamic ELM neural network, the output state of each hidden neuron is
fed back to its own input to describe the dynamic behavior of hysteresis. The training of the recurrent ELM neural network
is based on the least-squares algorithm with QR decomposition.
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1. Introduction

Acupuncture and meridian studies have a history of more
than three thousand years in China. They are one of
the most important parts of traditional Chinese medicine.
Based on the theory of traditional Chinese medicine, it
has been found that acupuncture points are distributed in
the meridian system of the human body. Moreover, the
meridian system is an independent system which exists in
the body parallel with neural systems and blood circula-
tion systems (Tsuei, 1998; Trentini and Erlichman, 2005).
Experimental results have shown that the meridian sys-
tem has significant effect on human health (Tsuei, 1998).
Based on the recent research results, it has been illustrated
that the meridian system has architecture with many chan-
nels allowing the electrical signals to pass through easily

(Zhang and Zhu, 1999; Yang, 1997).
A review of electrical properties of acupuncture

points and meridians has been provided by Ahn and
Langevin (2008). That could be used to explain why
acupuncture therapy would treat some diseases in the hu-
man body by implementing some electrical stimulation
signals on the related acupuncture points. The acupunc-
ture points distributed in the meridian system offer some
distinctive ways of transferring signals and processing in-
formation including electrical information (Yang, 1997).

Until today, there have been some research results
on human meridian system focusing on the analysis of
impedance on a single acupuncture point (Yamamoto and
Yamamoto, 1979; Yang, 1997; Zhang and Zhu, 1999). On
the other hand, a numerical study has been performed on
bio-fluid dynamics to explore and provide some human
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meridian characteristics (Ahn and Langevin, 2008). How-
ever, the human meridian system is a network with several
channels. In each channel, there are several acupuncture
points located along a curve. Experimental results demon-
strated that there were some relations among those points
in each channel. Therefore, the analysis depending just on
the impedance of one single acupuncture point would not
reflect the main characteristic of the signal transmission
in the human meridian system. One of the options is to
use an excitation signal to stimulate an acupuncture point
in a channel of the meridian. Then the corresponding re-
sponses of the other acupuncture points in the same chan-
nel are measured. The signal transmission performance of
the measured channel in the meridian can be evaluated.

There are many reasons for developing proper mod-
els of human meridian systems. For example, models
that accurately describe the behavior of human meridian
systems could be used for understanding and improving
the acupuncture treatment, safety analysis for acupunc-
ture operation, doctor training, or treatment scheme eval-
uation. Moreover, the so-called digital human meridian
system could be constructed by a number of models to
describe human meridian behavior.

The experimental results revealed that the human
meridian system is a dynamic one (Zhang and Zhu, 1999;
Yang, 1997; Wang and Su, 2009). In this case, the iden-
tification of the model to describe the dynamic behavior
of the meridian is an efficient method for performance
evaluation, simulation, and design of optimal stimulation
for disease treatment. Wang and Su (2009) developed an
auto-regressive and moving average model to describe the
human meridian system. It fits the response well when the
exciting signal is of low frequency and the input ampli-
tude is rather small. However, when the frequency of the
exciting input is higher or the amplitude of the exciting
signal is larger, it exhibits some nonlinear behavior, espe-
cially hysteretic. Thus, a nonlinear dynamic model should
be considered to describe this system.

In this paper, the experimental configuration to mea-
sure the responses of the acupuncture points of the merid-
ian stimulated by electric signals is presented. Then, the
phenomenon of the obtained experimental results is ana-
lyzed. It is found out that as the frequency of the stimula-
tion signal increases, the phenomenon of hysteresis occurs
in the meridian. It is known that the model of hysteresis
is a challenge due to non-smoothness, memory and multi-
valued mapping of hysteresis.

In our previous work (Zhao, 2006; Zhao and Tan,
2008), the so-called expanded input space method has
been proposed. In this method, a hysteretic operator
which extracts the moving tendency of hysteresis is in-
troduced as another coordinator of the input space. Then,
based on the input and the output of the hysteretic opera-
tor, the output of hysteresis can be uniquely determined.
Thus, the multi-valued mapping of hysteresis can be trans-

formed to a one-to-one mapping. However, the extreme-
missing problem may be met in the hysteretic operator. It
may lead to a larger modeling error.

In this paper, we extend the idea of the hysteretic op-
erator to handle the extreme-missing problem of the oper-
ator. Then a modified hysteretic operator is proposed. In
order to transform the multi-valued mapping of hysteresis
to a one-to-one mapping, an expanded input space is con-
structed with the introduced modified hysteretic operator.
Hence, based on the constructed expanded input space,
a Dynamic Extreme Learning Machine (DELM) neural
network is applied to the identification of the hysteretic
characteristic occurring in the human meridian. One of
the most important advantages of the DELM is that it can
avoid the local minima in the optimization because the
training of the neural network becomes a convex problem.
After that, the corresponding experimental results of mod-
eling are presented. In the experiment, both the traditional
ELM neural network and the proposed DELM version are
implemented to model hysteresis in the human meridian
for comparison. Moreover, a backpropagation neural net-
work based on the expanded input space method is also
utilized to model the hysteresis for comparison.

2. Experimental configuration and brief
analysis

In order to investigate the behavior of human the meridian
in electrical stimulation, in this section, a method based on
three detecting electrodes is used to measure both stimu-
lation and the corresponding response of the acupuncture
points in meridian systems. The configuration of the mea-
surement for the meridian response is shown in Fig. 1.
Based on the theory of Chinese medicine, there are 11
acupoints in the so-called Hand-Taiyin Lung Channel.

In this experiment, the stimulating acupoint was
named Shaoshang (LU 11), the acupoint Tianfu (LU 3)
was connected to the ground of the circuit, and the de-
tecting acupoints were Chize (LU 5), Kongzui (LU 6) and
Lieque (LU 7). The stimulation voltage signals were gen-
erated by a signal generator.

In this experiment, the acupoint Shaoshang (LU11)
was excited by the stimulation signals through a stim-
ulating electrode. Then, the detecting electrodes were
used to measure the corresponding responses of the acu-
points Chize (LU5) and Kongzui (LU6) simultaneously.
The measured output was sampled by an Analog/Digital
(A/D) converter. The sampled signals were sent to the
computer for further processing. Before the test, volun-
teers were relaxed to avoid the strenuous disturbance. In
the experiments, a very interesting thing is that hysteresis
phenomenon occurs in human meridian systems when we
stimulate the acupoints in the meridian using a sequence
of sine wave samples with the frequency of 10KHz. Fig-
ure 2 shows the plot of the output of the acupoint LU5
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Fig. 1. Experimental configuration of meridian signal measure-
ment.
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Fig. 2. Hysteretic phenomena occurring in the human meridian
(frequency of input: 10 kHz).
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Fig. 3. Hysteretic phenomena occurring in the human meridian
(frequency of input: 100 kHz).

versus the input as well as the curve of the output of the
acupoint LU6 against the input.

When the frequency of the input increases to

100 KHz, the corresponding hysteresis also happened at
the above-mentioned meridian points, shown in Fig. 3. It
can be seen that the hysteresis occurring in the meridian
changed its performance as the input frequency increases.
The width of the hysteresis increases and the hysteresis
rotates to an angle in the clockwise direction as the input
frequency increases. Obviously, the hysteresis presents
dynamic behavior relying on the input frequency.

Moreover, we can see that the response of LU6 is
much different from that of LU5 for the same exciting in-
put, especially when the input frequency increases to 10
KHz. The slope values of the curve for LU6 are larger
than those for LU5. As the acupoint LU6 is closer to the
exciting point LU11, clearly, the gain of this acupoint is
larger than that of the acupoint LU5. It implies that the
effect of the stimulation will be reduced as the distance
between the detected acupoint and the exciting acupoint
increases. From Figs. 2 and 3, we note that the hysteretic
phenomenon occurred in human meridian systems with at
least the following characteristics:

(i) non-smoothness,

(ii) multi-valued mapping.

The hysteretic behaviour in human meridian re-
sponse might be explained as tension and spasm caused by
external stimulation. It is clear that it is a dynamic system
with rather complex characteristics. As the conventional
identification methods can only be useful for systems with
smooth and one-to-one mappings, it is a challenge to con-
struct a model of hysteresis.

3. Expanded input space with a modified
hysteretic operator

It has been mentioned that hysteresis is a non-smooth sys-
tem with multi-valued mapping. Usually, conventional
methods of system identification are only available for
systems with one-to-one mapping. Moreover, as hystere-
sis is a nonlinear system, the optimization technique is
usually used in the identification of nonlinear systems. In
this case, conventional optimization methods might be fail
in the identification of hysteresis since the gradients do not
exist at non-smooth points of hysteresis.

Up to now, there have been some methods of hys-
teresis modeling, e.g., the Preisach model (Hu and Mrad,
2003) and the Prandtl–Ishlinskii (PI) model (Macki,
1993). Those methods used simple backlash operators as
the basis functions for modeling. Therefore, lots of opera-
tors should be employed in order to obtain accurate mod-
els. Although there have been some modified Preisach
models (Hu and Mrad, 2003; Ge and Jouaneh, 1995) as
well as a modified PI model (Dong and Tan, 2009) pro-
posed to describe hysteresis systems, the structures of
those modified schemes are still very complex. In order



688 Y. Tan et al.

to simplify the model architecture to describe the behav-
ior of hysteresis, Li and Tan (2004) as well as Zhao and
Tan (2006) developed the so-called expanded input space
based hysteretic models.

In the expanded input space, a hysteretic operator
which extracted the main movement feature of hystere-
sis was introduced as one of the coordinates. Thus, the
multi-valued mapping of hysteresis can be transformed to
a one-to-one mapping between the inputs and the output.
Then, feedforward neural networks were implemented to
model hysteresis based on the constructed expanded in-
put space. An advantage of the method of the expanded
input space is that it can result in a model with a simple
structure, avoiding the computation of gradients.

In this section, based on our previous work (Zhao
and Tan, 2006; 2008), a modified hysteretic operator is
proposed. The modified hysteretic operator will handle
the extreme-missing problem. Then, we construct an ex-
panded input space with a modified hysteretic operator,
which is a two-dimensional plane consisting of the input
as well as the output of the hysteretic operator. As the hys-
teretic operator can extract the movement characteristics,
such as an increase, a decrease and a turning of hystere-
sis, on this plane, the output of the hysteresis correspond-
ing to the point in the input plane can be uniquely deter-
mined. One of the advantages of the expanded input space
is that the one-to-one mapping between the input space
and the output of the hysteresis can be constructed. Thus,
techniques for nonlinear modeling can be implemented to
model the behavior of hysteresis on the constructed in-
put space. Moreover, another advantage of this modeling
method is that the computation of gradients at non-smooth
points can be avoided.

Assumption 1. Suppose the hysteresis is continuous and
forms a closed loop in the input-output diagram when the
input cycles between two extrema. Then, we define the
hysteresis operator f(x) as

f(x) = (1 − e|(x−xp)|) + f(xp). (1)

where x is the current input, f(x) is the current output,xp

is the dominant extremum adjacent to the current input x,
f(x) is the output of the operator when the input is x.

The properties of the hysteretic operator are as fol-
lows:

(i) Let x(t) ∈ C(R+), where R
+ = (t|t ≥ 0), and let

C(R+) be the set of continuous functions on R
+. For

the different time instants t1 and t2, we have t1 �= t2
but x(t1) = x(t2), where x(t1) and x(t2) are not the
extrema. Then it leads to f [x(t1)] �= f [x(t2)].

(ii) If there exist two time instants t1 and t2, t1 �= t2,
such that f [x(t1)] − f [x(t2)] → 0, then x(t1) =
x(t2) → 0. Therefore, Lemmas 1 and 2 given by

Zhao (2006) are presented in the following, respec-
tively.

Lemma 1. Let x(t) ∈ C(R+). If there exist two time
instants t1 and t2, t1 �= t2, such that x(t1) = x(t2), x(t1)
and x(t2) are not the extrema, then f [x(t1)] �= f [x(t2)].

Lemma 2. If there exist two time instants t1 and t2,
t1 �= t2, such that f [x(t1)] − f [x(t2)] → 0, then x(t1) −
x(t2) → 0

Remark 1. Note that Lemma 1 does not consider the case
when there is no output extremum of the hysteretic oper-
ator as the input just passes through the input extremum.
For example, suppose that t1 and t2 (t1 < t2) are two
time instants. In this case, if the corresponding input val-
ues at those two time instants are equal to each other, but
the output of the hysteretic operator corresponding to one
of the input value is in the increase zone while the output
of the operator with respect to another input value is in
the decrease zone. The extrema between those two output
values of the hysteresis are obviously missing.

To handle the extremum-missing problem, a modi-
fied scheme of the hysteresis operator is proposed as fol-
lows.

Theorem 1. For the formula (1), if x(t1) = x(t2),
f [x(t1)] �= f [x(t2)], where x(t1) and x(t2) are the
adjacent time instants and t1 < t2, an extremum lo-
cated in the segment between points (x(t1), f(x(t1)))
and (x(t2), f(x(t2))) cannot be obtained within the
time period [t1, t2]. However, it can be estimated by
(xm, f(xm)), where

xm = x(t2) + 0.5(x(t2) − x(t1)), (2)

and

f(xm)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − e(−xm+xp))(xm − xp) + f(xp)
if x(t2) > x(t1),

(1 − e(xm−xp))(xm − xp) + f(xp)
if x(t2) < x(t1).

(3)

Proof. Suppose that xp is the local maximum of the
input, whilst x(t1) and x(t2) are located in the increase
and decrease zones, respectively. Hence, the derivatives
of f(x(t)) with x(t) respect to x(t1) and x(t2) are

ḟ(x(t2)) = e(−x(t2)+xp) (4)

and
ḟ(x(t1)) = e(−x(t1)+xp), (5)

respectively.
Based on the assumption given by Zhao (2006),

(xp, f(xp)) is a local minimum, and (x(t1), f(x(t1))) is a
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point adjacent to the local maximum point (xm, f(xm)).
Hence,ḟ(x(t2)) ≈ ḟ(x(t1)) due to the properties of the
exponential function. That is to say, the three points, i.e.,
(x(t1), f(x(t1))), (x(t2), f(x(t2))) and (xm, f(xm)),
can be considered to be approximately located on a
straight line. Moreover, (xm, f(xm)) is the point be-
tween (x(t1), f(x(t1))) and (x(t2), f(x(t2))), where t1
and t2 are the adjacent time instants. Define L(t2, t1) that
represents the curve connecting (x(t1), f(x(t1))) with
(x(t2), f(x(t2))). So the extremum point in the space can
be approximated by the mean values of the projections of
L(t2, t1) on each coordinate in the plane. In other words,
the mean value of the projection on the input coordinate is
estimated by

xm = x(t2) + 0.5(x(t2) − x(t1)), (6)

while the mean value of the projection on the coordinate
of the output of the hysteretic operator is estimated by

f(xm) = (1 − e(−xm+xp))(xm − xp) + f(xp). (7)

Similarly, if (xm, f(xm)) is a local minimum, f(xm) can
be described by

f(xm) = (1 − e(xm−xp))(xm − xp) + f(xp). (8)

Hence, combining Eqns. (6)–(8) leads to

f(xm)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 − e(−xm+xp))(xm − xp) + f(xp),
x(t2) > x(t1),

(1 − e(xm−xp))(xm − xp) + f(xp),
x(t2) < x(t1).

(9)

�

Theorem 2. For any hysteresis satisfying Assumption 1,
there exists a continuous one-to-one mapping Γ : R2 →
R, such that H [x(t)] = Γ[x(t), f(x(t))] .

Proof. Firstly, let us prove that Γ is a one-to-one mapping.
Consider the following cases.

Case 1. Assume that x(t) is not an extremum. In terms of
Lemma 1, if there exist two different time instances t1 and
t2, then (x(t1), f [x(t1)]) �= (x(t2), f [x(t2)]). Therefore,
the coordinate (x(t), f [x(t)]) uniquely corresponds to the
hysteresis H [x(t)].

Case 2. Suppose that x(t) is an extremum. In this case,
for two different time instances t1 and t2, there will be
(x(t1), f [x(t1)]) = (x(t2), f [x(t2)]).

Case 3. Suppose that x(t1) = x(x2), f [x(t1)]) �=
f [x(t2)], where t1 and t2 are the adjacent time instants and
t1 < t2, while the extrema located in the segment between
points (x(t1), f(x(t1))) and (x(t2), f(x(t2))) cannot be

obtained within the time period [t1, t2]. In this situation,
based on Theorem 1, we can use the mean values between
those two points, i.e., (xm, fm(t2, t1)) to approximate the
extrema. According to the property of the Preisach-type
hysteresis, H [x(t1)] = H [x(t2)]. Then the coordinate
(x(t), f [x(t)]) will be uniquely corresponding to the hys-
teresis H [x(t)].

Combining the above-mentioned three situations, we
obtain that Γ is a one-to-one mapping. Next, we will ver-
ify that Γ is a continuous mapping.

According to the property of the Preisach-type hys-
teresis, if

x(t1) − x(t2) → 0,

it yields
H [x(t1)] − H [x(t2)] → 0.

Then, considering Lemma 2, if

f [x(t1)] − f [x(t2)] → 0,

we can deduce that

x(t1) − x(t2) → 0.

Then we have H [x(t1)] − H [x(t2)] → 0. Therefore,
it can be concluded that there exists a continuous one-
to-one mapping Γ : R

2 → R, such thatH [x(t)] =
Γ[x(t), f(x(t))]. �

Remark 2. The theorem stated above indicates that the
constructed expanded input space consists of two coor-
dinates, i.e., x and f(x). Figure 4 demonstrates how a
one-to-one mapping can be derived on the expanded input
space. From Fig. 4, it is illustrated how the multi-valued
mapping of the hysteresis is transformed into a one-to-
one mapping on this constructed input space. Suppose
that x = xu. Then, it yields the corresponding outputs
of the hysteretic operator, i.e., fa(xu) and fb(xu), respec-
tively. Then, we have two points on the constructed ex-
panded input space, i.e., a(xu, fa(xu)) and b(xu, fb(xu)),
respectively. In this case, the corresponding output val-
ues of the hysteresis, i.e., A = Γ(xu, fa(xu)) and B =
Γ(xu, fb(xu)), can be uniquely specified.

Remark 3. Based on Theorem 2, the modified hysteretic
operator is a combination of Eqns. (1)–(3). We can use
the modified hysteretic operator to construct an expanded
input space.

It has also been proved that the expanded input space
is a compact set (Zhao and Tan, 2006). Hence, the map-
ping between the output and the input of hysteresis on this
expanded input space is a one-to-one mapping. Thus, the
neural networks such as the multilayer feedforward neural
network can be implemented to model the performance of
hysteresis on this input space.



690 Y. Tan et al.

Fig. 4. Transformation on the expanded input space.

However, due to the non-convex characteristics of
feedforward neural networks, one often meets the prob-
lem that the training gets easily stuck in local minima. It
would have significant effect on the performance of the
obtained neural models.

4. Dynamic ELM neural model of hysteresis
in meridian systems

In this section, a dynamic extreme learning machine neu-
ral model is proposed to model hysteresis in meridian
systems based on the expanded input space proposed
above. Recently, Huang and Siew (2006) as well as Huang
and Chen (2007) proposed the so-called extreme learn-
ing machine neural network with randomly specified input
weights of the single hidden layer and the output weights
of the network to be determined by using the least squares
algorithm. ELM has achieved very good performance in
generalization along with much faster learning speed. It
may avoid the drawbacks of feedforward neural networks,
which often get stuck in some local minima during the
training procedure. A brief description of the ELM neural
network is presented as follows.

For N data samples {(xk, tk)}N
k=1, where xk =

[xk1, xk2, . . . , xkn] is the k-th input vector and tk =
[tk1, tk2, . . . , tkn] is the k-th target vector, a Single Layer
Feedforward Network (SLFN) has Ñ hidden neurons and
an activation function, which is a sigmoid function i.e.,

Ñ∑

i=1

βig(wi · xk + bi) = ok, k = 1, . . . , N, (10)

where wi = [wi1, wi2, . . . , win]T is the weight vector
connecting the i-th hidden neuron and the input neurons,
βi = [βi1, βi2, . . . , βin]T is the weight vector connect-
ing the i-th hidden neuron and output neurons, ok =
[ok1, ok2, . . . , okn]T is the output vector of the SLFN, and
bi is the threshold of the i-th hidden neuron. Moreover,
wi · xk denotes the inner product of wi and xk . Hence,

these N equations can be written compactly as

Hβ = O, (11)

where H is the hidden layer output matrix, i.e.,

H

=

⎛

⎜
⎝

g(w1 · x1 + b1) . . . g(wÑ · x1 + bÑ)
... . . .

...
g(w1 · xN + b1) . . . g(wÑ · xN + bÑ)

⎞

⎟
⎠

N×Ñ

,

(12)

β =

⎛

⎜
⎝

β1
T

...
βÑ

T

⎞

⎟
⎠

Ñ×m

, (13)

and

O =

⎛

⎜
⎝

o1
T

...
oÑ

T

⎞

⎟
⎠

N×m

. (14)

By randomly assigning and fixing the input weights
wi and biases bi, only output weights βi are left to be
tuned by minimizing the following objective function:

J = ‖Hβ− T‖2
2. (15)

According to Theorem 2 in Section 3, hysteresis exist-
ing in meridian systems can be identified using the ELM
neural network on the constructed expanded input space.
Hence, the corresponding ELM neural model for hystere-
sis is shown as follows:

Γ[x, f(x)]
= H[x, f(x)]β+ ε

=

⎛

⎜
⎝

g(w1 · [x1, f(x1)] + b1) . . .
... . . .

g(w1 · [xN , f(xN )] + b1) . . .

g(wÑ · [x1, f(x1)] + bÑ )
...

g(wÑ · [xN , f(xN )] + bÑ)

⎞

⎟
⎠

⎛

⎜
⎝

βT
1
...
βT

Ñ

⎞

⎟
⎠ + ε,

(16)

where ε is the modeling error vector, for any given εN >
0, ‖ε‖ ≤ εN .

As hysteresis in the human meridian system is a dy-
namic system, to describe the dynamic behavior of hys-
teresis in the meridian system, an internal feedback con-
nection is introduced for each hidden neuron in the ELM
neural network to memorize the historic states of the net-
work. Thus, a dynamic ELM neural network on the ex-
panded input space is constructed for hysteresis inherent
in the human meridian. Hence, we have

Γ[x(t), f(x(t))]
= H[x(t), f(x(t)), z(x(t − 1), t − 1)]β] + ε, (17)
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where

β =

⎛

⎜
⎝

β1
T

...
βÑ

T

⎞

⎟
⎠ ,

and H(x(t), f(x(t)), z(x(t − 1), t − 1)] is given by (18)
where αi is the feedback factor with the value randomly
assigned within (0, 1) to guarantee the model stability.

Theorem 3. Suppose that the active function of the neu-
ron g(·) is a sigmoid function. If the assigned value of the
feedback factor αi is constrained to (0, 1), then the output
of each neuron, i.e.,

zi(xj(t), t)
= g(wi · [xj(t), f(xj(t))])
+ αizi(xj(t − 1), t − 1),

i = 1, . . . , N, j = 1, . . . , Ñ .

(19)

will satisfy |zi(xj(t), t)| ≤ 1, i = 1, . . . , N , as t → ∞.

Proof. Considering g(·) as a sigmoid function leads to
|g(·)| � 1. For the i-th neuron shown in (19), it can be
described by

zi(xj(t), t) =
g(wi[xi(t), f(xi(t))])

(1 − αiq−1)
, (20)

where q−1 is the unit back shift operator. If 0 < αi < 1,

zi(xj(t), t) =
g(wi[xi(t), f(xi(t))])

(1 − αiq−1)

will be asymptotically stable. Thus, there exists 0 < ζi ≤
1 such that limt→∞ |zi(xj(t), t)| < ζi � 1. �

Just as has been mentioned above, all the input
weights wi and biases bi of the neurons are fixed with the
assigned random values, and all the feedback factors αi

are fixed with random values assigned within (0, 1). In
this case, we have

Γ[x(t), f(x(t)] = Z(x(t), t)β + ε, (21)

where

Z(x(t), t) =

⎛

⎜
⎝

z1(x1(t), t) . . . zÑ(x1(t), t)
... . . .

...
z1(xN (t), t) . . . zÑ(xN (t), t)

⎞

⎟
⎠

and only the unknown output weights βi are determined
by the batch Least Squares (LS) method. Thus, for the
assigned matrix H[·], suppose that its QR decomposition
is a matrix of the form

H = QR, (22)

where R is an upper triangular matrix and Q is an orthog-
onal matrix, i.e., the one satisfying

QT Q = I, (23)

where I is the identity matrix. This matrix decomposition
can be used to simplify the computation to determine the
solution β.

Assume that R is of full column rank. Then

β̂ = (RT R)−1RT QT Γ (24)

is the unique least-squares solution by minimizing

J = ‖Hβ− T‖2
2. (25)

5. Experimental results

Based on the experimental setup shown in Section 2, the
experiment to measure the responses of acupoints was im-
plemented. A sequence of semi-exponential signals, i.e.,
x(t) = β(e−α(t−tk) − 1)1(t − tk), where β = 3.5 and
α = 0.04, was used to excite the acupoint Shaoshang
(LU11) of the meridian system. The response of the acu-
point Kongzui (LU6) was measured.

Firstly, we applied the standard ELM neural network
to model hysteresis occurring in the meridian. Both the
input and output nodes of the ELM network are set to one.
The selection of the number of hidden neurons is shown
in Table 1.

Note that the modelling performance of the standard
ELM neural network is not improved even though the
number of hidden neurons is increased. Among those
cases, the neural model with 25 hidden neurons yielded
the best validation solution.

In order to identify the hysteretic behaviour of the hu-
man meridian, the proposed method is utilized. The ELM
neural model with self-feedback hidden neurons is con-
structed on the proposed expanded input space, i.e., the
model has two inputs, i.e., one is the stimulating input and
another is the output of the proposed hysteretic operator.
For the structure of the dynamic ELM neural model, the
selection procedure of the hidden neurons is presented in
Table 2.

From Table 2, we see that when the number of hidden
nodes is 15, the best model validation result is obtained.

Table 1. Selection of the number of hidden neurons in the ELM
model.

Number of MSE of MSE of
hidden nodes training validation

10 0.1395 0.1418
15 0.1346 0.1422
20 0.1307 0.1402
25 0.1308 0.1349
30 0.1301 0.1398
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H(x(t), f(x(t)), z(x(t − 1), t − 1)] =

⎛

⎜
⎝

g(w1 · [x1(t), f((x1(t)))]) + α1z1(x1(t − 1), t − 1) . . .
...

...
g(w1 · [xN (t), f((xN(t)))]) + α1z1(xN (t − 1), t − 1) . . .

g(w1 · [xN (t), f((xN(t)))] + α1z1(xN (t − 1), t − 1)
...

g(wÑ · [xN (t), f((xN(t)))] + αÑzÑ (xN (t − 1), t − 1)

⎞

⎟
⎠ , (18)

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.5

0

0.5

Input (V)

O
ut

pu
t (

V
)

ELM

0 1 2 3 4 5

x 10-6

-0.5

0

0.5

Time (sec)

M
od

el
 e

rro
r (

V
)

Fig. 5. Model validation of the standard ELM neural model.

Thus, we choose the architecture of the recurrent ELM
neural network with two inputs, 15 hidden neurons and
one output.

Figure 5 shows the model validation result of the
ELM neural network based model and the correspond-
ing modelling error. In Fig. 5, the solid line is the real
data of the meridian and the dotted line is the obtained
model data. The maximum modelling error is over 0.5 V.
In Fig. 5, it can be seen that the model failed to describe
the hysteresis present in the meridian.

On the other hand, the proposed dynamic ELM neu-
ral network on the constructed expanded input space has
obtained much better modelling performance even though
the asymmetric hysteresis in the human meridian system
is a rather complex behaviour. In the experiment, the train-

Table 2. Selection of the number of hidden neurons in the dy-
namic ELM model.

Number of MSE of MSE of
hidden nodes training validation

10 0.0685 0.0800
15 0.0234 0.0406
20 0.0182 0.1282
25 0.0152 0.2562
30 0.0143 2.2458
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Fig. 6. Model validation of the proposed dynamic ELM neural
model.

ing algorithm to specify the weights of the model was the
same as that in the training of the ELM neural model. Fig-
ure 6 illustrates the corresponding performance of model
validation. The dotted line is the modelling result while
the solid line corresponds to the real data of the meridian
system. Obviously, the modelling error of the proposed
method is very small, just around zero. Moreover, the pro-
posed method used a smaller number of hidden neurons
than that of the conventional ELM neural model. Hence,
the proposed modelling method has a much simpler model
structure.

For modelling the response measured at the Lieque
(LU7) point when Tianfu (LU3) is stimulated by a saw-
wave sequence with 10 KHz in frequency and 4 V in peak-
to-peak amplitude. The proposed dynamic ELM neural
model with 2 input nodes, 20 hidden nodes and 1 output
is used to model this behavior. The corresponding model
validation performance is shown in Fig. 7. It can be seen
that satisfactory modeling performance is obtained.

For comparison, in this experiment, a Time-Delay
Neural Network (TDNN) (Waibel, 1989) with local feed-
back is applied to the modeling of hysteresis in the merid-
ian system. The architecture of the TDNN model con-
sists of a two step time-delay in input nodes, 45 hidden
nodes and one output node. The Levenberg–Marquardt
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Fig. 7. Model validation of the proposed dynamic ELM method.
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Fig. 8. Model validation of the time-delay neural network.

(L–M) algorithm is implemented for model training. Af-
ter 600 epochs, the corresponding model validation result
is shown in Fig. 8. Obviously, it can be seen that a larger
modeling error occurred. This is because of the multi-
value effect of hysteresis and, probably, local minima.

6. Conclusion

In this paper, a modeling method for asymmetric hystere-
sis in human meridian systems is presented. In this model-
ing scheme, a modified hysteretic operator is proposed to
construct an expanded input space to transform the multi-
valued mapping of hysteresis into a one-to-one mapping.
On the constructed expanded input space, the ELM neu-
ral network is employed to model hysteresis inherent in
human meridian systems. As hysteresis in the meridian
system is an asymmetric and dynamic system, a dynamic
ELM neural network is developed. In the proposed dy-
namic ELM neural network, the output state of each hid-
den neuron is fed back to its own input to describe the dy-
namic behavior of hysteresis. The training of the dynamic
ELM neural network is rather simple. A least-squares al-
gorithm based on QR decomposition is implemented.

Moreover, a TDNN modeling method is used to
model the same hysteresis for comparison. However, the
obtained TDNN model still fails to obtain a satisfactory

modeling result.
The experimental results showed that the proposed

dynamic ELM neural model based model obtained much
better modeling performance and a simpler model struc-
ture.
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